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A network-based approach
reveals long non-coding
RNAs associated with disease
activity in lupus nephritis:
key pathways for flare and
potential biomarkers to be
used as liquid biopsies

George Sentis1, Catherine Loukogiannaki1, Nikos Malissovas1,
Dionysis Nikolopoulos2, Theodora Manolakou1, Sofia Flouda2,
Maria Grigoriou1,3, Aggelos Banos1, Dimitrios T. Boumpas1,2†

and Anastasia Filia1,3*†

1Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and
Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece, 24th
Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of
Athens Medical School, Athens, Greece, 31st Department of Internal Medicine, University Hospital of
Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
Objective: A blood-based biomarker is needed to assess lupus nephritis (LN)

disease activity, minimizing the need for invasive kidney biopsies. Long non-

coding RNAs (lncRNAs) are known to regulate gene expression, appear to be

stable in human plasma, and can serve as non-invasive biomarkers.

Methods: Transcriptomic data of whole blood samples from 74 LN patients and

20 healthy subjects (HC) were analyzed to identify differentially expressed (DE)

lncRNAs associated with quiescent disease and flares. Weighted gene co-

expression network analysis (WGCNA) was performed to uncover lncRNAs

with a central role (hub lncRNAs) in regulating key biological processes that

drive LN disease activity. The association of hub lncRNAs with disease activity was

validated using RT-qPCR on an independent cohort of 15 LN patients and 9 HC.

cis- and trans-targets of validated lncRNAs were explored in silico to examine

potential mechanisms of their action.

Results: There were 444 DE lncRNAs associated with quiescent disease and 6 DE

lncRNAs associated with flares (FDR <0.05). WGCNA highlighted IFN signaling

and B-cell activity/adaptive immunity as the most significant processes

contributing to nephritis activity. Four disease-activity-associated lncRNAs,

namely, NRIR, KLHDC7B-DT, MIR600HG, and FAM30A, were detected as hub

genes and validated in an independent cohort. NRIR and KLHDC7B-DT emerged

as potential key regulators of IFN-mediated processes. Network analysis

suggests that FAM30A and MIR600HG are likely to play a central role in the

regulation of B-cells in LN through cis-regulation effects and a competing
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endogenous RNA mechanism affecting immunoglobulin gene expression and

the IFN-l pathway.

Conclusions: The expression of lncRNAs NRIR, KLHDC7B-DT, FAM30A, and

MIR600HG were associated with disease activity and could be further explored

as blood-based biomarkers and potential liquid biopsy on LN.
KEYWORDS

lupus nephritis, long non-coding RNAs, WGCNA, disease activity, ceRNA, blood-based
biomarker, RNA-sequencing, SLEDAI-2K
Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disorder with manifestations of variable severity in multiple organs,

predominantly affecting women of reproductive age (1). Lupus

nephritis (LN), the renal manifestation of SLE, affects a significant

proportion of patients and is accompanied by permanent organ

damage and increased morbidity and mortality rates (2, 3). Initial

diagnosis and monitoring of LN rely on invasive kidney biopsy (4).

Current therapies are unable to suppress flares in more than half of

LN patients, and residual inflammation is detected in cases of repeat

biopsies of clinically inactive patients (5) with long-term disease

leading to damage accrual (4). Considering the above and the fact

that low disease activity is related to more favorable outcomes for

SLE patients (6), it is essential to identify a non-invasive blood-

based biomarker to reliably quantify disease activity in LN patients

without the need for kidney biopsy.

Long non-coding RNAs (lncRNAs) are transcripts longer than

200 nucleotides either without coding potential or featuring small

open reading frames (ORFs) that translate in peptides of

insignificant length (7, 8). They have been known to partake in

transcriptional regulation, affecting the expression of genes in their

vicinity (cis-) or distant targets (trans-acting lncRNAs) (9), exerting

their effect at a transcriptional, posttranscriptional, or chromatin

modification level with repressive or inducing aftermaths (10).

LncRNAs have emerged in the last years as promising biomarker

molecules of prognostic or diagnostic value, mainly in the field of

cancer research (11–13). Although their role is not yet clear in SLE,

studies in autoimmunity have shown lncRNAs to be stable in

human plasma samples; thus, they are suitable candidates for

non-invasive biomarkers (14).

Previous studies have reported that lncRNAs are differentially

expressed in SLE patients compared with healthy controls. In

particular, by sequencing total RNA isolated from peripheral

blood mononuclear cells (PBMCs), researchers identified over

1000 DE lncRNAs, and using qPCR experiments, they validated

the results of seven transcripts located near lupus susceptibility loci

(15). A second study profiled the expression of lncRNAs in kidney

tissue samples of a murine model with LN identifying and

validating DE lncRNAs (i.e., Neat1, Lincpint) and DE mRNAs

(Tgfbr1, Riok3). The same study evaluated the co-expression of
02
lncRNAs with neighboring mRNAs and validated five gene co-

expression pairs, namely, Gm26601-Dip2c, 2500002B13Rik-

Hmgb2, Gm26556-Ppp1r9a, 1700020N18Rik-Hes6, and

Gm20513-’H2-Aa’ (16). A third study identified three lncRNAs

(GAS5, linc0949, and lnc-DC) with stable plasma levels that are

differentially expressed between healthy controls and LN patients.

Interestingly, when comparing lnc-DC expression in non-nephritis

SLE patients to healthy controls, they found the lncRNA to be

upregulated, with contrasting results emerging in the LN patients

vs. healthy controls comparison where the gene was found to be

downregulated (17). This observation hints the existence of a

biomarker, possibly based on the expression of an lncRNA, able

to distinguish LN patients from non-nephritis SLE patients.

Another group investigated the transcriptional landscape of non-

coding RNAs in SLE showing the repressive capabilities of lncRNA

ENSG00000236525 on the gene of C–C chemokine receptor type 7

(CCR7), ultimately affecting the differentiation of follicular helper T

cells with an impact on autoimmunity (18). Finally, a study focusing

specifically on lncRNA NEAT1 and its association with SLE

revealed an upregulation of its expression in peripheral blood

monocytes and an active role in the inflammation signaling of

TLR4 (19).

Our study focuses on the association of lncRNAs with disease

activity in LN. In this report, we describe the involvement of

lncRNAs in flares of LN and propose lncRNAs with the potential

to be used as liquid biopsy. We also suggest potential mechanisms

for their involvement in this significant organ-specific

manifestation of SLE.
Materials and methods

Sample collection

Samples from 74 LN patients and 20 healthy subjects (HC) served

as our Discovery Cohort (Figure 1, Supplementary Table 1) (20).

Patient samples either had active LN at the time of sampling (n = 34)

or had a previous manifestation of LN over the course of the disease

(n = 40). Active LN was defined as previously described (5). An

independent cohort of 15 LN patients and 9 HC were used as the

Validation Cohort (Supplementary Table 2). LN samples were split in
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three groups according to their clinical SLE disease activity index

(SLEDAI-2K) (21). The groups were defined as Inactive Disease

(InaD) (SLEDAI-2K: 0-4), Intermediate Disease Activity (IDA)

(SLEDAI-2K:5-11), and High Disease Activity (HDA) (SLEDAI-

2K:12+) groups.
Library construction

Whole-blood extracts of the Discovery Cohort were total RNA-

sequenced. PAXgene Blood RNA Kit IVD (#762174, Qiagen) and

Tempus™ Spin RNA Isolation Kit (#4380204, Thermo Fisher

Scientific) were used for RNA isolation. Library construction was

performed using NEBNext® rRNA Depletion Kit v2 (#E7400, New
Frontiers in Immunology 03
England Biolabs) and NEBNext® Ultra™ II Directional RNA

Library Prep with Sample Purification Beads Kit (#E7765 New

England Biolabs). Library quality was assessed using a 2100

Bioanalyzer (Agilent), and a Qubit 4 Fluorometer with dsDNA

HS assay kit (#Q32854, Thermo Fisher Scientific) was used for

quantitation of libraries. 100-bp paired-end sequencing was

performed on an Illumina Nova-Seq 6000 System.
Sequencing QC and analysis

Quality of sequencing data was assessed using FastQC software

(version:0.11.9, RRID : SCR_014583) (22). Adapter sequences and

low-quality bases (Q<30) of the 3′ end were trimmed using Cutadapt
D
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B
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FIGURE 1

(A) Graphical overview of our research steps. (B) Volcano plot of the three differential expression analyses (DEA) performed comparing (left to right)
Lupus Nephritis patients vs. Healthy controls, High Disease Activity vs. Inactive Disease patients, and Inactive Disease patients vs. Healthy controls.
Upregulated genes are colored violet, and downregulated genes are colored blue. Genes not reaching our significance thresholds (|log2FC| >0.58
and FDR <0.05) are shown in gray. (C) Bubble plot showing inflammation-related Gene Ontology terms found as significantly enriched in each of the
three DEA when performing gene set enrichment analysis (GSEA). Color represents FDR values whereas bubble size represents the Normalized
Enrichment Score of each term. (D) Venn diagram comparing the DE genes of each DEA. Color gradient corresponds to the gene count in each
compartment. (E) Venn diagram comparing the enriched terms of each GSEA. Color gradient corresponds to the term count in each compartment.
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(v:1.18, RRID : SCR_011841) (23), and trimmed reads were aligned to

the human reference genome (v:hg38) with GENCODE annotation

(v:39, RRID : SCR_014966) (24) using STAR (v:2.6.1b, RRID :

SCR_004463) (25). Samtools (v:1.9, RRID : SCR_002105) (26) was

used to sort bam files, andHTSeq (v:0.11.0, RRID : SCR_005514) (27)

was used to extract gene expression counts.
Differential expression analysis

Raw counts were normalized and analyzed using edgeR (28)

package (v:3.38.1, RRID : SCR_012802) in R (29) (v:4.2.0, RRID :

SCR_001905) to identify mRNAs and lncRNAs that are

differentially expressed (DE) between (a) all LN patients and

healthy controls (HC) (DEmRNAs, DElncRNAs), (b) HDA and

InaD groups, and (c) InaD and HC. Genes were considered DE

when |FC| >1.5 and FDR <0.05. Results were visualized using

ggplot2 (v3.4.1, RRID : SCR_014601) (30).
Gene set enrichment analysis

Preranked gene-set enrichment analysis (GSEA) against Gene

Ontology Biological Process (GO : BP MSigDB (31) v2022.1.Hs,

RRID : SCR_016863) terms was performed using GSEA (32)

software (v:4.2.2, RRID : SCR_003199) along with log2FC and

FDR values from each DE analysis. Genes were ranked according

to the product of -log10(p value) multiplied by log2(FoldChange) in

descending order.
Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis was performed

using the R package WGCNA (33) (v:1.71, RRID : SCR_003302) to

identify groups (modules) of co-expressed genes using the gene

expression data of the 74 SLE patients. Identified modules were

correlated with the patients’ clinical SLEDAI-2K, and significant

modules (p<0.05) were tested for functional enrichment using g:

Profiler (RRID : SCR_006809) (34). Genes with a central role (Hub

genes) in each of the significant modules were determined using the

connectivity measure of Module Membership (MM > 0.8).
LncRNA annotation and
cis-gene identification

The LNCipedia (35) database (v:5.2) was used to identify

lncRNAs in the DE gene list and hub gene list. cis-Genes (-10 kb

upstream of gene start position, +10 kb downstream of gene end

position) of the hub lncRNAs were extracted from the Ensembl (36)

database (version 105, RRID : SCR_002344) using the R package

biomaRt (37) (v:2.52.0, RRID : SCR_019214). cis-Elements were

visualized using the packages Gviz (38) and karyoploteR (RRID :

SCR_021824) (39).
Frontiers in Immunology 04
Gene-level correlation and
RT-qPCR validation

The correlation of clinical SLEDAI-2K with the expression of the

identified hub lncRNAs and of lncRNAs belonging to both ‘quiescent

disease’ and ‘flare’ signature was tested in R using the Spearman

coefficient and the function ‘cor.test’with a significance threshold of p

< 0.05. Healthy samples were assigned a SLEDAI-2K score of -1. The

expression of hub lncRNAs significantly associated with SLEDAI-2K

(p < 0.05) was validated in an independent cohort of 15 patients and 9

HC (Validation Cohort) using quantitative reverse transcription-

polymerase chain reaction (RT-qPCR). RNA was isolated as

mentioned above, and cDNA was created using PrimeScript RT-

PCR Kit (#RR037A, Takara). Patient samples of the validation cohort

were equally distributed in each activity group: five InaD, five IDA,

and five HDA patients. GAPDH gene expression was used as baseline

reference for calculating the relative expression of target genes.

Experiments were performed on an Applied Biosystems

QuantStudio 5 Real-Time PCR System using the KAPA SYBR Fast

Universal Kit (#KK4602, Kapa Biosystems). Primer sequences are

available in Supplementary Table 3. Spearman coefficient and

function ‘cor.test’ with a significance threshold of p < 0.05 were

used to evaluate clinical SLEDAI-2K correlation with DCt values of
each gene in the validation cohort.
Competing endogenous RNA
network construction

LncACTdb 3.0 (40) was utilized to discover kidney-related

ceRNA effects of lncRNAs validated by qRT-PCR. A list of

mRNA and miRNA targets was retrieved for lncRNAs present in

the database. To narrow down the list of potential mRNA targets of

each lncRNA, only mRNAs which were part of the same module as

their corresponding lncRNA were kept. To expand the list of

possible ceRNA events, the miRNA lists (Supplementary Table 4)

were used as input to miRWalk (RRID : SCR_016509) (41). Putative

mRNA targets for all regions (3′UTR, 5′UTR, and CDS) were

queried, and results were filtered for experimentally supported

interactions as indicated by miTarBase (42) (Supplementary

Table 5). Finally, the new list of potential mRNA targets was

filtered, keeping only those present in the Lightgreen and

Lightyellow modules and only triplets containing downregulated

mRNAs (logFC <0 for LN vs. healthy differential expression

analysis) (Supplementary Table 6). The network was visualized

using packages igraph (RRID : SCR_019225) (43), qgraph (44), and

ggraph (RRID : SCR_021239) (45) in R.
Results

Blood transcriptome profile of LN during
quiescence and flare

Initially, we explored the transcriptome (both coding and non-

coding) of LN patients and healthy controls (HC) using
frontiersin.org
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transcriptomic data from our discovery cohort and identified 5,899

DE genes between LN and HC (total LN signature), 39 DE genes

between HDA vs. InaD patients (flare signature), and 4,490 DE

genes between InaD vs. HC (quiescent disease signature)

(Figure 1B). Using GSEA, we identified enriched biological

processes and pathways, well established in SLE, such as

interferon (IFN) type I response and interleukin (IL) production

(i.e., IL1, IL2, IL8, and IL12) (46, 47). It was noted that response to

type I IFN signaling is deregulated in quiescent disease and further

contributes to flares. However, IL production seems to be involved

only in quiescent disease and not in flares. It was also shown that

complement activation, B-cell activation, and immunoglobulin (Ig)

production processes were deregulated in flares only (Figure 1C). A

higher number of genes and pathways (4,070 genes, 406 GO : BP

terms) were found to be common between the “total LN” signature

and the “quiescent disease” signature compared with genes and

pathways shared between “total LN” and “flare” signature (13 genes,

22 GO : BP terms, Figures 1D, E). Overall, these results indicate that

most molecules and signaling cascades are deregulated at quiescent

disease, and only few pathways, such as IFN, complement, B-cell

activation, and Ig production contribute to flares.
LncRNA expression during quiescence and
flare: biomarkers for flares

Next, we focused specifically on lncRNAs to explore how this

transcript population is implicated in disease activity. We pinpointed

816 DE lncRNAs in the “total LN” signature, 6 DE lncRNAs in the

“flare” signature, and 444 DE lncRNAs in the “quiescent disease”

signature (Figure 2A). The expression of DE lncRNAs for each

signature is shown in Figures 2B-D, and lncRNAs that have

previously been associated with SLE such as NEAT1 and

ENSG00000236525 are highlighted. Accordingly with the total

transcriptome comparison, we observed more genes to be common

between the “total LN” and “quiescent disease” signatures compared

with the “total LN” and “flare” signatures (412 DE lncRNAs vs. 1 DE

lncRNA, ENSG00000283064) (Figure 2E). This large number of

deregulated LncRNAs in the “quiescent disease” signature suggests

that lncRNAs may play a major role at LN onset. In contrast, the

“flare” signature involves only six lncRNAs, suggesting that only few

lncRNAs are involved in the transition from quiescence to flare.

Noticeably, lncRNAs TCL6 and ENSG00000257275 were part of both

“quiescent disease” and “flare” signatures, indicating that these genes

undergo expression alterations both at the establishment of the

disease and during flares. These data suggest that TCL6 and

ENSG00000257275 are potential biomarkers able to discern

between individuals under flare, quiescent disease and healthy state.
LncRNAs play a central role in disease
activity-associated pathways

To further explore the transcriptomic landscape related to

disease activity, we performed a weighted gene co-expression

network analysis (WGCNA) using patient transcriptomic data of
Frontiers in Immunology 05
the discovery cohort. WGCNA analysis identified 35 modules of co-

expressed genes, six of which were significantly correlated with

clinical SLEDAI-2K values (Figure 3A) and thus were labeled as

disease-activity-related. This was followed by enrichment analysis

to identify deregulated pathways in each module. In this analysis,

the top 3 modules, Salmon, Lightyellow, and Lightgreen, were

associated with IFN signaling, adaptive immune response, and B-

cell signaling, respectively (Figure 3B). The last positively correlated

module, Darkgrey, was enriched in DNA-protein binding, and the

two negatively correlated modules, Violet and Steelblue, were

enriched in transmembrane or electron transfer activity and

calcium channel functions, respectively (Supplementary

Figure 1A). To identify hub lncRNAs, we used the measure of

module membership (MM), a measure that reflects the similarity in

expression patterns between a gene and the rest of the genes in a

module. A total of 18 hub lncRNAs were identified in Salmon (n=7),

Lightgreen (n=10) and Lightyellow (n=1) modules (Figure 3C).

Darkgrey, Violet, and Steelblue had no hub lncRNAs and were not

further investigated (Supplementary Figure 1B). The lack of hub

lncRNA in the last three modules suggests that lncRNAs are not

involved in all disease activity-related processes, although their

presence in the IFN- and adaptive-immunity-related modules

highlights their pivotal position regulating key pathways involved

in flares.
Assessment of the biomarker potential of
hub lncRNAs

To determine if each hub lncRNA could be useful as a potential

biomarker of disease activity, we performed correlation analysis of

lncRNA expression levels with SLEDAI-2K values using both patient

samples and HC of the discovery cohort. The large number of DE

genes and lncRNAs in the quiescent disease signature highlights the

different state of patients at quiescence and HC. This difference should

be reflected in ourmeasure of disease activity in order to assess whether

the biomarker can not only determine disease activity but also

distinguish between HC and quiescent state patients. Therefore, we

assigned HC a SLEDAI-2K value of -1 to differentiate them from the

InaD patient group. We also included lncRNA ENSG00000257275 in

the correlation analysis because it appeared along with hub lncRNA

TCL6 in both of the “quiescent disease” and “flare” signatures,

indicating a discriminatory potential that covers the complete

spectrum of disease activity. Correlation at the gene level was

significant for 9 out of 19 tested lncRNAs (Figure 3D). Six hub

lncRNAs, NRIR, KLHDC7B-DT, ENSG00000233785, BISPR,

ENSG00000280007, and LINC02574 (hub lncRNAs of the Salmon

module), were positively correlated with disease activity, whereas

FAM30A, MIR600HG, and LINC00494 (hub lncRNAs of the

Lightgreen module) had a negative correlation. RT-qPCR

experiments measuring gene expression in an independent validation

cohort validated the positive correlation of NRIR and KLHDC7B-DT

(Figure 3E), thus suggesting an inducing effect on flares. The negative

correlation of MIR600HG and FAM30A was also validated

(Figure 3E), implying that these lncRNAs may have some flare-

inhibitory properties.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1203848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sentis et al. 10.3389/fimmu.2023.1203848
Identification of cis-targets of significant
lncRNAs

Following the validation of NRIR, KLHDC7B-DT, MIR600HG,

and FAM30A expression relative to disease activity, we investigated

how these lncRNAs may exert their regulatory actions. We

identified one cis-gene for NRIR, CMPK2, which was co-

expressed with NRIR (belongs to the Salmon module) and

three cis-genes for KLHDC7B-DT; SYCE3, ODF3B, and

ENSG00000273272 (Supplementary Figures 2A, B). ODF3B and

ENSG00000273272 belong to the Salmon module, whereas SYCE3

was not found in our dataset. We also identified two cis-genes in the

vicinity of MIR600HG, STRBP, and MIR600 (Supplementary
Frontiers in Immunology 06
Figure 2C). Both MIR600HG and STRBP are members of the

Lightgreen module. MIR600 is a miRNA and was not detected in

our dataset. Finally, we identified 29 cis-genes ±10 kb of FAM30A,

including the previously identified hub lncRNA ENSG00000244620

(MM = 0.835), a novel transcript ENSG00000288730, which is a

hub RNA of the Lightgreen module (MM = 0.878), is not present

in LNCipedia, and has no associated function, and 27

immunoglobulin heavy chain genes (IGH-) (Figure 4A). The

presence of a high number of IGH-genes in the vicinity of

FAM30A (Figure 4A), combined with the facts that a) the

Lightyellow and Lightgreen modules contain 74% and 7% of

immunoglobulin genes expressed in the dataset, respectively

(Figure 4B), b) FAM30A has a high module membership in both
D
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FIGURE 2

(A) Volcano plot of the long non-coding RNAs (lncRNAs) in each of the three differential expression analyses (DEA) performed comparing (left to
right) LN patients vs. HC, HDA vs. InaD patients, and InaD patients vs. HC. Upregulated lncRNAs are colored violet, and downregulated lncRNAs are
colored blue. LncRNAs not reaching our significance thresholds (|log2FC| >0.58 and FDR <0.05) are shown in gray. (B) Heatmap showing the
expression profile of the top 250 lncRNAs with the highest absolute log 2 fold change value found as DE between LN and HC. Expression values
were z-score normalized. Top annotation row shows the condition of each sample, colored green for LN patients and light blue for HC.
(C) Heatmap showing the expression profile of the top 250 lncRNAs with the highest absolute log 2 fold change value found as DE between InaD
patients and HC. Expression values were z-score normalized. Color scale of top annotation is the same as (B). (D) Heatmap showing the expression
profile of the six lncRNAs found as DE between HDA and InaD patients. Expression values were z-score normalized. Top annotation row shows the
disease activity group of each sample with black representing HDA patients and gray representing InaD patients. (E) Venn diagram comparing the DE
lncRNAs of each DEA. Color gradient corresponds to the term count in each compartment.
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Lightgreen (MM = 0.867) and Lightyellow (MM = 0.784) modules,

and c) pathway enrichment of both modules is closely related to

adaptive immunity, concludes that FAM30A is a gene with a

significant role in both modules. Therefore, whereas most IGH-

genes (81%) are assigned to the Lightyellow module, they have a

strong probability of being cis-targets of FAM30A, rendering

FAM30A a potential key regulator of immunoglobulin gene

expression and antibody formation.
Frontiers in Immunology 07
Delineation of trans-effects of MIR600HG
and FAM30A

LncRNAs can also have trans-regulatory effects, regulating the

expression of distant genes. The competing endogenous RNA

(ceRNA) hypothesis (48) describes such trans-regulation events

where lncRNAs bind to miRNA and inhibit miRNA-guided

degradation of mRNAs. We searched LncActDB, a database of
D
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FIGURE 3

(A) Heatmap showing the correlation of the eigengene of each module found to be significantly correlated with SLEDAI-2K. Color corresponds to
correlation level with purple for positive and blue for negative correlation. (B) Bubble plot of Gene Ontology terms found as significantly enriched in
the top three correlated modules (Lightgreen, Salmon, Lightyellow). Color represents adjusted p-values, and size represents the number of genes
related to a term found in each module. (C) Scatterplot of SLEDAI-2K Gene Significance against Module Membership for each gene in the (left to
right) Salmon, Lightgreen, and Lightyellow modules. Genes with MM >0.8 (Hub genes) are shown in color, with violet for lncRNAs and blue for other
RNA types. Genes with MM ≤0.8 (non-hub genes) are shown in gray. (D) Heatmap showing the correlation of the RNA-Seq-based expression values
of the nine hub lncRNAs that were significant when tested using the Spearman correlation coefficient. Color corresponds to correlation level with
purple for positive and blue for negative correlation. (E) Scatterplots of expression levels of FAM30A (top left), KLHDC7B-DT (top right), MIR600HG
(lower left), and NRIR (lower right) normalized using z-score scaling per experiment type (qPCR, RNA-Seq) against SLEDAI-2K values. Boxes on top
of each plot show the Spearman correlation coefficient and the associated p-value. Colors correspond to experiment type with blue for qPCR, gold
for RNA-Seq.
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experimentally validated ceRNA interactions, to identify ceRNA

events NRIR, KLHDC7B-DT, MIR600HG, and FAM30A

participate in. Data were available only for MIR600HG and

FAM30A. Because LncActDB provides ceRNA interactions

stratified by tissue, we focused on the 15 and 116 events identified

respectively for MIR600HG and FAM30A in kidney tissue. Each

event is defined by an affected mRNA and a list of miRNAs

interacting with both the lncRNA and the mRNA. To verify the

presence of these interactions, we used our WGCNA data and

intersected the mRNA targets with the Lightyellow and Lightgreen

modules. We identified only one common gene, B4GALT2, between

LncActDB and the Lightyellow module. Thus, we further expanded

the analysis in silico to identify putative ceRNA interactions based on

our data. To achieve this, we used the lists of miRNAs that interact

with MIR600HG (MIR600HG miRNAs, n = 53) and FAM30A

(FAM30A miRNAs, n = 43) provided by LncActDB and used

them as input to the miRNA target prediction tool miRWalk. After

filtering using miTarBase information to include only experimentally

supported interactions, miRWalk identified 3,071 interactions for

MIR600HG miRNAs and 2,589 interactions for FAM30A miRNAs.

We further refined the mRNA target list by removing mRNAs not
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included in the Lightgreen and Lightyellow modules. Finally, since

MIR600HG and FAM30A are downregulated in LN patients, thus

their miRNA-”sponging” effect would not be observed and miRNAs

would be able to bind to their mRNA targets lowering their

expression. To take this into account, we included only

downregulated mRNAs of our “total LN” signature. Our final

network consists of FAM30A, MIR600HG, 38 miRNAs, and 42

mRNAs of which 32 belong to the Lightgreen module and 10

belong to the Lightyellow module (Figure 4C). Network analysis

revealed IFNLR1, an interferon-related mRNA, as the gene

influenced the most by being targeted by 11 miRNAs. Interestingly,

FAM30A and MIR600HG do not have a common way of regulating

this mRNA. FAM30A can regulate IFNLR1 by interacting with nine

different miRNAs (hsa-miR-34a-5p, hsa-miR-3612, hsa-miR-449a,

hsa-miR-650, hsa-miR-2682-5p, hsa-miR-34b-5p, hsa-miR-34c-5p,

hsa-miR-449b-5p, hsa-miR-449c-5p), whereas MIR600HG regulates

IFNLR1 through two different miRNAs (hsa-miR-455-3p hsa-miR-

665). This analysis reveals the impact of FAM30A and MIR600HG

on multiple targets involved in adaptive immunity and provides a

mechanism of regulation that features multiple parallel ways of

targeting the same mRNA.
A B

C

FIGURE 4

(A) Plot of the genomic region surrounding FAM30A. The genomic region depicted corresponds to 12 kbp upstream of the FAM30A start position
and 12 kbp downstream its end position. Identified transcripts of genes found in the area are shown in gold (exons) connected by gray lines with
arrows (introns). The exact position of the locus in the human genome is marked by the red line on the right side of the Chromosome 14 ideogram
on the top of the figure. (B) Bar plot showing the percentage of immunoglobulin (IG) genes found in each WGCNA module. Each bar is colored
according to the module name. (C) Network of ceRNA interactions of FAM30A and MIR600HG. Node fill color corresponds to RNA type with gold
for LncRNA, red for miRNA, and light blue for mRNA. The node outline is colored depending on whether the node is connected to both FAM30A
and MIR600HG (common—purple) or just one of the two lncRNAs (unique—black). Node size is a function of each degree with highly connected
nodes shown as bigger points. The network layout was created using the Davidson and Harels simulated annealing algorithm of the igraph package.
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Discussion

In this study, we used whole-blood RNA samples of LN patients

and HC to explore the transcriptomic landscape of LN focusing on

lncRNAs, the role of which is largely unexplored. DE and

enrichment analyses confirmed the deregulation of pathways such

as IFN response and IL-2 production, which have previously been

reported to be associated with SLE (46, 47). Similar to previous

studies, we define distinct LN-related signatures for quiescent

disease and flares (49, 50). We focused on lncRNAs and the

relationship of their gene expression levels with disease activity as

measured using SLEDAI-2K and identified six DE lncRNAs in the

“flare” signature, hinting that changes in lncRNA expression may be

subtle during periods of exacerbated symptoms. This led us to use a

different approach in order to determine lncRNAs with a key role in

LN flares.

To this end, WGCNA was performed and six modules

associated with disease activity were identified. Previous studies

have reported an IFN-related module as the most significantly

associated with disease status both in renal tissue and blood

samples (51, 52). Consistent with these results, our findings show

the direct positive correlation of the IFN-module with SLEDAI-2K.

We also report that the adaptive immunity and B-cell receptor

pathways appear to be significant contributors to high disease

activity through the correlation of the relevant modules with

SLEDAI-2K. There were 18 lncRNAs with a high module

membership and a possible central role in regulating the disease-

activity-related processes discovered, with nine of them showing a

significant correlation of their expression levels with SLEDAI-2K.

This correlation is an indication that hub lncRNAs could be utilized

as blood-based biomarkers. Importantly, assigning a pseudo-

SLEDAI-2K value of -1 to HC to distinguish them from InaD

patients is a useful step to better evaluate their use as a biomarker,

since a large number of DE lncRNAs were found in the quiescent

disease signature supporting the previously reported observation

that patients with achieved clinical remission may not always have

achieved histological remission (53). Thus, with our approach, we

also evaluate their potential use as biomarker to detect LN

molecular activity present in clinical remission cases. Quantitative

PCR experiments validated the significant association observed in

the transcriptomic data for four of these lncRNAs, namely, NRIR

(positive), KLHDC7B-DT (positive), FAM30A (negative), and

MIR600HG (negative).

NRIR has been extensively investigated in previous studies in

autoimmunity. In systemic sclerosis (SSc) (54), it was associated

with the IFN score of SSc patients; in primary Sjogren’s syndrome

(pSS), it was found to correlate with pSS disease activity levels (55);

and in SLE, it was observed with substantially higher expression in

SLE patients compared with HC (56). In the last study, researchers

also correlated the expression levels of two IFN-stimulated genes,

RSAD2 and USP18, with the SLEDAI-2K score of LN samples of

their SLE cohort, although the correlation could not reach statistical

significance for NRIR. We corroborate and expand their findings

showing the significant relationship of NRIR expression levels with

SLEDAI-2K. The second lncRNA, KLHDC7B-DT, has been studied
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previously in pancreatic ductal adenocarcinoma (57), where it was

found to bind to the IL6 promoter region, and in psoriasis (58),

where researchers showed a relationship between the lncRNA and

ILF2, a T-cell-associated enhancer of the IL2 gene, with both genes

being upregulated in lesional skin. Our novel finding suggests a

central role of KLHDC7B-DT in LN disease activity. The third

lncRNA, FAM30A, has previously been detected to interact with

hub genes in a WGCNA analysis of a rheumatoid arthritis study

(59), with our study revealing a similar central role of FAM30A in

LN for the first time. Lastly, MIR600HG has been shown in a recent

study to be differentially expressed between SLE patients and HC

(60). The same study showed its co-expression with CD40LG, a

gene encoding the CD40 ligand which is expressed on the surface of

T cells and interacts with the CD40 antigen on the surface of B cells

to signal B-cell activation. In light of another study (61) which has

shown a direct positive correlation of CD40 expression and SLEDAI

index in pediatric SLE patients, MIR600HG appears as a valid

candidate for a blood-based biomarker of disease activity.

We also investigated the cis-effects of NRIR, KLHDC7B-DT,

MIR600HG, and FAM30A, to identify a potential mechanism of

action through which they influence disease activity. cis-Targets of

NRIR and KLHDC7B-DT were defined as genes 10 kb upstream or

downstream of the gene belonging to the IFN-module (Salmon).

We detected CMPK2, a gene participating in IFN-dependent and

IFN-independent antiviral immunity (62), as a potential cis-target

of NRIR. CMPK2 has been reported as part of the SLE “flare”

signature in a previous study (63), further linking NRIR’s locus to

disease activity. For the KLHDC7B-DT gene, we identified three

potential cis-targets, ENSG00000273272, ODF3B, and KLHDC7B.

ENSG00000273272 has not been studied yet and no function is

associated with this gene, ODF3B has been associated with SSc (64)

and multiple sclerosis (65), and KLHDC7B has been linked to the

IFN signaling pathway (66). cis-Targets of MIR600HG had to

satisfy the 10-kb distance threshold and belong to the Lightgreen

module. We identified STRBP, which a previous study using

machine learning on SLE patient samples has shown to correlate

with the expression levels of CD22, a surface marker of mature B

cells (67, 68). The membership of MIR600HG and STRBP in a B-

cell-related module and the previous association of STRBP with

CD22 indicate the possibility of a B-cell-specific cis-regulation

mechanism. The last validated lncRNA, FAM30A, is a hub gene

of the Lightgreen module. We used the same distance threshold

when determining cis-targets of FAM30A; however, due to the high

module membership of FAM30A in both adaptive immunity

(Lightyellow) and B-cell receptor (Lightgreen) modules, we

considered genes as cis-targets if they belonged to either

module. Excluding two hub RNAs (ENSG00000244620,

ENSG00000288730) with no known function, cis-targets of

FAM30A were 27 immunoglobulin heavy (IGH-) chain genes,

members of the Lightyellow module. The high MM of FAM30A

in the Lightyellow module suggests that FAM30A expression levels

fluctuate with the same pattern as the IGH-genes’ expression levels,

agreeing with a previous study (69) which uncovered a positive

relationship of antibody titers with FAM30A expression levels after

immune response to vaccination. Moreover, a recent tool
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investigating human gene co-expression using transcriptomic data

from the GTEx consortium clearly illustrates the fact that FAM30A

is highly co-expressed with immunoglobulin genes (70, 71). This

evidence suggests a role of FAM30A in the regulation of IGH-genes

and possibly antibody production.

Furthermore, we explored the trans-effects of FAM30A and

MIR600HG through the in silico resources of LncActDB and

miRwalk. Using the experimentally validated FAM30A-miRNA

and MIR600HG-miRNA interactions of LncActDB and the

experimentally validated miRNA–mRNA interactions of miRwalk,

we created a ceRNA network of both lncRNAs. Intriguingly, their

most prominent trans-target is interferon lambda (IFNl) receptor 1
(IFNLR1), whose deficiency lowers the activation of immune cells

and reduces organ damage in kidneys without affecting production

of antibodies in murine lupus (72). Furthermore, another study

marks IFNl as an overlooked factor driving aberrancies in B cells in

SLE and associates IFNLR1 with the expansion of the

CD11c+CD21- B-cell subset (73). Taking into account data from

the ABIS Gene Viewer tool (74), which shows a B-cell- and

plasmablast-specific expression of FAM30A (Supplementary

Figure 3), the possibility of FAM30A exerting ceRNA effects on

IFNLR1 and, thus, affecting B cells in LN becomes even more

probable. This is an important finding considering the relationship

of B-cell activity and antibody production with disease activity in

LN. Given the negative correlation of FAM30A expression with

SLEDAI-2K levels, it would be interesting to study the effect of

FAM30A overexpression on disease activity, as it may reveal

inhibitory effects of FAM30A on Ig gene transcription, resulting

in lower antibody production and averting B-cell-activity-induced

flares. Further research is needed to elucidate the exact mechanisms

of FAM30A involvement in disease activity and assess the

therapeutic potential of its overexpression.

This study elucidates the landscape of non-coding

transcriptome in autoimmunity, by using total RNA sequencing

to investigate the association of lncRNAs with disease activity in

LN. Subsequent in silico analysis focusing on significant lncRNAs

suggests the potential way of action of these lncRNAs. A potential

limitation of our data is the use of SLEDAI-2K as a measure of

disease activity as this index is not specific to renal activity of SLE. A

validated index for lupus nephritis is not available. Additionally, the

treatments the recruited patients received are another potential

limitation, yet no pattern of medication effect was observed during

exploratory analysis of our transcriptomic data, and sequencing

results were experimentally replicated in an independent cohort.

In summary, using transcriptomic data from blood samples of

LN patients and a network-based approach, we emphasize the key

role of IFN pathway and reveal the importance of B-cell activity and

antibody production in LN flares. Furthermore, our findings

identified four lncRNAs, NRIR, KLHDC7B-DT (IFN-related), and

MIR600HG, FAM30A (B-cell-related), as potential biomarkers of

disease activity and central components of IFN signaling and

adaptive immunity with a possible cis- and trans-effect on genes
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of the same pathways. Finally, we provide a network of trans-targets

of FAM30A andMIR600HG, emphasizing the most prominent one,

IFNLR1, and further corroborating the regulatory involvement of

FAM30A in B-cell signaling, immunoglobulin gene expression,

antibody production, and, consequently, in LN disease activity.
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SUPPLEMENTARY FIGURE 1

(A) Bubble plot of Gene Ontology terms found as significantly enriched in the

Darkgrey, Violet and Steelblue modules. Color represents adjusted p-values
and size represents the number of genes related to a term found in each

module. (B) Scatterplot of SLEDAI-2K Gene Significance against Module
Membership for each gene in the (Left to right) Darkgrey, Violet and

Steelblue module. Genes with MM>0.8 (Hub genes) are shown in color,

with and blue for Other (Non-LncRNA) RNA types. Genes with MM ≤ 0.8
(Non-hub genes) are shown in grey.

SUPPLEMENTARY FIGURE 2

Plot of the genomic region surrounding NRIR (A), KLHDC7B-DT (B) and
MIR600HG (C). The genomic region depicted corresponds to 12Kbp

upstream of gene start position and 12Kbp downstream its end position.

Identified transcripts of genes found in the area are shown in gold (exons)
connected by grey lines with arrows (introns). The exact position of the locus

in the human genome is marked by the red line on the Chromosome
ideogram on the top of the figure.

SUPPLEMENTARY FIGURE 3

Cell-type-specific expression of FAM30A as indicated by ABIS (ABsolute

Immune Signal) tool.
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signatures normalized by mRNA abundance allow absolute deconvolution of human
immune cell types. Cell Rep (2019) 26(6):1627–1640.e7. doi: 10.1016/j.celrep.2019.01.041
frontiersin.org

https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/nar/gkm226
https://doi.org/10.1093/nar/gky1031
https://doi.org/10.1093/nar/gkab1049
https://doi.org/10.1093/nar/gkab1049
https://doi.org/10.1093/bioinformatics/bti525
https://doi.org/10.1007/978-1-4939-3578-9_16
https://doi.org/10.1093/bioinformatics/btx346
https://doi.org/10.1093/bioinformatics/btx346
https://doi.org/10.1093/nar/gkab1092
https://doi.org/10.1371/journal.pone.0206239
https://doi.org/10.1371/journal.pone.0206239
https://doi.org/10.1093/nar/gkz896
https://igraph.org
https://doi.org/10.18637/jss.v048.i04
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-5147-4711
https://doi.org/10.1136/lupus-2018-000270
https://doi.org/10.1126/sciadv.abo5840
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1136/annrheumdis-2018-214379
https://doi.org/10.1016/j.cell.2022.07.021
https://doi.org/10.3389/fgene.2020.583629
https://doi.org/10.3389/fgene.2020.583629
https://doi.org/10.3389/fmed.2021.762848
https://doi.org/10.1093/ndt/gfv296
https://doi.org/10.3389/fimmu.2019.00100
https://doi.org/10.1038/s41598-020-76701-2
https://doi.org/10.3389/fimmu.2022.962393
https://doi.org/10.1042/CS20201259
https://doi.org/10.3389/fgene.2022.890624
https://doi.org/10.1302/2046-3758.98.BJR-2019-0301.R1
https://doi.org/10.1302/2046-3758.98.BJR-2019-0301.R1
https://doi.org/10.1016/j.cyto.2022.155975
https://doi.org/10.1016/j.cyto.2022.155975
https://doi.org/10.1177/0961203320941931
https://doi.org/10.1016/j.isci.2021.102498
https://doi.org/10.3389/fimmu.2022.969509
https://doi.org/10.3389/fimmu.2022.969509
https://doi.org/10.1155/2018/7342472
https://doi.org/10.1097/MD.0000000000000281
https://doi.org/10.1038/s41598-018-31306-8
https://doi.org/10.1093/intimm/8.7.1121
https://doi.org/10.1073/pnas.1822046116
https://doi.org/10.1073/pnas.1822046116
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.3390/cells12030388
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.4049/jimmunol.2100339
https://doi.org/10.1016/j.celrep.2019.01.041
https://doi.org/10.3389/fimmu.2023.1203848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A network-based approach reveals long non-coding RNAs associated with disease activity in lupus nephritis: key pathways for flare and potential biomarkers to be used as liquid biopsies
	Introduction
	Materials and methods
	Sample collection
	Library construction
	Sequencing QC and analysis
	Differential expression analysis
	Gene set enrichment analysis
	Weighted gene co-expression network analysis
	LncRNA annotation and cis-gene identification
	Gene-level correlation and RT-qPCR validation
	Competing endogenous RNA network construction

	Results
	Blood transcriptome profile of LN during quiescence and flare
	LncRNA expression during quiescence and flare: biomarkers for flares
	LncRNAs play a central role in disease activity-associated pathways
	Assessment of the biomarker potential of hub lncRNAs
	Identification of cis-targets of significant lncRNAs
	Delineation of trans-effects of MIR600HG and FAM30A

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


