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2019 Coronavirus Disease (COVID-19) is a global pandemic caused by severe

acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A “cytokine storm”, i.e.,

elevated levels of pro-inflammatory cytokines in the bloodstream, has been

observed in severe cases of COVID-19. Normally, activation of the nucleotide-

binding oligomeric domain-like receptor containing pyrin domain 3 (NLRP3)

inflammatory vesicles induces cytokine production as an inflammatory response

to viral infection. Recent studies have found an increased severity of necrobiosis

infection in diabetic patients, and data from several countries have shown higher

morbidity and mortality of necrobiosis in people with chronic metabolic diseases

such as diabetes. In addition, COVID-19 may also predispose infected individuals

to hyperglycemia. Therefore, in this review, we explore the potential relationship

between NLRP3 inflammatory vesicles in diabetes and COVID-19. In contrast, we

review the cellular/molecular mechanisms by which SARS-CoV-2 infection

activates NLRP3 inflammatory vesicles. Finally, we propose several promising

targeted NLRP3 inflammatory vesicle inhibitors with the aim of providing a basis

for NLRP3-targeted drugs in diabetes combined with noncoronary pneumonia in

the clinical management of patients.
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• Activation of the NLRP3 inflammasome affects the cellular

response to insulin.

• Activation of NLRP3 inflammasome plays an important

role in maintaining endothelial cell function in COVID-19.

• Anti-diabetic drugs can affect the activation of NLRP3

inflammasome.

• NLRP3 can cause a chronic low inflammatory state in

diabetic patients.

• Antidiabetic drugs can be used as an adjuvant treatment for

COVID-19 patients with diabetes.
1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), a member of the b coronavirus family, is the pathogen behind

the current 2019 Coronavirus Disease (COVID-19) pandemic,

belongs to the genus Coronaviruses in the family Coronaviridae

(1). The SARS-CoV-2 virus is transmitted from person to person

through respiratory droplets and aerosols. Once inside the human

body, the virus binds to host receptors and enters host cells through

endocytosis or membrane fusion. The harm of SARS-CoV-2 to the

human body is great (2). Common pneumonia caused by SARS-

CoV-2 can cause respiratory failure and even multiple organ failure

death in severe cases.

Many risk factors may lead to a poor prognosis of COVID-19,

such as smoking, diabetes, and obesity. As one of the factors leading

to poor prognosis of COVID-19, diabetes can have a detrimental

effect on the host’s immunity. In a study of COVID-19 patients in

China, the survival rate of non-diabetic COVID-19 patients was

much higher than that of diabetic COVID-19 patients (3). Chronic

hyperglycemia impairs innate and humoral immunity. In addition,

diabetes is associated with a low-grade chronic inflammatory state

that promotes the development of inflammation and is therefore

more prone to acute respiratory distress syndrome.

Nucleotide-binding oligomeric domain-like receptor containing

pyrin domain 3(NLRP3) is a family of intracellular innate immune

receptors, one of the most characterized members of the NOD-like

receptor family. It is a multiprotein complex in macrophages,
eviations: NLRP3, domain-like receptor containing pyrin domain 3;
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ive oxygen species; VDAC, vasodilator center; MSU, MidStream Urine;
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dendritic cells, and other non-immune cells, which is composed

of a sensor (NLRP3), an adaptor (ASC; Also known as PYCARD),

and an effector (caspase 1) composition. As a key component of the

innate immune system, NLRP3 inflammasome plays an important

role in host defense against bacteria, fungi, and viruses. NLRP3 is

also involved in metabolism and inflammation, such as gout,

diabetes, insulin resistance, and obesity (4). Existing studies have

shown that NLRP3 plays an important role in the occurrence and

development of variety infectious diseases such as SARS, MERS,

COVID-19, and other coronaviruses. The NLRP3 inflammasome

plays a pivotal role in fundamental bodily functions, including

immunity and metabolism, by undergoing activation. In general,

NLRP3 activation can be divided into two steps, startup, and

activation. In the first step of initiation, ice sheet associated

molecular patterns (PAMPs) or damage associated molecular

patterns (DAMPs) are recognized by toll-like receptors, leading to

NF-kB-mediated signaling activation and upregulated transcription

of inflammatory-associated components. The second step is

activation, in which ATP, disease RNA and other substances are

triggered to complete the assembly of the NLRP3, ASC and pre-

caspase-1 complex. In severe cases, levels of proinflammatory

cytokines rise in the bloodstream, creating a so-called “cytokine

storm”. At the same time, many literatures have reported that

diabetes with coronavirus is more prone to the release of

inflammatory factors, especially IL-6 and IL-18, which are

important inflammatory factors downstream of NLRP3 (5). In

this context, a better understanding of the activation of NLRP3

inflammasome in diabetes mellitus with COVID-19 will facilitate

further research and better treatment of diabetes mellitus with

COVID-19. Given the important involvement of NLRP3

inflammasome in COVID-19, this article reviews the possible

pathways of NLRP3 activation in diabetes mellitus complicated

with COVID-19, the pathogenesis, and the intervention drugs and

therapeutic methods based on inhibiting NLRP3 inflammasome in

diabetes mellitus complicated with COVID-19 (6).
2 Association of NLRP3 activation,
SARS-CoV-2 infection, and obesity

2.1 SARS-CoV-2 infection and NLRP3

The genome of SARS-CoV-2 has two large open reading frames:

ORF1a and ORF1ab. The 5 ‘end of the SARS-CoV-2 genome

encodes a polyprotein, which is processed into 16 non-structural

proteins by the proteolytic enzyme Mpro (3CLpro) and papain-like

protease PLpro 2. Its 3 ‘end encodes an accessory protein and four

structural proteins, including spike protein (S), membrane protein

(M), envelope protein (E),and nucleocapsid protein (N), which are

closely related to the activation of NLRP3 inflammasome (7).

The nucleocapsid protein, or N protein, directly binds to the

NLRP3 protein. This binding enhances the association of NLRP3

with ASC, fostering the assembly of the NLRP3 inflammasome. An

interesting cascade involving the N protein-MBL-MASP2 axis may

also interface with the NLRP3 inflammasome through the dynamic
frontiersin.org
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roles of C3a, C5a, and MAC, further activating the inflammasome.

As a component of the viral envelope, the SARS-CoV-2 N protein

exits the cytoplasm prior to the virus’s assembly, which potentially

induces NLRP3 activation, escalating the possibility of an acute

inflammatory response (8). Followed by the envelope protein,

SARS-CoV-2 E protein, which depends on ROS and K+

extravasation, may initially suppress the host NLRP3

inflammasome response to viral RNA, while possibly increasing

the NLRP3 inflammasome response later in infection. E protein

inhibits inflammasome priming and NLRP3 inflammasome

activation in cultured macrophages. Finally, the spike protein,

ACE2 receptor interaction with SARS-CoV-2 spike protein will

stimulate the NLRP3 inflammasome, if overactivated, may lead to

pyroptosis. Activation of the renin-angiotensin-aldosterone system

(RAAS) leads to elevated levels of angiotensin II. The interaction of

the angiotensin-converting enzyme 2 (ACE2) receptor with the

SARS-Cov-2 spike (S) protein reduces the degradation of Ang II,

leading to Ang II accumulation and then activation of the NLRP3

inflammasome. At the same time, over-activating, it may lead to

pyroptosis (9).

Meanwhile, the open reading frame of SARS-CoV-2 can also

play a role in activating the NLRP3 inflammasome. The SARS-

CoV-2 viral porin encoded by ORF3a triggers the NLRP3

inflammatory pathway. The SARS-CoV-2 ORF3a viroporins

activate the NLRP3 inflammasome, the most heterogeneous of

known inflammasomes. Ectopically expressed ORF3a triggers IL-

1b expression via NF-kB, which initiates the inflammasome. ORF3a

activates NLRP3 inflammasomes in both ASC-dependent and

independent modes. This inflammasome activation requires

potassium efflux and oligomerization between the kinases NEK7

and NLRP3 (10).

Nonstructural proteins of SARS-CoV-2 can also affect NLRP3

activation. Two nonstructural proteins (NSPS), NSP1 and NSP13,

have been found to inhibit caspase-1-mediated IL-1b activation.

SARS-CoV-2 nonstructural protein 6 triggers NLRP3-dependent

pyroptosis by targeting ATP6AP1 (11).

Furthermore, the activation of the NLRP3 inflammasome is

pivotal in the innate immune response to viral pathogens in

humans. The so-called ‘cytokine storm’, stemming from rampant

inflammation and unregulated cytokine release, is a prime suspect

for the detrimental clinical outcomes seen in COVID-19. The

NLRP3 inflammasome is also flagged as a potential interactor

with the myeloid differentiation primary response (MYD88).

Elevated IL-1b levels, activated TLR4, and the MYD88 pathway

converge, stimulating NLRP3 inflammasome and exacerbating

SARS-CoV-2 infections. Recent studies revealed heightened levels

of inflammasome-associated products, IL-1b, IL-18, and LDH in

COVID-19 patients, highlighting the inflammasome’s association

with the disease (12). Clinical studies further affirm the crucial role

of the inflammasome in moderate to severe SARS-CoV-2 infections.
2.2 Activation of NLRP3

Inflammatory bodies are polymorphic complexes formed by

pattern recognition receptors activated by various physiological or
Frontiers in Immunology 03
pathogenic stimuli. They are an important part of innate immune

response and can clear pathogens and damage cells. The nucleotide-

binding domain leucine-rich receptor (NLR) is a family of

intracellular innate immune receptors. One of the most

characteristic members of the subfamily is NLRP3, which

includes the sensor molecule NLRP3, a spot-like protein

associated with apoptosis. Contains the caspase recruitment

domain (CARD) and pro-caspase-1 (13).

Activation of the inflammasome is one of the important defense

mechanisms in the early stage of infection. Most inflammasomes

are activated by only one or a few highly specific agonists, but

NLRP3 can be activated by a variety of unrelated stimuli, including

K+ or Cl-, Ca2+, lysosome destruction, mitochondrial dysfunction,

metabolic changes, and trans-Golgi disintegration. Depending on

the stimulus, NLRP3 inflammasome can be classified into typical

caspase-1 activation and atypical caspase-4/5 or caspase-11 (in

mice) activation pathways (14).

Here we focus on the canonical activation pathway of NLRP3,

which can be mainly divided into two steps. The first is priming,

where PAMPs or DAMPs, such as lipopolysaccharide (LPS), are

recognized by Toll-like receptors, leading to activation of nuclear

factor kB (NF-kB) -mediated signaling pathways (15). NF-kB
upregulates the transcription of inflammasome-related

components, such as inactive NLRP3, caspase-1, IL-b, and IL-18.

This is followed by activation, mainly triggered by ATP, pore-

forming toxins, viral RNA, and particulate matter, leading to the

assembly of NLRP3, ASC, and pro-caspase-1 into a complex that

converts caspase-1, proIL-18, and proIL-1b to their active

forms (16).

Excessive and sustained activation of inflammasome

exacerbates the inflammatory response. It induces pyrosis through

the specific maturation of IL-1b and IL-18, which is a major pro-

inflammatory mechanism and the pathogenesis of various

inflammatory disorders (Figure 1).
2.3 NLRP3 and the development of
diabetes mellitus

Activation of NLRP3 inflammasome affects glucose tolerance

and insulin sensitivity, i.e., the cellular response of insulin-

dependent cells such as adipocytes and cardiomyocytes to the

insulin hormone. The function of glucose-induced expression of

NCLX, a Na/Ca+2+ exchanger, in rat aortic myoepithelial cells,

suggests that NCLX increases Ca2+ flux in glucose-dependent

mitochondria, thereby regulating ROS production and subsequent

activation of the NLRP3 inflammasome (17). This activation of

NLRP3 promotes the production and maturation of IL-1b and IL-

18. Overexpression of IL-1b in the body can lead to a variety of

consequences. (1) The presence of the IL-1 receptor signal amplifies

the inflammatory response and further induces the expression of

other inflammatory mediators (IL-18, IL-33) (18), which together

with IL-18 induces pyroptosis (19). (2) The overexpression of IL-1b
causes oxidative stress and endoplasmic reticulum stress, which

leads to the death of human pancreatic epithelial MIA PaCa-2 cells

and leads to T2DM (20). (3) High level of IL-1 activates c-Jun N-
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terminal kinase (JNK). It induces serine phosphorylation of insulin

receptor substrate 1 (IRS-1), which further impairs the activity of

insulin PI3K/Akt signaling pathway in insulin-sensitive tissues and

increases blood glucose. Research has indicated a significant

positive correlation between IL-18 and various anthropometric

parameters, liver enzymes, fasting and post-load glucose levels,

insulin, uric acid, and triglycerides. In contrast, there’s a negative

correlation with HDL. To discern individuals with carbohydrate

metabolism disorders from those with metabolic syndrome, an

ROC analysis was employed to evaluate the circulating levels of

IL-18. The AUC for carbohydrate metabolism disorder stood at

0.597 (p = 0.001; 95%CI = 0.539-0.654), while the AUC for

metabolic syndrome was 0.581 (p = 0.021; 95%CI = 0.516-0.647).

This data suggests that as IL-18 levels rise, carbohydrate tolerance

diminishes, potentially leading to the onset of diabetes (21). In

addition, the data suggest that carbohydrate tolerance worsens with

increasing IL-18 levels (21). Because IL-18 acts as a cofactor for Th1

and Th2 cell development, excessive Th1 activation leads to type 1

diabetes, an autoimmune disease. In addition, it is worth

mentioning that researchers have recognized the relationship

between IL-18 and IL-1b secretion, which significantly increases

the expression of IL-1b (22), suggesting that IL-18 may promote the

development of diabetes through its interaction with IL-

1b (Figure 2).
3 Susceptibility links between
COVID-19 and diabetes

There may be a certain relationship between COVID-19

infection and hyperglycemia. Infection with COVID-19 can
Frontiers in Immunology 04
increase blood glucose, aggravate the severity of COVID-19

infection, and make hyperglycemia and even diabetes one of the

sequelae of COVID-19. Patients with diabetes are exacerbated by

hyperglycemia during infection and recovery.
3.1 The prognosis of COVID-19
is hyperglycemia

The study showed slightly higher HbA0c in patients with severe

COVID-19 than in those with mild COVID-19.Although this

difference was not significant (23), a study based on the glycemic

characteristics and clinical findings of hospitalized COVID-19

patients suggests that diabetes and or uncontrolled hyperglycemia

frequently occur in hospitalized COVID-19 patients. These

COVID-19 patients with diabetes and or uncontrolled

hyperglycemia had longer hospital stays and significantly higher

mortality than those without diabetes or uncontrolled

hyperglycemia, with particularly high mortality among those with

uncontrolled hyperglycemia (24).

The reasons for elevated blood glucose in patients with

COVID-19 may be as follows. In patients with SARS-CoV-2

infection, C-reactive protein increases sharply. In addition to the

increase in blood glucose caused by stress, cytokine storm, a highly

inflammatory pathological state caused by a viral infection, can

directly and indirectly affect pancreatic b cells and increase blood

glucose. Studies have shown that the expression of ACE2 in the

pancreas (mainly islet cells) is even higher than that in lung. SARS-

CoV-2 enters host cells and circulates in plasma through the ACE2

receptor on the cell surface (25). In addition, some studies have

shown that SARS-CoV-2 can disrupt ACE/ACE2 balance and
FIGURE 1

The classical NLRP3 inflammasome activation pathway. Priming: Toll-like receptors are stimulated by PAMPs or DAMPs to up-regulate the
expression of NLRP3 inflammasome-related components. Activation: Important cellular signals for inflammasome activation include K+ efflux, Ca2+
flux, ROS, mitochondrial damage, and lysosomal disruption.
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RAAS activation, leading to insulin resistance (26). Most notably,

one of the International COVID-19 Inflammation Studies assessed

the contribution of inflammation and hyperglycemia to diabetes

risk by examining inflammatory biomarkers collected on

admission, and blood glucose levels and insulin data throughout

the hospital stay. The relationship between diabetes and the

prognosis of COVID-19 is mainly mediated by the state of “hyper

inflammation” (27). Proinflammatory cytokines and acute-phase

reactants such as IL-1b and IL-18 caused by COVID-19 around

NLRP3 activation may directly or indirectly cause inflammation

and pancreatic b cell damage, resulting in severe insulin resistance

and hyperglycemia. These factors further increase the body’s blood

glucose, aggravate the inflammatory response, further cause the

activation of NLRP3, and finally promote the onset and progression

of COVID-19 and diabetes.
3.2 Diabetes and susceptibility to
COVID-19

Studies have shown that diabetic patients infected with SARS-

CoV-2 have higher rates of hospital admissions, severe pneumonia,

and mortality than non-diabetic patients infected with SARS-CoV-

2. Patients with impaired glucose tolerance or diabetes have been

reported to have a 50-60% higher risk of lung infections (28),

Monocytes and macrophages are the most abundant immune cell

types in the lungs of COVID-19 patients and appear to play a

central role in the pathogenicity of the disease (29). These cells
Frontiers in Immunology 05
adjust their metabolism after infection and become highly

glycolytic, which facilitates the replication of SARS-CoV-2 (30).

Recent evidence suggests that patients with diabetes are at increased

risk for complications of severe adult respiratory distress syndrome

and multiple organ failure. Compared to non-diabetic patients, a

recent meta-analysis showed that diabetes was associated with a 2.3-

fold increased risk of severity and a 2.5-fold increased risk of

COVID-19-related death (31). Therefore, it can be concluded that

diabetes is a poor prognostic factor for COVID-19.

Patients with diabetes mellitus (DM) are at higher risk of

frequent infections than non-diabetic patients, possibly due to

some immunodeficiency in diabetic patients. In addition, there is

a more complex process in the patient group. Regarding innate

immunity of neutrophils, the phagocytosis abilities of chemotaxis,

adhesion, phagocytosis, oxidative burst, and killing in diabetic

patients are generally lower than in normal people. Therefore,

these patients may be more susceptible to COVID-19 virus

infection. High blood glucose and insulin resistance can lead to

systemic inflammation and activate the NLRP3 pathway, which

increases the risk of respiratory infections in diabetes and leads to

poor infection treatment outcomes.

Another point of note is that the immediate defense responses

to pathogens in patients with COVID-19 are polymorphic, involve

macrophages and dendritic antigen-presenting cells, and can be

mediated by the humoral system, but these responses are

suppressed in diabetes (32), The activation of the NLRP3 pathway

can cause a series of cellular immune problems such as inhibition of

cytokines, leukocyte recruitment, neutrophil dysfunction,
FIGURE 2

NLRP3 inflammasome complex and pathology in diabetes. Activation of NLRP3 promotes the production of IL-1b and IL-18, amplifies the
inflammatory response, causes oxidative stress and endoplasmic reticulum stress, and induces apoptosis of islet beta cells. Meanwhile, high levels of
IL-1 induced the activation of c-Jun N-terminal kinase and decreased the activity of insulin-PI3K/Akt signaling pathway. IL-18 induces Th1 over-
activation leading to type 1 diabetes.
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macrophage dysfunction, NK cell dysfunction, inhibition of

antibody and complement effects, which is the key to the decline

of immunity and increased susceptibility to infection in diabetic

patients (33). In addition, this increase in advanced glycation end

products in adaptive immunodeficiency can also be associated with

impaired production of type 1 interferon by T lymphocytes (34).

These causes can lead to a decline in the function of the immune

system, ultimately making the patient more susceptible to

viral infection.
4 Hypoglycemic agents targeted for
NLRP3 activation in SARS-CoV-2

Commonly used hypoglycemic drugs are divided into oral

hypoglycemic drugs and injection hypoglycemic drugs. Oral

hypoglycemic agents can be divided into sulfonylurea

secretagogues, biguanides, glienide secretagogues, a-glucosidase
inhibitors, thiazolidinediones, DPP-4 inhibitors, SGLT-2

inhibitors. The injectable drugs mainly include insulin. Here, we

list some hypoglycemic agents that can act on the NLRP3

inflammasome and explain their mechanism of action. In this

paper, we mainly listed oral hypoglycemic drugs, and injectable

drugs were represented by GLP-1 receptor agonists. In addition,

this paper also listed other drugs that may treat COVID-19 by

acting on the NLRP3 inflammasome (Table 1).
Frontiers in Immunology 06
4.1 The biguanide - metformin (DMBG)

A representative of the biguanide class of hypoglycemic drugs is

metformin. Metformin is a first-line drug for the treatment of type 2

diabetes, especially in overweight patients. Metformin activates

phosphorylated AMPK, reduces the expression of pro-

inflammatory cytokines including TNF-a, IL-6, and IL-1b, and
decreases NLRP3 inflammasome activation, thereby suppressing

the level of lipopolysaccharides (LPS) and SARS-COV-2-induced

ARDS. Studies have shown that metformin blocks LPS-induced

ATP-dependent synthesis of mtDNA (an NLRP3 ligand), without

relying on the AMP-activated protein kinases AMPK or NF-kB.

ComC inhibited AMPK phosphorylation mainly by inducing the

release of inflammatory cytokines and increasing the activation of

NLRP3 inflammatory bodies, resulting in decreased survival of

cardiomyocytes. Metformin exerts cardioprotective effects by

modulating the inflammatory response induced by myocardial I/

R injury, which largely depends on the enhancement of the AMPK

pathway, thereby inhibiting the activation of NLRP3 inflammasome

(35). The anti-inflammatory properties of metformin have been

demonstrated in various autoimmune inflammation models, such

as arthritis, uveitis, and hepatitis (56). In addition, metformin

inhibits NLRP3 inflammasome activation and alveolar

macrophage production of interleukin-IL-1b, as well as

inflammasome independent IL-6 secretion, thereby reducing

lipopolysaccharide (LPS) and SARS-CoV-2-induced ARDS. In a
TABLE 1 The role of NLRP3 inhibitor in the treatment of COVID-19.

Drugs
Drug cate-

gory
The role and mechanism in the treatment of COVID-19

Model/
Object

Reference

Phenformin biguanides
Metformin reduces the expression of pro-inflammatory cytokines such as TNF-a
and IL-6 by blocking LPS-induced ATP-dependent mitochondrial (MT) DNA
synthesis and oxidized mtDNA (NLRP3 ligand) production.

pulmonary alveolar
macrophage

(35–38)

Sitagliptin DPP4 inhibitor
DPP4 inhibitor enhanced AMPK phosphorylation and attenuated NLRP3
activation. It may be associated with disease severity in MERS-CoV, but its effect
on SARSCoV-2 has not been determined.

Ob/ob mouse
model

(39–42)

Empagliflozin SGLT2 inhibitor
SGLT2 inhibited IL-1b secretion, accompanied by an increase in serum b-
hydroxybutyrate (BHB) and a decrease in serum insulin, and inhibited the
activation of NLRP3 inflammasome.

Patients with
cardiovascular
disease and
diabetes mellitus

(43–45)

liraglutide
GLP-1 receptor

agonist
(Injectable drugs)

GLP-1 may alleviate NLRP3 inflammasome-dependent inflammation in PVAT by
inhibiting NF-kB signaling.

Diabetic adipose
rat model

(46–48)

Pioglitazone Thiazolidine
RSG can inhibit the activation of NLRP3 inflammasome by activating Nrf2
signaling pathway, and the mechanism may be related to the increased expression
of ACE-2.

Mouse model of
liver injury

(48–50)

Colchicine gout suppressant
It is possible by selectively blocking different steps before the oligomerization of
NLRP3 inflammasome and by reducing the release of major cytokines (IL-1b and
IL-18).

COVID-19 patients (51, 52)

Hydroxychloroquine

4-aminoquinoline
derivatives
antimalarial

drugs

It combined with artemisinin treatment can inhibit NF-kB signaling and NLRP3
inflammasome activation by inhibiting exosomes in rats.

Rat models with
IgA nephropathy

(53)

Pirfenidone Pyridone
It can inhibit apoptosis, down-regulate ACE receptor expression, reduce
inflammation and improve oxidative stress through a variety of mechanisms,
thereby protecting the body from cytokine storm.

COVID-19 patients (54, 55)
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US study, metformin was found to reduce deaths from COVID-19

by a factor of 10 in African American patients with type 2

diabetes (57).

In an observational study, when exposed to COVID-19, patients

treated with metformin had significantly lower mortality than those

not treated with metformin (OR: 0.59, 95% CI: 0.43-0.79; P =

0.001). This suggests that mechanisms beyond glycemic control that

underlie the anti-inflammatory activity of metformin could help

reduce the risk of severe COVID-19 (58). The COVID-19 disease-

specific findings are consistent with the effect of metformin in

reducing tumor necrosis factor (TNF-a) levels in women,

suggesting that metformin may protect against CCOVID-19

through TNF-a-mediated pathway. This finding has been

confirmed by Yuchen Chen, who found the level of IL-6 was

reduced in patients treated with metformin (59). Prolonged use of

metformin improved other age-related pathologies and extended

lifespan and health time in model organisms, and these effects may

not be related to glycemic control but to its anti-inflammatory

properties (60).
4.2 DPP4 inhibitor – daxagliptin

Dipeptidyl peptidase 4 (DPP4) is overexpressed in many

adverse environments, such as oxidative stress, inflammation, and

apoptosis. It has been reported that there may be a close interaction

between COVID-19 peak protein and DPP4. Popular examples of

DDP4 inhibitors include saxagliptin (SAX) and vigagliptin (VIL),

which can increase endogenous levels of glucagon-like peptide-1

(GLP-1) and glucose-dependent insulin-secreting polypeptide

(GIP) by promoting insulin release from pancreatic beta cells.

Previous studies have shown that DPP4 inhibitors have anti-

inflammatory Reno protective effects in mouse models of type 2

diabetic nephropathy (61), mainly by down-regulating the

expression of TNF-a, IL-1b, NLRP3 inflammasome and iNOS,

reducing renal tubular injury and protecting renal tissue

inflammation (62). Doxorubicin (DXR) induced inflammation

and nephrotoxicity are inhibited by several drugs which play an

essential role in inhibiting NLRP3 inflammasome (63). Decreased

circulating DPP4 activity has been associated with severe COVID-

19 disease, the regulation of DPP-4 expression on immune cells

induces a wide range of anti-inflammatory and immunomodulatory

effects, which can effectively restore the homeostasis of immune

response after coronavirus infection and improve the prognosis of

patients (64, 65).
4.3 SGLT2 inhibitor –dagliflozin

SGLT2 inhibitors are a new type of antiglucose drugs. The

representative drug is dagliflozin, which inhibits the reabsorption of

glucose in the kidneys. Therefore, excess glucose can be discharged

from the urine, thus achieving a lower blood glucose. Meanwhile,

SGLT2 inhibitors modulate NLRP3 inflammasome activity through

ketones and insulin and lead to a slight increase in serum ketone

bodies (b -hydroxybutyrate (BHB)), which not only act as
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metabolites but also play an important role in cellular signaling.

BHB has also been found to inhibit NLRP3 inflammasome

activation and reduce IL-1b production in macrophages (66).

Moreover, SGLT2 inhibitors are also positively correlated with

reducing blood glucose through renal glucose excretion, thereby

reducing serum insulin levels. Interestingly, SGLT2 inhibitors also

reduce serum uric acid levels by increasing renal clearance of uric

acid, a potent activator of NLRP3 inflammatory factors. SGLT2 not

only increases serum BHB levels, but also decreases serum insulin,

glucose, and uric acid levels, thus inhibiting NLRP3 inflammatory

body in general (43).

Intriguingly, some studies posit that SGLT2 inhibitors primarily

act on inflammatory pathways rather than on pathways associated

with glucose regulation. Even under standard glucose conditions,

SGLT2 inhibitors can mitigate smooth muscle migration and

proliferation. This action is attributed to their impact on

oxidative stress, NLRP3 expression, and inflammatory responses

in the IL-17a pathway, without inducing cell death (43). Our

research suggests that SGLT2 inhibitors influence the NLRP3

inflammasome by diminishing oxidative stress, curbing the NF-

kB signaling pathway, and stimulating autophagy. Such

mechanisms potentially help suppress inflammation and the

cytokine storm disturbances associated with COVID-19 (67).

Based on current clinical studies, it can be concluded that SGLT2

has anti-inflammatory properties and can positively affect tissue

hypoxia, oxidative stress, autophagy, and energy metabolism,

ultimately positively influencing the dysregulation of the cytokine

storm of COVID-19 (68) (Figure 3).
4.4 Thiazolidinediones – rosiglitazone

Thiazolidine is an insulin sensitizer and could reduce blood

glucose by increasing peripheral tissue sensitivity to insulin and

improving insulin resistance. Rosiglitazone Hydrochloride, a

thiazole-pridione insulin sensitizer, is a clinical drug for the

treatment of type 2 diabetes mellitus and has the potential to

inhibit inflammatory response (49, 69). A basic study found that

rosiglitazone may reduce inflammation by inhibiting the expression

of NLRP3 inflammatory and tumor necrosis factor-a in

macrophages. The results showed that rosiglitazone can reduce

the serum levels of IL-1b and tumor necrosis factor-a and reduce

the expression of caspase-1 and NLRP3 in inflammatory mouse

models, thereby reducing the occurrence of inflammation (70).

Clinical studies have shown that rosiglitazone can inhibit NLRP3

inflammasome activation by decreasing caspase-1 and NLRP3

expression and serum IL-1b and TNF-a levels (70). In another

randomized controlled trial, insulin resistance and type 2 diabetes

were associated with low levels of inflammation, and

thiazolidinediones were effective in controlling inflammatory

markers and metabolic parameters (71). Pioglitazone is also a

common thiazolidinedione glucose-lowering agent. In detail,

Pioglitazone ameliorates oxidative stress and inhibits NLPR3

inflammasome activation by activating AMPK signaling and

regulating autophagy levels, finally reducing the release of

inflammatory cytokines IL-1b and IL-18 (72).
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4.5 Injectable drugs – GLP-1
glucagon-like peptide

GLP-1 is a novel hypoglycemic drug that can activate the GLP-1

receptor and enhance insulin secretion in a glucose concentration-

dependent manner to reduce blood glucose. NLRP3 inflammasome

activation promotes the release of inflammatory cytokines such as

IL-1b and IL-6 and triggers the production of intestinal GLP-1 (46).

According to previous studies, GLP-1 may alleviate NLRP3

inflammasome-dependent inflammation in PVAT by inhibiting

NF-kB signaling. In treating GLP-1, clinical studies have

demonstrated that GLP-1 exerts anti-inflammatory effects by

inhibiting NF-kB, IL-1b, IL-6, TNF-a and NLRP3 inflammatory

pathways (73). Currently, some clinical studies have proved that

GLP-1 agonists, such as liraglutide, exhibit anti-inflammatory

activity by activating adenylate cyclase (AC) to produce cyclic

adenosine phosphate (CAMP), and then activating protein kinase

A (PKA) to upregulate the CAMP reaction of primary binding

protein (CREB). Liraglutide has also been shown to reduce IL-6

levels in patients (74). Another randomized controlled trial also

noted that GLP-1, which counteracts oxidative stress, inflammation

and endothelial dysfunction caused by changes in blood sugar, can

reduce the secretion of soluble intercellular adhesion molecule-1

and interleukin-6 (75).
5 Conclusion

Given the status of the global pandemic of COVID-19 virus,

although there is insufficient evidence that diabetic patients tend to
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be more susceptible to infection, the greater severity of disease after

infection has already been confirmed in hyperglycemic populations.

This review summarizes the mechanisms by which NLRP3

inflammatory vesicles cause inflammatory storms in COVID-19

infection and the chronic low inflammatory state in diabetic

patients caused by NLRP3. Moreover, the key role of NLRP3and

diabetes in COVID-19 infection is well discussed, and several

hypoglycemic agents have been proposed as an adjunctive

treatment for diabetic patients infected with COVID-19 regarding

NLRP3.Although further clinical trials are needed to address this

issue, it is promising to consider the current research progress.
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