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Pattern recognition receptors (PRRs), as the “sensors” in the immune response,

play a prominent role in recognizing pathogen-associated molecular patterns

(PAMPs) and initiating an effective defense response to pathogens in Lepidoptera.

It is becoming increasingly clear that damage-associated molecular patterns

(DAMPs) normally play a physiological role within cells; however, when exposed

to extracellular, they may become “part-time” critical signals of the immune

response. Based on research in recent years, we review herein typical PRRs of

Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative

binding protein (GNBP), b-1,3-glucan recognition protein (bGRP), C-type lectin

(CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs

participate in the immune response and the correlation between PRRs and

immune escape. Taken together, these findings suggest that the role of PRRs

in insect innate immunity may be much greater than expected and that it is

possible to recognize a broader range of signaling molecules.
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1 Introduction

Lepidoptera species are the largest phytophagous insects (1), comprising the second

largest order of Insecta after Coleoptera (2). Some of the species are economic insects, as

represented by Bombyx mori, Antheraea pernyi, and Thitarodes xiaojinensis, whereas

others are typical pests in agriculture, such as Helicoverpa armigera, Spodoptera exigua,

Manduca sexta, and Galleria mellonella. It is noteworthy that there are 472 species of edible

insects in sub-Saharan Africa, of which 31% are members of Lepidoptera (3). Meanwhile,

Lepidopterans were first applied in the study of innate immunity (4), and emerging data

suggest that they also meet the expectations of researchers for using the “3R” principle

(replacement, reduction and refinement) in animal experimentation (5). During the long

process of evolution, insects have relied on their innate immune system, without adaptive

immunity, to resist invasion of exogenous pathogens, and this is the natural advantage of
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insects as attractive models for studying innate immunity. There are

also certain vital reasons, as follows. (i) The virulence factors of

human pathogenic microorganisms are similar between insects and

mammals, and their virulence is equivalent (6). (ii) Pathogens infect

insects and mammals via identical mechanisms, including

adhesion, invasion, systemic transmission and evasion of the

immune response (7). (iii) The physical barrier and innate

immune system of insects and mammals show a high degree of

homology in function (8, 9). (iv) Insects are easy to breed,

convenient to manipulate and economical. For a long time,

Drosophila has been the chief insect model in gene level research;

as a mini-host, it is advantageous for use for forward and reverse

genetics (6). However, it also has some shortcomings, such as the

inability to be propagated at 37°C, a small size and hemolymph

volume (7); in addition, a wealth of operating experience and special

laboratory equipment are needed (e.g., microsyringes) (10).

Lepidopterans arguably have more advantages in the study of

protein levels, with consideration of physiological and immune

characteristics. First, it is easier to extract tissues and collect more

hemolymph due to the larger size of Lepidopteran larvae. In

addition, it is known that the larvae of G. mellonella can be

propagated at 37°C, which is equivalent to the body temperature

of the mammalian host (5). As temperature has been proven to play

a significant role in expression of virulence factors, this feature is

extremely important in analyzing the innate immune response to

pathogens (11).

The innate immune system in insects is composed of two arms:

humoral and cellular mechanisms. Humoral immunity entails

conversion of prophenoloxidase (PPO) to active phenoloxidase (PO)

(12, 13) and expression of genes encoding antimicrobial peptides

(AMPs) (14–17) through the Toll and IMD pathways. The above two

pathways share many similar features with the Toll-like receptor

(TLR) and tumor necrosis factor-a (TNF-a) receptor signaling

cascades in mammals (18, 19). Active PO catalyzes conversion of

phenols to quinones and promotes formation of melanin, which then

participates in cellular immunity (20, 21). AMP directly kills invading

microorganisms by interacting with microbial membranes, destroying

membrane structures and interfering with internal mechanisms (14,

22). Cellular immunity is mainly mediated via hemocytes. If the

pathogen is able to breach the physical barriers of the host, hemocytes

will be recruited to the site of infection, phagocytosing or killing the

pathogens at the membrane or intracellular level (14). In addition,

hemocytes and pathogens form microaggregates (21, 23), which

accumulate into nodules that are directly encapsulated and

eliminated by melanin synthesized by active PO. Pattern recognition

receptors (PRRs) are the “sensor” in the immune response that

initiates the above two aspects; that is, they are a class of proteins

expressed by innate immune cells that recognize invasive pathogens.

This recognition involves a process of distinguishing “self” and

“nonself” together with the conservative structure of pathogens

(bacteria, fungi, viruses and other pathogenic microorganisms have

specific structural components completely different from the host

body), which are ordinarily referred to as pathogen-related molecular

patterns (PAMPs) (24, 25). The role of this recognition process is also

the basis of the classical concept of innate immunity (26). In general,

PAMPs are mostly located on the cell surface of pathogens, with a few
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located inside cells. PAMPs can be divided according to their chemical

nature into the following categories: (i) polysaccharide compounds,

such as peptidoglycan (PGN), b-1,3-glucan, zymosan,

lipopolysaccharide (LPS), and capsular polysaccharide (27–29); (ii)

lipid compounds, such as LPS, lipoteichoic acid (LTA), and

lipoarabinomannan (LAM) (29–31); (iii) proteins and polypeptides,

such as flagellin and capsid protein (32); and (iv) nucleic acids, such as

dsRNA, ssRNA of viruses and unmethylated CpG of bacteria (33).

Increasing evidence shows that PRRs play crucial roles in

identifying endogenous molecules released by damaged cells,

which are called damage-associated molecular patterns (DAMPs)

(24). A cornerstone concept of DAMPs is that the molecules that act

in response to various stresses and damage are host derived rather

than pathogen or environment derived (34). DAMPs are regarded

as endogenous danger signals because they induce aseptic

inflammation without infection and induce an innate immune

response that is similar to the response caused by PAMPs (35–

37). Although the theory of DAMPs was advanced earlier, in 1994,

Polly Matzinger proposed the “danger” theory under the

assumption that injured tissues release intracellular molecules to

activate the immune system (38). It was not until the high mobility

group box 1 (HMGB1) (39), uric acid crystals (40), and Hsp family

(41) were successively considered to be DAMPs that this theory

began to be widely applied. In the past 30 years, more than 30 types

of DAMPs have been confirmed in mammals, located outside the

cell (e.g., lmw hyaluronic acid; fibrinogen fibrinogen) or

intracellularly, including particles represented by defensins and

substances distributed in various structures, such as the cytosol

(e.g., S100 proteins, heat shock proteins), nucleus (e.g., HMGB1,

DNA, RNA), mitochondria (e.g., mtDNA, formyl peptide), ER (e.g.,

calreticulin), and plasma membrane (e.g., Syndecans, Glypicans)

(37). Dorsal switch protein 1 (DSP1) is a novel kind of DAMP in

insects and an ortholog of mammalian HMGB1. Although there are

currently few confirmed insect DAMPs, it was recently reported

that DSP1 participates in activating the immune response in S.

exigua after Bacillus thuringiensis (Bt) infection (42), providing

concrete evidence for the study of insect DAMPs.

PAMPs and DAMPs, either exogenous or endogenous, are

danger signals for the body. Detecting them rapidly and

responding in time is the key process for insects to initiate the

innate immune response and maintain homeostasis. PRRs are the

“sensors” that initiate the immunoreaction. Here, we review new

findings on pattern recognition receptors in Lepidoptera. In

addition, we summarize the research progress of insect DAMPs

in recent years. Our purpose is to deepen understanding of the

mechanism of innate immunity of insects and reveal possible

problems (Table 1).
2 The recognition effect of PRRs
on PAMPs

What kind of special structure does a pathogen have?

Considering this problem may help us to understand why PRRs

can quickly identify pathogens and mediate the host’s immune

response. A huge portion of PAMPs, mostly polysaccharides, lipids
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or the proteins or nucleic acids of viruses, are frequently the basic

building blocks of pathogens. Such characteristic molecules render

PRRs more efficient and accurate in recognizing PAMPs (Figure 1).

In this section, Lepidopteran insects are taken as an example to

briefly describe new PRRs and the characteristics of their

involvement in the immune response, for instance, the type of

pathogen they recognize and the type of immune response

they mediate.
2.1 PGRP

Peptidoglycan recognition protein (PGRP), ubiquitous in

vertebrates, mollusks, echinoderms and insects, is a pivotal PRR

conserved from insects to mammals (54, 69). It plays a role in

recognition, bacteriostasis or sterilization, agglutination, and

amidase activity and participates in the immune response as a

regulator. PGRPs mainly recognize the characteristic bacterial

molecule PGN. PGRPs may also recognize LPS and b-1,3-glucan.
Frontiers in Immunology 03
PGRP can be divided into two types according to the length of the

amino acid sequence: a long type (PGRP-L) and a short type

(PGRP-S). The long type is an intracellular and transmembrane

protein, and the short type is an extracellular protein (70).

Furthermore, PGRPs can be divided into catalytic PGRPs and

noncatalytic PGRPs according to the catalytic activity of amidase

(71). All four mammalian PGRPs, PGLYRP1, PGLYRP2, PGLYRP

3 and PGLYRP4, have the ability to recognize bacterial PGN (72,

73). Among them, PGLYRP1, PGLYRP3 and PGLYRP4 have a

direct bactericidal effect on gram-positive and gram-negative

bacteria, but with no enzyme activity; PGLYRP2 exhibits amide

enzyme activity to hydrolyze bacterial cell wall PGN (74, 75). There

are some reports on the function of PGRP in reptiles. C-turtle-

PGRP-S in the aquatic reptiles Chinese soft-shelled turtle Pelodiscus

sinensis has been found to have PGN-binding and antibacterial

activities (76). Research on fish PGRP has also gradually increased.

Among the currently known 3 kinds of PGRPs in the orange-

spotted grouper Epinephelus coioides, PGRP-S has direct

antibacterial activity against two pathogens, Vibrio harveyi and
TABLE 1 The number of four types of PRRs involved in Lepidoptera.

Proteins Lepidoptera Number Functions

PGRP

B. mori 12

i. Recognition: BmPGRP2-1 (43), BmPGRP-L1 (44)
ii. Activate the proPO system: BmPGRP-1 (45), TxPRGP-S2 (46), OfPGRP-S (47)

iii. Regulate the expression of AMPs: PxPGRP-S1 (48), OfPGRP6 (49)
iv. Amidase activity: OfPGRP4 (50), MsPGRP-S1 (51)

v. Agglutination: PxPGRP-S2 (52)
vi. Antiviral: SePGRP-LB (53)

T.xiaojinensis 9

M. sexta 14

H. armigera 9

P. xylostella 9

Ostrinia furnacalis 14

bGRP

B. mori 4

i. Recognition: BmGNBP (54)
ii. Activate the proPO system: TxbGRP1 (55), OfbGRP3 (56)

iii. Antiviral: BmbGRP4 (57)

T. xiaojinensis 4

M. sexta 5

H. armigera 5

P. xylostella 18

O. furnacalis 4

CTL

B. mori 24

i Recognition: PxCTL5 (58), BmCTL6 (59)
ii. Agglutination: BmCTL5 (60), HaCTL7 (61), OfCTL6 (62)

iii. Activate the proPO system: OfIML-10 (63)
iv. Regulates the expression of AMPs: HaCTL3 (64)

v. Antiviral: BmIML-2 (65)

T. xiaojinensis 32

M. sexta 34

H. armigera 26

P. xylostella 7

O. furnacalis 14

Scavenger receptor

B. mori 21

i. Recognition: BmSRB8 (66)
ii. Regulates the expression of AMPs: BmSR-C (67)

iii. Lipid transport:BmSRB3 (68)

T. xiaojinensis 12

M. sexta –

H. armigera 10

P. xylostella 15

O. furnacalis 9
“-” indicates no information from current references.
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Edwardsiella tarda, and it also significantly induces activation of

NF-kB as a regulatory factor (77). PGRP-L1 and PGRP-L2

recognize and bind to PGN, play a role in activating NF-kB
luciferase activity, and significantly inhibit growth of E. tarda

(78). AjPGRP-S in the echinoderm Apostichopus japonicus has

agglutination ability, strong antibacterial activity against Vibrio

splendidus, V. harveyi, Vibrio parahaemolyticus, Staphylococcus

aureus as well as Micrococcus luteus, and high amidase activity in

the presence of Zn2+ (79). In the mollusk Crassostrea gigas,

CgPGRPS2 and CgPGRPS4 recognize a variety of microorganisms

and PAMPs, playing a pattern recognition role in the innate

immune response of this oyster (80).

Compared with other species, the immune function of PGRP in

insects has been studied in depth. In addition to the above
Frontiers in Immunology 04
functions, PGRP, which is an indispensable part of innate

immunity, also participates in regulating synthesis of AMPs and

activation of the PO system in insects. Insect PGRP mainly plays a

recognition role upstream of the Toll versus Imd pathways (71).

DAP-PGN in gram-negative bacteria activates the IMD pathway to

produce AMPs, whereas Lys-PGN in gram-positive bacteria plays a

role in the Toll pathway (81). In Drosophila melanogaster,

extracellular PGRP-SA and PGRP-SD stimulate the Toll pathway

after infection by gram-positive bacteria, and PGRP-SD promote

repositioning of peptidoglycan on the cell surface to upregulate the

Imd pathway (82–84). Membrane protein PGRP-LC (85–87) versus

extracellular PGRP-LE acts upstream of the Imd pathway.

Extracellular PGRP-LE participates in the PO pathway (88, 89),

and intracellular PGRP-LE is involved in autophagy to defend
FIGURE 1

Schematic diagram of important insect’s PRRs involved in the recognition of “danger signal” and the regulation of downstream immune signaling
pathways. Infectious invaders include viruses, fungi, gram-positive bacteria (G+), gram-negative bacteria (G-), and other parasites. DAMPs and PAMPs
refer to injury-related and pathogen-related molecular patterns, respectively. Some of the PAMPs and DAMPs shown in the figure include double-
stranded RNA (dsRNA), single-stranded DNA (ssDNA), b-1,3-glucan, lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN), Dorsal
switch protein 1(Dsp1), and a-actin. The pattern recognition receptors (PRRs) are classified into the secretory and the transmembrane type, and are
marked in red in the figure. The secretory PRRs described here consist of short-type peptidoglycan recognition protein (PGRP-Sx); Gram-negative
bacteria-binding protein (GNBP); b-1,3-glucan recognition protein (bGRP); C-type lectin (CTL); Scavenger receptor (SR); Apolipoprotein I-III (ApoLp-
II/I, III);and thioester-containing protein (TEP), while transmembrane PRRs mainly include Toll, long-type PGRP (PGRP-Lx), integrins and Down
syndrome cell adhesion molecule (Dscam). In addition, TEP is also identified as an opsonin of various immune responses, with the PRRs-triggered or
regulated immune responses and signaling pathways mentioned in the review as shaded. Damage-associated mode molecule (DAMP) is labeled as
magenta, which transmits signals in cells and regulates downstream immune pathways. The molecules labeled with blue are mosquito galactose-
specific C-type lectin 7(mosGCTL-7) and B. mori peptidoglycan recognition protein 2-2 (BmPGRP2-2), which are involved in the immune escape of
the virus, helping to infect the virus and inhibiting the downstream immune response.
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against pathogens (e.g., Listeria monocytogenes) (90). Recent

observations have shown that the affinity of PGRP-SC in Musca

domestica for various intestinal polysaccharides, including LPS and

b-1,3-glucan, is beneficial for maintaining intestinal equilibrium

(91). Multiple lines of evidence indicate that PGRPs are closely

related to regulation of AMPs in Lepidoptera. BmPGRP2-1 and

BmPGRP-L1 in B. mori recognize DAP-PGN and then trigger the

Imd pathway (43, 44). PxPGRP-S1 in Plutella xylostella and

rPGRP6 in Ostrinia furnacalis appear to play a prominent role in

synthesis of AMPs (48, 49). Amidase activity (71) is also an effective

means for involvement of some PGRPs in the immune response,

which is beneficial for destroying pathogens and maintaining

immune homeostasis in the host. PGRP-S1 is capable of

recognizing DAP-PGN and Lys-PGN and exerting amidase

activity to degrade PGN, disrupting the bacterial surface (51).

PGRP-S5 in B. mori is associated with downregulation of the

IMD pathway induced by bacteria in the late stage, which is

beneficial to prevent overactivation of the immune response,

which might have an adverse effect on the host (92).

Recognition between PGRP and PGN also contributes to the

PO pathway and plays multiple roles in cellular immunity. PGRP-

S1, which was purified from the hemolymph of B. mori, was the first

PGRP described. After PGN recognition, the PO pathway is

activated (54), and PGRP-S4/S5 in B. mori has been proven to

recognize PGN and trigger stimulation of the PO pathway (93, 94).

PGRP-SA in A. pernyi has been shown to be a broad-spectrum

pattern recognition receptor involved in activation of the PPO

system and production of AMPs (95). PGRP-S1 of Diaphania

pyloalis (Walker) recognizes two kinds of PGN and causes strong

agglutination of Escherichia coli, M. luteus or S. aureus in the

presence of Zn2+ (96).

Presently, most research exploring the role of PGRPs in innate

immunity focuses on bacteria and fungi, and only a few studies have

shown that PGRPs have the ability to respond to virus invasion. B.

mori bidensovirus (BmBDV) infection significantly increases

expression of BmPGRP-LB and BmPGRP-LE in B. mori and

activates the Imd pathway (97). Induction of B. mori cytoplasmic

polyhedrosis virus (BmCPV) increases expression of BmPGRPS2.

Furthermore, overexpression of BmPGRPS2 activates the Imd

pathway, elevates AMPs, and enhances the ability to resist

infection by the virus (98). SePGRP-LB in S. exigua plays a

similar role in S. exigua multiple nucleopolyhedrovirus

(SeMNPV) infection and induces a significant increase in

expression of Relish, a key gene in the IMD immune signaling

pathway (53).
2.2 bGRP/GNBP

The b-1,3-glucan recognition protein family is one of the most

characteristic pattern recognition receptor families in invertebrates

and mainly includes bGRP and GNBP (99, 100). At present, this

family has been identified mostly from insects and crustaceans; it

mainly contributes to the innate immune response by participating
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in activation of the PO system. In crustaceans, this family is also

called b-1,3-glucanase-related protein (BGRP) (101). PcBGRP in

Procambarus clarkii exhibits strong binding to LPS and b-1,3-
glucan and enhances PO activation in vitro and in vivo (102). The

first bGRP isolated and purified was from B. mori, and it recognizes

b-1,3-glucan in the fungal cell wall and initiates activation of the

PPO cascade (103). In O. furnacalis, after induction by LPS and

laminarin (soluble b-1,3-glucan), the mRNA content of OfbGRP3
increases, with the LPS-challenged group showing higher levels

than the laminarin-challenged group. OfbGRP3 also activates the

PO pathway after bacterial infection (56). bGRP1 in T. xiaojinensis

is an essential receptor for activation of PO induced by Cordyceps

militaris. However, failure of bGRP1 to recognize Ophiocordyceps

sinensis is the main reason why the host does not undergo

melanization after infection. Immunofluorescence detection has

revealed a protective layer that prevents bGRP1 from recognizing

fungi. bGRPs not only play a recognition role in Lepidopterans to

trigger the innate immune response but also act in synergy with

other immunity to promote antifungal defense (104). bGRP1 in T.

xiaojinensis interacts with immulectin-8 (a kind of lectin) to

promote encapsulation of pathogens (105). Although the role of

bGRPs in viral infection needs further research, bGRPs are

considered to have antiviral potential. This view is substantiated

by the observation that overexpression of bGRP4 inhibits

proliferation of B. mori nucleopolyhedrovirus (BmNPV) in B.

mori ovary N (BmN) cells (57).

GNBPs also may be involved in resisting pathogens. The first

member of the GNBP family was isolated and purified from B. mori,

and it was named because of its strong binding ability to gram-

negative bacteria (E. coli) but was later classified as a member of the

b-1,3-glucan recognition protein family (106), also known as

bGRP2 (107). The homologs GNBP1 and GNBP2 found in D.

melanogaster are involved in defense against gram-positive bacteria

(108–111), and GNBP3 correlates with defense against fungal

infection (112, 113). GNBP6 in S. exigua significantly upregulates

PO activity in vitro (114). Current research has shown that the

immune response of S. exigua to fungal infection requires three

PRRs (bGRP-1, bGRP-2 and GNBP3) to activate the Toll signaling

pathway (115). In addition, PxbGBP is a b-1,3-glucan-binding
protein identified in P. xylostella, which is similar to bGRP and

participates in host immunity to fungal infection. Moreover,

interference of dsPxbGBP sensitizes P. xylostella to Isaria cicadae

infection (116).
2.3 CTL

C-type lectins (CTLs), which are widely distributed in both

vertebrates and invertebrates, are the most abundant and diverse

superfamily of animal lectins (117). CTLs have been studied

extensively in mammals. They are often referred to as C-type

lectin receptors (CLRs), which play an important role in

identifying and resisting pathogens and maintaining the

homeostasis of the intestinal flora. For example, several CLRs,
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including Dectin-1, Dectin-2, Mincle, and Clecsf8, have been shown

to be involved in mouse responses to mycobacteria via activation of

the spleen tyrosine kinase (Syk)/caspase recruitment domain family

member 9 (CARD9) signaling pathway (118, 119). Deletion of

Dectin-1 and Dectin-2 affect the environment of the bacterial

intestinal microbiota of mice and increase susceptibility to colitis

(120). Dectin-1 specifically recognizes fungal cell wall b-glucan and

then participates in activating the immune response of mice (121).

In addition, CLRs in mammals play diverse roles in the

development of inflammation and tumors. For example, Mincle

in mice is able to inhibit clearance of dead cells and increase

production of proinflammatory cytokines; it is involved in the

persistent inflammation induced by cell death after acute kidney

injury (122). In vitro results have shown that downregulation of

DC-SIGN significantly inhibits the proliferation, cell cycle

progression, migration and invasion of gastric cancer cells (123),

suggesting that the expression level of DC-SIGN correlates

positively with the occurrence and development of gastric cancer.

However, mouse Dectin-2 and Dectin-3 enhances the phagocytic

activity of Kupffer cells in the liver and promotes their phagocytosis

and clearance of tumor cells, thereby suppressing liver metastasis of

tumor cells (124).

Research on CTLs of other vertebrates mainly focuses on their

recognition, agglutination or other functions in the process of

pathogenic microorganism infection. In poultry, gene expression

of cLL in chickens is significantly upregulated after induction by

Avian Pathogenic Escherichia coli (APEC), suggesting that as a

receptor, cLL may play an important role in innate defense against

early pulmonary APEC infection in the host (125, 126). In fish, the

expression level of OmLec1 in Onychostoma macrolepis is

significantly increased after induction by Aeromonas hydrophila,

showing agglutination activity against bacteria such as E. coli and S.

aureus in vitro (127). SsCTL4 in black rockfish recognizes and

agglutinates E. tarda and Vibrio anguillarum and inhibits E. tarda

infection while promoting invasion of infectious spleen and kidney

necrosis virus (ISKNV) through recognition (128). In addition,

SmLec1 in Scophthalmus maximus stimulates renal lymphocyte

proliferation and enhances the killing effect of macrophages on

bacterial pathogens (129).

In invertebrates, CTLs have attracted much attention due to

their abilities to recognize and bind sugar ligands, promote

agglutination, participate in cellular immunity, mediate

synthesis of AMPs and regulate the PO system (130–132). Hp-

Lec in Hemifusus pugilinus displays a broad spectrum of

bacterial agglutination activity and agglutination activity

against vertebrate blood cells, as well as antifungal activity

against Aspergillus niger and Aspergillus flavus (133). Cnlec-1

in Chlamys nobilis is upregulated after induction by three

immunostimulants, V. parahaemolyticus, LPS and PolyI: C,

and plays a role in the body’s immune response (134). LvLec

in Litopenaeus vannamei is able to enhance V. harveyi-induced

phagocytosis of blood cells, increase PO activity, and possibly

regulate the immune response of blood cells through the cGMP-

PKA pathway (135).
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The role of some CTLs derived from Lepidopteran insects in

innate immunity against exogenous pathogens has also been fully

studied and characterized. The bracoviral-derived C-type lectin

BLL2 from S. exigua is highly sensitive to a variety of bacteria

and agglutinates a broad range of bacterial species (136). IML-10 in

O. furnacalis binds to the surface of hemocytes and promotes their

aggregation, thereby enhancing hemocytic encapsulation (63). 20E-

HaEcR-HaUSP, a complex formed by the steroid hormone 20-

hydroxyecdysone (20E), ecdysone receptor (HaEcR) and

ultraspiracle (HaUSP), stimulates expression of CTL1 in H.

armigera . Subsequently, HaCTL1 participates in cellular

immunity (encapsulation and phagocytosis) to resist invading

pathogens (nematodes and bacteria) (137). In addition, HaCTL3

promotes phagocytosis of hemocytes by bacteria (such as E.

mundtii), and AMPs regulated by HaCTL3 exert a bactericidal

effect. Both of the above strategies may lead to elimination and

inhibition of bacteria in the hemolymph of H. armigera (64). CTL-

14 in H. armigera is capable of recognizing fungal surface

polysaccharides, forming aggregates with yeast polysaccharides

and Beauveria bassiana conidia, and interacting with six melanin-

related proteins to produce melanin (138). CTL-S6 in B. mori binds

bacterial PGN strongly but has weak LPS binding ability. In

addition, CTL-S6 is involved in encapsulation, activation of the

PO pathway and melanogenesis (130). CTL-5 in B. mori has been

proven to be an important PRR of the JAK/STAT signaling

pathway, which mediates nodule melanization during fungal

infection (139). Another CTL in B. mori, BmCTL10, binds to a

variety of PAMPS and plays a role in enhancing encapsulation,

nodulation and phagocytosis. It can also bind to blood cells to

upregulate synthesis of AMPs. BmCTL10 even downregulates PPO

expression as a modulator to protect the body from certain toxic

compounds, maintaining immune homeostasis (140). Although

little is known about the antiviral effects of CTLs in Lepidoptera,

there is increasing evidence of antiviral potential. Expression of Ha-

lectin in H. armigera is upregulated after H. armigera nuclear

polyhedrosis virus (HaNPV) induction (141). Two bracovirus-

associated lectins, Se-BLL2 and Se-BLL3, have been successively

confirmed in recent years to exert antiviral activity during the

immune process of S. exigua larvae against baculovirus (142) and

Spodoptera frugiperda larvae against Junonia coenia densovirus

(JcDV) (143). IML-2 in B. mori inhibits proliferation of BmNPV

by promoting apoptosis (65).
2.4 Scavenger receptor

Scavenger receptors (SRs) are a class of transmembrane

glycoproteins on the cell surface act as PRRs that directly

recognize PAMPs as well as DAMPs and participates in the

identification, phagocytosis and elimination of pathogens. SRs are

generally divided into 12 categories: SR-A~J. Here, we focus on two

categories, SR-B and SR-C. SR-B is a kind of PRR that exists in both

vertebrates and invertebrates and mediates an immune response

(144, 145). It has been reported that scavenger receptor class B1
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(SCARB1), which is a typical SR-B, plays a complex biological

function. In humans, SCARB1 serves as an important mediator of

cholesterol homeostasis, and mutations in SCARB1 are associated

with accelerated development of coronary artery disease (146). In

mice, SRB1 regulates lymphocyte proliferation and cytokine

production (147). SCARB1 in Serinus canaria has been shown to

be a mediator of carotenoid uptake (148). SmSRB1 in S. maximus

recognizes Streptococcus iniae, V. anguillarum, iridovirus, and

multiple PAMPs. In addition, it may act as a coreceptor for TLRs

and NLRs to regulate immune responses to pathogens (149). RpSR-

BI in Ruditapes Philippinarum was confirmed to be a PRR with

broad-spectrum recognition that may be used as an opsonin to

participate in the innate immune response and enhance

phagocytosis and chemotaxis of blood cells (150). EsSR-B2 in

Eriocheir sinensis recognizes gram-positive and gram-negative

bacteria, thus enhancing phagocytosis and stimulating expression

of AMPs (151). AjSR-B in A. japonicus binds a variety of PAMPs

and exhibits agglutinative activity against gram-positive and gram-

negative bacteria (152). SR-B is also of interest in Lepidopteran

insects. BmSCRB8 in B. mori enhances the bacterial clearance rate

and promotes production of AMPs in vivo (66).MmSR-B1, an SR-B

family member from Micropilits mediator (the natural enemy of

many Lepidopteran agricultural pests), correlates significantly with

synthesis of AMPs and phagocytosis by hemocytes (153).

Interestingly, SR-C is only found in invertebrates and not in

vertebrates (154). MjSRC in Marsupenaeus japonicus plays an

important role in the antibacterial immunity of the host by

enhancing phagocytosis and expression of AMPs (155). SR-C in

D. melanogaster is a PRR associated with recognition and

phagocytosis of invading bacteria (E. coli versus S. aureus) (156).

SR-C in Tenebrio molitor is involved in phagocytosis of

microorganisms such as bacteria (E. coli versus S. aureus) and

fungi (Canidia albicans) (157). In recent years, the immune

function of SR-C in silkworm was reported for the first time. As a

pattern recognition receptor against bacteria, SR-C in B. mori

recognizes and binds diverse types of PAMPs, especially Lys-type

PGN, and initiates the immune response. Moreover, SR-C regulates

expression of AMPs by activating Toll signaling (67).
2.5 Other PRRs

The understanding of innate immunity prompted the search for

PRRs. In addition to the above PRRs, a portion of PRRs exhibit

pattern recognition characteristics. Galectins are a type of b-
galactoside-binding protein that act as a recognition and effector

factor in innate immunity by recognizing polysaccharides on the

surface of pathogenic microorganisms (158). It has been reported

that Galectin-4 plays a recognition role in the fertilized eggs of the

silkworm B. mori and can induce bacterial agglutination in vitro

(159). The complement system is involved in mediating elimination

of pathogens at an early stage of mammalian infection (160).

Thioester (TE)-containing proteins (TEPs) are highly similar to
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mammalian C3 (161). Macroglobulin complement-related factor

(MCR) in Aedes aegypti belongs to the TEP family, which functions

with SR to regulate expression of AMPs, thus exerting anti-dengue

virus (DENV) activity (162). Down syndrome cell adhesion

molecule (Dscam) may be involved in various pathways, such as

pathogen-specific recognition, phagocytosis, transduction of

immune signals, and regulation of AMPs (163). Dscam in

Anopheles gambiae mediates phagocytosis after bacterial

infection (164).
3 The potential identification function
of DAMPs by PRRs

In general, understanding of DAMPs is constantly being

updated with deep investigation. Initially, DAMPs were expected

to verify cell death. Subsequently, DAMPs were thought to be

secreted or exposed by living cells that experience life-threatening

stress. Recently, DAMPs have been found to be crucial to tissue

healing after inflammation (165). DAMPs play a role in

autoimmune diseases, osteoarthritis, cardiovascular diseases,

neurodegenerative diseases and cancer in mammals. Hsp, ATP,

HMGB1 and other typical DAMPs provide reference targets for

disease diagnosis and treatment (37). Moreover, HMGB1 and ATP

have been identified as prominent molecules for promoting

regeneration (165).

HMGB1, which is a highly conserved nuclear protein expressed

in mammals, normally functions as a DNA chaperone within cells

(165, 166). During stress, HMGB1 is released, which can be used as

a DAMP to activate the innate immune response. Toll-like receptor

(167) and SR (168) in mammals have a recognition role in this

process. DSP1, an ortholog of vertebrate HMGB1 (169, 170), is a

type of known insect DAMP first discovered in D. melanogaster

(169, 171). According to current research on insect DAMPs, we

speculate that DSP1, as a DAMP triggering the insect signaling

pathway, plays a role in amplifying signals during pathogen

infection. In S. exigua, SeDSP1 is released into the circulatory

system after infection by bacteria, and the Toll pathway is

activated by triggering Spätzle. Then, AMPs and phospholipase

A2 (PLA2) are produced. PLA2 catalyzes synthesis of Eicosanoids,

which mediate both the cellular and humoral arms in insects.

Xenorhabdus hominickii inhibits activation of the Toll signaling

pathway by DSP1 (including activation of PLA2), which leads to

significant immunosuppression in S. exigua (171). SeDSP1 also

regulates production of reactive oxygen species (ROS) through the

DSP1/PLA2/Ca2+/dual oxidation (Duox) signaling pathway and

participates in the intestinal immune response (172). A similar

mechanism has been found in mosquitoes (173).

Actin is another typical DAMP in mammals. Filamentous (F-)

actin, an important protein involved in cell movement and

contraction, is released by dead cells and recognized by an innate

immune receptor called DNGR-1 (also known as CLEC9A, a

member of the C-type lectin family) (174–176). Recent evidence
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has shown that a-actin, a cytoskeletal protein closely related to F-

actin, is the key trigger for STAT activation in the JAK/STAT

pathway in D. melanogaster (177).

We speculate that a portion of DAMPsmay be conserved between

vertebrates and invertebrates, with similar functions and recognized

mechanisms. This review provides a basis for follow-up studies on

insect DAMPs and shows the possibility of their complementation.

Notably, although DAMPs have begun to be discovered in some

insects, their paired receptors have not been clarified. What PRRs does

DSP1 encounter before triggering Spätzle? In what way is a-actin
involved in STAT activation? Are there any proteins in insects that are

similar to the PRR that recognizes DAMPs in mammals? These

questions are likely to be answered in the future.

4 Immune escape

Occasionally, PRRs may act not as an “adversary” but an

“accomplice” for pathogens. In mammals, viruses promote invasion

by binding to pattern recognition receptors and escape from the innate

immune response by interfering with signal transduction and cellular

immunity (178). Immune escape by pathogens may lead to persistent

infection and even cancer. For instance, Epstein-Barr virus (EBV),

which was the first identified human virus associated with tumors, is

closely related to development of nasopharyngeal carcinoma (NPC),

gastric carcinoma (GC), and several lymphomas. Human

papillomavirus (HPV) is associated with cervical, anal, penile, and

head and neck squamous cell carcinomas. Furthermore, infection by

these viruses is involved in tumor immune escape (47, 179–181).

Cancer immune surveillance involves three basic processes of

elimination, balance and escape, which is called the theory of cancer

immunoediting (182, 183). According to the suggestion of this

hypothesis, it is necessary to study the mechanism of immune

escape for tumor treatment. Current data indicate that immune

escape by pathogens, especially viruses, is closely related to PRRs

and that this mechanism exists not only in mammals but also in

insects. BmPGRP2-2 in B. mori, induced by BmNPV, negatively

regulates phosphatase and tensin homolog (PTEN)-

phosphoinositide 3-kinase (PI3K)/Akt signaling to inhibit apoptosis

to promote replication of the virus (43). As a “bridge”, some CTLs in

mosquitoes promote Flavivirus infection, such as West Nile virus

(WNV) and Japanese encephalitis virus (JEV). The mosGCTL-1/

WNV complex formed by mosGCTL-1 in A. aegypti and the

invading WNV may be captured by the membrane protein

mosPTP-1, which is a mosquito homolog of human CD45, at the

surface of the cell membrane, promoting invasion by and spread of the

virus (184). Studies have confirmed that mosGCTL-7 in mosquitoes is

able to bind to the JEV envelope protein via an N-glycan at N154 in a

calcium-dependent manner and promote viral infection through the

mosGCTL-7/mosPTP-1 pathway (185). SRB1 in human hepatocytes

and an SRB1-like receptor in mosquito cells acts as cell-binding

proteins that bind to and facilitate internalization of DENV and

Zika virus (ZIKV) NS1, resulting in high permeability of endothelial

cells and downregulation of the innate immune response (186). In

addition, knocking out GNBP in A. aegypti promotes clearance of

DENV-2 (187).
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5 Discussion

In the long process of evolution, organisms of various taxa have

evolved immune systems with multiple structures and functions.

Among them, the innate immune system is a common defense

mechanism in animals, is especially important in invertebrates, and

plays an important role in vertebrates such as zebrafish (188)

(Table 2). Therefore, as a key link in innate immunity, PRRs have

received extensive attention. PRRs of different organisms have both

common and surprising characteristics, and they are closely related

to each other. Some of the above-described Lepidopteran PRRs are

homologs found in higher organisms, and the Toll-like receptors

(TLRs) that have been well studied in vertebrates are conserved

from Drosophila to human (197, 198). Hence, it is important to

explore the immune function of PRRs and their association with

PRRs of other organisms.

Based on the discussion herein about PRRs of Lepidoptera, the

recognition role played by PRRs in insect innate immunity is

essential for activation of signaling pathways. Partial PRRs can

also directly interact with pathogens, for example, participating in

agglutination, cleavage and even elimination. We have noticed that

identification of hazardous signals by PRRs is not a single route of

transmission but seems to comprise a large closely related network.

Furthermore, PRRs form “attack complexes” with other proteins to

enhance signal transduction. All of these factors are conducive to

the efficient immune response of insects.

As more attention has been given to the role of PRRs in

immunity, functional studies are becoming more comprehensive.

Some research on PRRs has also been used in breeding of economic

insects or formulating pesticides to kill agricultural pests. Here, we

illustrate recognition of PRRs for PAMPs and DAMPs but do not

discuss their symbiotic relationship or promotion of growth and

development. Based on the above, we propose several possible

future research directions.

i) Improving understanding of the antiviral pathway of

Lepidoptera. Viruses do not have cellular structures, though

nucleic acids are currently considered typical of PAMPs, and

multiple studies have found that dsRNA, ssRNA, and DNA

containing single-stranded unmethylated CpG motifs are

recognized by TLR3, TLR7, and TLR9, respectively, in antiviral or

antibacterial pathways in mammals (195, 199–202). However, the

mechanism of virus recognition in insects is not very clear. For

example, BmPGRP-S3 levels are increased after induction by the

RNA virus BmCPV, but the specific mechanism needs to be further

studied (203). A protein of the viral shell may also play a special role

in the recognition process.

ii) Exploring PRRs that bind newly defined PAMPs. In

investigations carried out on a-1,3-glucan based on the model of

G. mellonella, it was validated that A. niger a-1,3-glucan, a virulence
factor, can play a role in humoral and cellular immunity. Multiple

PRRs were also shown to interact with a-1,3-glucan, but

Apolipoprotein-III (ApoLp-III) was unable to recognize it. These

data provide evidence that a-1,3-glucan is a PAMP that can be

recognized by insects and a new direction for enriching

understanding of PRRs (204–206).
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iii) Searching for Lepidopteran DAMPs and their receptors. The

DAMPs reported in Lepidoptera are limited, and PRRs capable of

recognizing DAMPs are not clear and need further research.

These issues remind us that continuous attention to risk

signaling molecules and pattern recognition receptors capable of

recognizing them is indispensable for understanding the innate

immunity of the host.
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TABLE 2 Comparison between invertebrates and vertebrates.

PRRs Species Similarity Difference

PGRP

Decapoda – –

Lepidoptera i. Recognition (189)
ii. Amidase activity (51, 190)

iii. Signal conduction (53, 93, 191, 192)
iv. Bacteriostasis or sterilization (74, 193)

Agglutination (96)
–

Primate
–

Cypriniformes

bGRP/GNBP
Lepidoptera i. Recognition function (106)

ii. Signal conduction (55, 57)
–

Decapoda

CTL

Lepidoptera

i. Recognition (121)
ii. Signal conduction (135)
iii. Agglutination (127, 194)

iv. Promote phagocytosis (137)

–
Decapoda

Primate

Cypriniformes

Scavenger receptor

Lepidoptera

i. Recognition (66)
ii. Signal conduction (66)

–

mediator of cholesterol homeostasis
(146)

Decapoda

Cypriniformes

Primate

TLR
Primate i. Recognition (195)

ii. Signal conduction (196)
–

Cypriniformes
“-” indicates no information from current references.
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