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Identification of disulfidptosis
related subtypes,
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microenvironment infiltration,
and development of DRG
prognostic prediction model in
RCC, in which MSH3 is a key
gene during disulfidptosis

Kai Xu1,2†, Ye Zhang1,2†, Zhiwei Yan1,2†, Yuchan Wang3,
Yanze Li1,2, Qiangmin Qiu1,2, Yang Du1,2*, Zhiyuan Chen1,2*

and Xiuheng Liu1,2*

1Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China, 2Institute of
Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, Hubei, China, 3School of Science,
Hubei University of Technology, Wuhan, China
Disulfidptosis is a newly discovered mode of cell death induced by disulfide

stress. However, the prognostic value of disulfidptosis-related genes (DRGs) in

renal cell carcinoma (RCC) remains to be further elucidated. In this study,

consistent cluster analysis was used to classify 571 RCC samples into three

DRG-related subtypes based on changes in DRGs expression. Through univariate

regression analysis and LASSO-Cox regression analysis of differentially expressed

genes (DEGs) among three subtypes, we constructed and validated a DRG risk

score to predict the prognosis of patients with RCC, while also identifying three

gene subtypes. Analysis of DRG risk score, clinical characteristics, tumor

microenvironment (TME), somatic cell mutations, and immunotherapy

sensitivity revealed significant correlations between them. A series of studies

have shown that MSH3 can be a potential biomarker of RCC, and its low

expression is associated with poor prognosis in patients with RCC. Last but not

least, overexpression of MSH3 promotes cell death in two RCC cell lines under

glucose starvation conditions, indicating that MSH3 is a key gene in the process

of cell disulfidptosis. In summary, we identify potential mechanism of RCC

progression through DRGs -related tumor microenvironment remodeling. In

addition, this study has successfully established a new disulfidptosis-related
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genes prediction model and discovered a key gene MSH3. They may be new

prognostic biomarkers for RCC patients, provide new insights for the treatment

of RCC patients, andmay inspire newmethods for the diagnosis and treatment of

RCC patients.
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Introduction

Renal cell carcinoma (RCC) is the most common subtype of

renal cancer worldwide, ranking second among the most common

malignant tumors in the urogenital system. The characteristics of

RCC are asymptomatic, high mortality, high recurrence rate, easy to

metastasize, and easy to develop treatment tolerance. This makes

many patients with RCC already advanced at the time of diagnosis,

and the prognosis is often poor (1–3). Fortunately, with the rapid

development of medical standards and medical research worldwide,

the efficacy of treating RCC has significantly improved. However,

the overall 5-year survival rate (OS) of RCC patients is still not ideal.

Worse still, even patients with RCC who have undergone surgical

treatment may experience metastasis and recurrence after surgery.

Some literature indicates that the 5-year OS of patients with

metastatic RCC is even less than 10% (4–8). Therefore, it is

urgent to find new prognostic biomarkers that can effectively

predict the prognosis of patients with RCC and provide new

therapeutic insights for RCC treatment.

Regulated cell death (RCD) is a type of cell death that can be

regulated by controlling specific molecular pathways or conducting

genetic and pharmacological processing (9). Identification and

phenotyping of cell death mechanisms can not only promote a

basic understanding of cell homeostasis but also provide important

ideas for the treatment of various diseases such as cancers.

Disulfidptosis is a newly discovered mode of cell death induced

by disulfide stress, mainly due to the depletion of intracellular

reduced nicotinamide adenine dinucleotide phosphate (NADPH),

resulting in the accumulation of cystine, followed by the initiation

of actin cytoskeletal disulfide bonding and cytoskeletal contraction,

ultimately inducing disulfide toxicity, as revealed by the research

results recently published by Liu et al. (10).

As early as six years ago, researchers found that SLC7A11

significantly promotes cell death under glucose starvation.

Contrarily, the uptake of cystine mediated by member 11 of the

solute carrier family (SLC7A11; also known as xCT) is crucial in

promoting glutathione biosynthesis, inhibiting oxidative stress, and

inhibiting the occurrence of ferroptosis (11–13). In response, Liu

et al. published a study (14) that found that the SLC7A11-mediated

process of uptake of cystine and reduction to cysteine is highly

dependent on the reduced nicotinamide adenine dinucleotide

phosphate produced by the glucose pentose phosphate pathway.

Therefore, under glucose starvation conditions, NADPH is greatly
02
consumed in the SLC7A11 high expression cells, and disulfides such

as cystine are abnormally accumulated, leading to disulfide stress

and rapid cell death. However, it was not until a few months ago

that the mechanism of how disulfide stress triggers cell death was

clarified. By collecting relevant literature to obtain some DRGs, we

believe that this may have a new perspective on the prognosis and

treatment of RCC patients.

Due to the novelty of the defective disulfidptosis, the relevant

research is not comprehensive. However, our study firstly explore

the role of disabling disulfidptosis in RCC and its relationship with

tumor microenvironment infiltration and has established a risk

prediction model. In our study, we downloaded mRNA expression

profiles, clinical data, and somatic variation data from the Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases for RCC patients. First, we extracted the expression

amount of DRGs, identified three DRG-related subtypes through

consistency cluster analysis, and screened the differentially

expressed genes (DEGs) among the subtypes. Based on these

DEGs, we genotyped again to obtain three genotypes. Based on

these differentially expressed genes, we then established a

prognostic prediction model that can effectively predict the

prognosis of patients with RCC. At the same time, the tumor

microenvironment infiltration, immunotherapy sensitivity, and

somatic cell variability of samples with different subtypes and

different risks were characterized. Through a series of analyses

and validation, the prediction effect of the model is evaluated.

Finally, during the analysis of the model gene, we also found an

important key gene MSH3 and conducted relevant analysis and

experimental verification to investigate the possibility of its

promotion of disulfidptosis in RCC cell lines. In summary, we

believe that disabling disulfidptosis may be a potential biological

target for the diagnosis and treatment of RCC, and our research

results can provide a new perspective for the diagnosis and

treatment of RCC.
Materials and methods

Data collection

A total of 580 patients with RCC from two independent data sets

(TCGA-KIRC, GSE29609) were included in this study. The mRNA

expression profile, clinical data, and somatic cell variation data of 541
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RCCpatients and 72 normal human renal tissues were downloaded from

the TCGA database (https://portal.gdc.cancer.gov/). The clinical data

included age, gender, histological grade, pathological stage, pathological T

stage, pathological M stage, pathological N stage, survival time, and

survival status. In addition, the gene expression data files and

corresponding clinical information files of 39 RCC patients were

downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/). Collate these raw data through the limma program (15) package

of R software, normalize the gene expression file, and standardize it to

fragments with a million expression levels per thousand bases. 24 DRGs

were obtained from previous studies (10–14) and their expression levels

were extracted from the collated gene expression files, the specific genes

are shown in Table S1. It should be stated that our study excluded nine

RCC samples with incomplete clinical data. The above data were

downloaded through the official website, in full compliance with the

access policies for TCGA andGEO databases, and strict compliance with

the publication guidelines.
Consistency clustering analysis based on
DRGs expression

Based on the expression level of DRGs in each sample, we were

able to classify 571 RCC samples into discrete molecular clusters by

using the ConsensusClusterPlus (16) package of R software.

Kaplan-Meier survival analysis was used to investigate the clinical

utility of DRGs in RCC patients, and survival curves was plotted by

the survival and survminer package of R software. Meanwhile,

principal component analysis (PCA) was performed by the

ggplot2 (17) program package of R software. The ESTIMATE

(18) and CIBERSORT (19) algorithms were used to calculate the

percentage of immune and stromal cells in RCC patients, and the

enrichment fraction of each immune cell infiltration in RCC

patients was assessed by the single-sample gene set enrichment

analysis (ssGSEA) algorithm (20).
Survival analysis between different
subtypes and functional enrichment
analysis of DEGs

The Kaplan-Meier method was used to study the differences in

OS among different subtypes of RCC patients. Through the limma

package of R software, we screened the DEGs among subtypes. To

further understand the functions and pathways involved in DEGs,

we also conducted functional enrichment analysis, including Gene

Ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes pathway (KEGG) enrichment analysis.
Gradual construction and verification of
DRG prediction model

We randomly divided 571 RCC samples into two groups in a

one-to-one ratio, one as a training set (n=285) and the other as a

verification set (n=286). Firstly, univariate regression analysis was
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conducted based on the OS of the training set samples, thereby

screening out DEGs with significant prognostic value. Next,

through LASSO-Cox regression analysis and the glmnet (21)

package of R software, the possibility of overfitting is minimized

and genes with potentially high correlation with other genes are

excluded. Finally, a prognostic prediction model was established

through multivariate Cox regression analysis. The risk score is

calculated based on the expression level and regression coefficient

of the genes in the results, and the calculation formula is as follows:

Risk score =o(expression of gene*coef )

The calculated risk score is taken as the median value, and each

group is divided into a high-risk group and a low-risk group. The

Kaplan-Meier analysis was used to assess survival differences between

the high-risk and low-risk groups. Use the timeROC package of R

software to draw 1-year, 3-year, and 5-year receiver operating

characteristic (ROC) curves, and calculate the corresponding time-

dependent area under the curve (AUC) to evaluate the accuracy of

model predictions. Subsequently, the correlation between clinical

data and risk scores of RCC patients was visualized in the TCGA-

KIRC dataset, and the progression-free survival (PFI) of each patient

was estimated based on the pan-cancer file in the TCGA database.
Construction and evaluation
of the nomogram

A nomogram was created using the rms package of R software,

listing risk scores and other prognostic indicators as prognostic

factors. The scores for each prognostic factor were summed, and the

1-year, 3-year, and 5-year survival probabilities of patients were

predicted based on the overall score. In addition, we have also

plotted calibration curves, ROC curves, and decision curve analysis

(DCA) curves. In addition, we also treat risk score as an

independent variable and conduct univariate and multivariate

independent prognostic analysis together with other clinical traits

with prognostic significance to demonstrate that risk score can be

used as an independent prognostic factor to independently predict

the prognosis of patients with RCC.
Analysis of tumor microenvironment,
immune cell infiltration, and
immune function

The CIBERSORT algorithm is used to calculate the infiltration

of 23 types of immune cells in the tumor microenvironment of each

sample, compare the different subsets of immune cells between the

high-risk and low-risk groups, and map the infiltration patterns of

immune cells related to risk scores. Subsequently, we also

conducted immune function scoring, showing differences in the

scoring of different immune functions between high-risk and

low-risk groups. Through TIDE scoring and TME scoring,

explore whether there are differences in immunotherapy

sensitivity and tumor microenvironment infiltration in samples

under different groups.
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Joint analysis of risk groups, typing results,
somatic variation, functional enrichment,
and drug sensitivity

We combined the previous classification results and risk scores

of 571 RCC patients and visualized the difference in scores between

different classifications using Sangi charts and box charts to verify

the accuracy of the previous survival analysis results between

different classifications. We used the maftools (22) program

package of R software to analyze somatic mutations in RCC

patients, visualizing and comparing genes with somatic mutations

in high-risk and low-risk groups using waterfall diagrams. Through

Gene Set Enrichment Analysis (GSEA) and Gene Set Variation

Analysis (GSVA) (23), we have demonstrated the rich functions of

high-risk and low-risk groups, respectively. Subsequently, we

conducted gene differential expression analysis between the two

groups and visualized the genes with differences through GO and

KEGG enrichment analysis. Using the oncoPredict (24) algorithm

of R software, we calculated the half-maximal inhibition

concentrations (IC50) of commonly used drugs in different

groups of RCC patients as an indicator of drug sensitivity.
Comprehensive bioinformatics analysis of
the key gene MSH3

We first demonstrated the expression of five model genes in

RCC patients, then plotted their molecular correlation loops, and

described the changes in the remaining four model genes as the

expression of MSH3 changes. Using a box graph to visualize the

expression level ofMSH3 in RCC patients, and using Kaplan Meier

survival analysis to demonstrate the OS of RCC patients under both

MSH3 expression modes, we also plotted a 5-year ROC curve to

assess the accuracy of MSH3 in predicting the prognosis of RCC

patients. In addition, we also combined MSH3 expression levels

with clinical data from RCC patients to visualize statistically

significant clinical traits using a box graph. In addition, we also

conducted correlation analysis of immune checkpoints, immune

cell infiltration analysis, immunotherapy sensitivity analysis,

correlation analysis of NCKAP1 expression level, GO enrichment

analysis, KEGG enrichment analysis, and GSEA enrichment

analysis related to MSH3 expression level.
Cell culture

Both human proximal tubular epithelial cells (HK-2) and

human renal cell carcinoma cell lines (786-O and A498) are

purchased from ATCC. The HK-2 cell line was cultured in

DMEM/F-12 medium (cytiva) supplemented with 10% fetal

bovine serum (gibco) and 1% penicillin/streptomycin (biosharp).

The 786-O and A498 cell lines were cultured in RPMI 1640 medium

(cytiva) supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin. All cell lines were cultured in an

incubator with a constant temperature of 37 °C and 5% CO2.
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Transfection

The pcDNA3.1 p lasmid for MSH3 and SLC7A11

overexpression was purchased from Sangon Biotech (Shanghai).

RCC cells were seeded in 6-well plates at an appropriate density.

After 12 hours, transfection was performed using lipofectamine

3000 (L300001, Thermo Fisher Scientific, USA) according to the

manufacturer’s instructions.
Cell death assay

Cells were inoculated in 12-well plates the day before the

treatment according to the manufacturer’s instructions. After

incubation with special media with or without appropriate drugs,

cells were trypsin-digested and collected in 1.7 ml microtubes,

washed once with PBS and resuspended in PI in 1ug/ml cold

PBS. Finally, we assessed cell death by flow cytometry

(BD Biosciences).
ATP level detection

According to the manufacturer’s instructions, we use an ATP

assay colorimetric kit (ab83355, Abcam, UK) to measure ATP

levels. The ATP assay kit is based on the phosphorylation of

glycerol, producing a product that can be subjected to

colorimetric quantification (OD=570nm).
Western blot assays

First, we homogenized HK-2 cells and RCC cells in RIPA lysis

buffer containing protease inhibitors. Then, we measured the

protein concentration of each sample using bicinchoninic acid

(BCA) and then separated it using SDS-PAGE. The protein of

each sample was transferred to a polyvinylidene fluoride transfer

membrane and sealed with 5% skimmed milk for 1 hour. The

membrane was incubated with antibodies to resistMSH3 (ab69619,

Abcam, UK), SLC7A11 (ab175186, Abcam, UK) and glyceraldehyde

3-phosphate dehydrogenase (GAPDH; ab8245, Abcam, UK). After

incubating with the first antibody overnight, the membrane was

washed and incubated with the second antibody. Protein bands

were visualized using enhanced chemiluminescence reagents

(WP20005, Thermo Fisher Scientific, USA).
Statistical analysis

All data in this study are expressed as mean standard deviation

(SD). All bioinformatics analysis is performed using R software

(v.4.2.2). Statistical analysis was conducted using GraphPad Prism

analysis software. P<0.05 is considered to have a statistically

significant difference, and * indicates p<0.05, ** represents p<0.01,

and *** indicates p<0.001.
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Results

Differential expression and prognostic
value of 24 DRGs in RCC

We investigated the expression levels of 24 DRGs in 541 RCC

patients and 72 normal human kidney tissues obtained from the

TCGA-KIRC dataset, and the results showed that the majority of

the 24 DRGs were differentially expressed between the tumor and

normal groups (Figure 1A). Kaplan-Meier survival analysis was

performed for 24 DRGs in RCC, and we found that the expression

of 21 of them was closely associated with OS in RCC patients, and

we showed only 15 of them (Figures 1B–P; Table S2). ACTN4,

FLNA, FLNB, LRPPRC, MYH9, MYH10 NCKAP1, NDUFS1,

NUBPL, OXSM, and TLN1 had a better OS in patients with high

expression, and conversely, patients with high expression of ACTB,

CAPZB, GYS1, and SLC7A11 had a poorer OS.
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Identification of disulfidptosis subtypes and
genetic subtypes in RCC

Disulfidptosis typing of 571 RCC samples from the TCGA-

KIRC and GSE29609 datasets according to the expression levels of

DRGs, the consensus cumulative distribution function (consensus

CDF) plot shows the CDF distribution under a different number of

clusters k. The CDF distribution when k=3 is flatter and

approximates to the maximum, while the area under the CDF

curve at k=4 is relatively less obvious than that at k=3. Therefore,
we choose the clustering result at k=3 (Figure 2A) and divide the

samples into three disulfidptosis subtypes (Figure 2C). The PCA

results showed that the three subtypes were well differentiated

(Figure 2E). The 1566 DEGs between the three subtypes were

identified by limma package (Figure 3A; Table S3), and similarly,

the 571 RCCs were then genotyped according to the expression level

of DEGs, and the results of CDF distribution and Delta area plots
A B D
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I

H

J K L

M N
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FIGURE 1

Expression levels and Kaplan-Meier survival analysis of 24 DRGs in the TCGA-KIRC dataset. (A) The expression level of 24 DRGs in the TCGA-KIRC
dataset. (B–P) The association between the selected 15 DRGs and the OS of RCC patients. The symbol ** indicates p<0.01, and *** indicates
p<0.001.
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indicated the optimal clustering results at k=3 (Figure 2B). The

consistency matrix (Figure 2D) and PCA results (Figure 2F) of the

three genetic subtypes showed good discrimination. The results of

survival analysis showed that the longest OS among disulfidptosis

subtypes was found for subtype A (n=185), followed by subtype C
Frontiers in Immunology 06
(n=251), and the worst was found for subtype B (n=135)

(Figure 2G). While the worst OS among genotypes was subtype C

(n=90), followed by subtype B (n=266), and the best was subtype A

(n=215) (Figure 2H). According to the results of the CIBERSORT

method, there was a significant difference in immune cell
A

B D

E

F

G I

H

J

C

FIGURE 2

Determination and correlation analysis of RCC subtypes. (A, B) The CDF distribution diagram and Delta area diagram of consistency clustering
analysis shows the optimal k Value. (C, D) The consistency matrix diagram shows that when k Consistency clustering between samples when taking
the optimal value. (E, F) The images of PCA show that the unsupervised consistency clustering method is effective in classifying RCC. (G, H) The
results of the Kaplan-Meier survival analysis showed that the survival rate of patients with RCC varied among different subtypes. (I) Results of
immune cell infiltration between different subtypes in the DRGCluster. (J) The expression level of DRGs among different subtypes in the geneCluster.
The symbol * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001.
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infiltration between the three disulfidptosis subtypes (Figure 2I).

Activated B cells, activated CD4 T cells, activated CD8 T cells,

activated dendritic cell, CD56bright natural killer cell, CD56dim

natural killer cell, Gamma delta T cell, Immature B cell, MDSC,

Macrophage, Mast cell, Monocyte, Natural killer T cell, Regulatory

T cell, T follicular helper cell, Type 1 T helper cell, Type 2 T helper

cell had the highest level of infiltration in fraction A, Eosinophil,

Immature dendritic cell, and Natural killer cell was the highest level

of infiltration in fractal C, while Neutrophil and Plasmacytoid

dendritic cell were the highest levels of infiltration in fractal B. In

addition, we also performed a differential analysis of the expression

levels of DRGs between the three genotypes, and the results showed

that 21 DRGs showed great expression differences between the three

genetic subtypes (Figure 2J).
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Construction of a predictive risk model
based on DEGs associated with subtypes

As shown in Figure 3A, 1566 DEGs were obtained by crossing

the differential gene sets of three subtypes. Then, we conducted GO

(Figure 3B) and KEGG (Figure 3C) analysis on these 1566 DEGs.

Proteasome-mediated ubiquitin-dependent protein catabolic

process, regulation of actin cytoskeleton organization, actin

polymerization or depolymerization, positive regulation of WNT

signaling pathway, and sulfur compound biosynthetic process is the

main enriched in BP terms. Ubiquitin ligase complex, actin

filament, actomyosin, cortical cytoskeleton, and proteasome

complex are the main enriched in CC terms. Actin binding, Ras

GTPase binding, ubiquitin-like protein transferase activity, protein
A

B

D E

F

G H

C

FIGURE 3

Functional enrichment analysis and DRG prediction model construction based on DEGs. (A) The intersection of DEGs between three DRG types.
Results of GO enrichment analysis (B) and KEGG enrichment analysis (C) for 1566 DEGs. (D, E) The coefficient distribution of LASSO-Cox regression
analysis and adjustment parameters were calculated based on partial likelihood deviation and ten-fold cross-validation. (F) The expression level of
DRGs in RCC patients in different risk groups. The model predicts the survival rates of the training cohort (G) and the validation cohort (H) through
Kaplan Meier survival analysis. The symbol * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001.
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binding, bridging, and NADP binding are the main enriched in MF

terms. Regulation of actin cytoskeleton, MAPK signaling pathway,

Proteoglycans in cancer, Ubiquitin mediated proteolysis,

Sphingolipid signaling pathway, Choline metabolism in cancer,

NF-kappa B signaling pathway, Th1 and Th2 cell differentiation,

PD-L1 expression and PD-1 checkpoint pathway in cancer,

Apoptosis-multiple species are the main enriched in KEGG

pathways. Then, through the Caret package of R software, 571

samples were randomly divided into train cohort (n=285) and test

cohort (n=286) in a one-to-one ratio. Through univariate Cox

regression analysis of 1566 DEGs, 1187 OS-related genes were

screened. Subsequently, we conducted LASSO Cox regression

analysis on 1187 OS-related genes (Figures 3D, E), and finally

identified five genes to construct a DRG risk model (Tables S6, S7):

DRG risk score = ( − 0:15489*MSH3 expression)

+ ( − 0:05347*CRB3 expression)

+(0:02199*AUP1 expression) + (0:05367*RNF10 expression)

+( − 0:03476*ELF1 expression) :

Each cohort was divided into high-risk and low-risk groups

based on the median risk score. The difference analysis of the

expression levels of 24 DRGs between the two groups showed that

there were differences in the expression of 19 DRGs between the

high-risk and low-risk groups (Figure 3F). The results of the

survival analysis revealed that RCC patients in the high DRG risk

group had worse OS than those in the low DRG risk group, both in

the training cohort and the test cohort (Figures 3G, H). These

results suggest that the DRG risk model and model-related genes

are key prognostic markers for patients with RCC.
Correlation analysis between clinical traits,
survival status, and risk score

The results of risk curves and survival status plots showed a

strong positive correlation between patient survival status and risk

score, and consistent differential expression of the five model genes

between the high-risk and low-risk groups, both for the training

cohort (Figure 4A; Table S4) and the test cohort (Figure 4B; Table

S5). The ROC curves over time revealed good accuracy of the DRG

risk model in predicting the 1 years, 3 years, and 5 years survival

rates for the training cohort (Figure 4C) and test cohort (Figure 4F).

The PCA results showed that compared to the 24 DRGs directly

used to differentiate the RCC samples (Figure 4D), our DRG risk

model was able to accurately distinguish between the high-risk and

low-risk groups of RCC samples (Figure 4G). In addition, we

investigated the relationship between risk scores and clinical traits

in combination with patients’ clinical traits, and the results showed

that patients with advanced RCC had higher risk scores (Figure 4E).

The results of predicting the PFS of patients based on the pan-

cancer file of the TCGA database showed that patients in the high-

risk group had a worse PFS (Figure 4H). For the above results, we

conclude that there is a significant association between DRG risk

score and RCC patients in terms of histological grade, pathological

stage, and prognosis.
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Development of a nomogram, evaluation
of predictive effects, and independent
prognostic analysis

Based on the obtained clinical data files and risk files, we drew a

nomogram through the rms package of R software to predict the

likelihood of patient survival at 1-year, 3-year, and 5-year (Figure 5A;

Table S8). The results of calibration plots and ROC curves revealed

that the nomogram achieved satisfactory accuracy in predicting

survival (Figures 5B, C). The results of DCA decision curves

showed that the nomogram was the most effective in predicting the

likelihood of patient survival at 5 years (Figures 5D–F). Following

this, we combined risk scores with clinical traits in univariate and

multivariate Cox regression analyses, and the results showed that the

five gene-based risk model, age, histological grade, and pathological

stage were all independent prognostic factors (Figures 5G, H).
Immune landscape and immunotherapy
sensitivity based on DRG risk score

According to the correlation between DRG risk score and

immune cell infiltration displayed by the CIBERSROT algorithm,

we only selected ten types of immune cells, and the results showed

that DRG risk score was positively correlated with B cells memory,

NK cells activated, Plasma cells, T cells CD4 memory activated, T

cells CD8, T cells follicular helper, T cells regulation (Tregs), and

negative correlations with Macrophages M2, Monocytes, T cells

gamma delta (Figure 6A; Table S9). The five model genes also

showed a strong correlation with immune cell infiltration

(Figure 6B). The results of immune function enrichment analysis

showed that the high-risk group was enriched on CCR, Cytolytic-

activity, Inflammation-promoting, Parainflammation, T-cell-co-

stimulation, and Type-I-IFN-Response, while the low-risk group

was enriched on MHC-class-I and Type-II-IFN-Response

(Figure 6C). The TIDE score assessed that the high-risk group

had a higher likelihood of immune evasion, indicating that the

patients had a lower likelihood of benefiting from immunotherapy

(Figure 6D). The results of TME scoring showed that there was a

significant difference between the immune cell score and the

comprehensive score between the high-risk and low-risk groups,

while the stromal cell score was not significant (Figure 6E).
Relationship between typing results,
somatic mutations, risk groups and
functional enrichment analysis

The Sankey diagram shows the proportion of patients in the DRG

risk subgroup based on the three disability phenotypes, the three

genotypes, and the DRG risk subgroup (Figure 7A). Different

subtypes have different risk scores. In the disadvantageous

classification, type B has the highest risk score, followed by type C,

and finally, type A (Figure 7B). In genotyping, genotype C has the

highest risk score, followed by genotype B, and finally by genotype A

(Figure 7C). This is consistent with the previous results of survival
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analysis based on classification, where the higher the risk score of

classification, the worse the prognosis. The waterfall diagram of

somatic mutation distribution showed that the top ten genes with

the greatest changes in the two risk groups were VHL, PBRM1, TTN,

SETD2, BAP1, MTOR, MUC16, KDM5C, DNAH9, and LRP2. In the

high DRG group (Figure 7E), the most frequently mutated genes were

VHL (42%), PBRM1 (33%), TTN (16%), SETD2 (16%), BAP1 (12%),

and MTOR (10%). In the low DRG group (Figure 7F), the most

frequently mutated genes were VHL (41%), PBRM1 (39%), and TTN

(15%). At the same time, there was a statistically significant difference

in tumor mutation load between the high-risk and low-risk groups,

with TBM in the high-risk group being higher than that in the low-

risk group (Figure 7G). The GSEA enrichment analysis results of high

and low-risk groups show that the high-risk groups are mainly

enriched in complement activity, phagocytosis recognition,

immunoglobulin complex, immunoglobulin complex circulation,

and antigen-binding functions (Figure 7D), while the low-risk
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groups are mainly enriched in spliceosomal SNRNP assembly,

spliceosomal TRI-SNRNP complex assembly, apical part of cell,

spliceosomal SNRNP complex, spliceosomal TRI-SNRNP complex

functions (Figure 7H). The results of GSVA are visualized using a

thermal map (Figure 7I). Next, we screened differentially expressed

genes from high and low-risk groups for GO and KEGG function

enrichment analysis and observed that these genes were enriched in

different functions and pathways. The GO results show that it is

mainly enriched in extracellular matrix disassembly, regulation of

substrate adhesion-dependent cell spreading, positive regulation of

epithelial to mesenchymal transition, regulatory T cell differentiation,

actin-myosin filament sliding, immunoglobulin complex, circulating,

cytoplasmic vesicle lumen, basement membrane, cluster of

actin-based cell projections, high-density lipoprotein particle,

sulfur compound binding, endopeptidase inhibitor activity,

cysteine-type endopeptidase regulator activity involved in apoptotic

process, extracellular matrix structural constituent conferring
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FIGURE 4

Results of correlation analysis between survival status, DRG score, and clinical characteristics. The risk curve, survival status, and model gene expression
levels of RCC patients under different risk groups were displayed in the training set (A) and the validation set (B), respectively. (C) The ROC curve was
used to evaluate the accuracy of models in predicting prognosis in patients with RCC in a training cohort. (D)The PCA result of using 24 DRGs without
any treatment to distinguish RCC patients. (E) The heat map of the correlation between important clinical features and risk score in TCGA-KIRC cohort.
(F) The ROC curve was used to evaluate the accuracy of models in predicting prognosis in patients with RCC in the test cohort. (G) The PCA result of
using the DRG risk model to distinguish RCC patients. (H) The PFI survival curves for different risk groups in TCGA-KIRC cohort.
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FIGURE 5

Development of a nomogram and independent prognostic analysis of risk score. (A) Using the prognostic clinical characteristics and risk score of
RCC patients as elements in the development of a nomogram, a nomogram was drawn. (B) A calibration curve was used to evaluate the accuracy of
the nomogram in predicting the survival probability of RCC patients. (C) At the same time, ROC curves are plotted for all elements in the
construction nomogram, and AUC values are calculated. (D–F) The DCA decision curve evaluates the superiority of the nomogram in predicting the
1-year (D), 3-year (E), and 5-year (F) survival probabilities of patients with RCC by integrating all factors. (G) Univariate independent prognostic
analysis of risk score as a prognostic factor in patients with RCC. (H) Multivariate independent prognostic analysis of risk score as a prognostic factor
in patients with RCC. The symbol * indicates p<0.05 and *** indicates p<0.001.
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tensile strength, phospholipase A2 activity (consuming 1,2-

dipalmitoylphosphatidylcholine) functions (Figure 7J). The KEGG

results show that it is mainly enriched in Cytokine-cytokine receptor

interaction, Complement and coagulation cascades, Viral protein
Frontiers in Immunology 11
interaction with cytokine and cytokine receptor, IL-17 signaling

pathway, TNF signaling pathway, Protein digestion and absorption,

Amoebiasis, Mineral absorption, Rheumatoid arthritis, Pertussis,

Cholesterol metabolism pathways (Figure 7K).
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FIGURE 6

Risk score related tumor microenvironment infiltration results, immune function analysis results, and TIDE score results. (A) A graph showing the
correlation between the content of ten selected immune cells and risk score. (B) Results of correlation analysis between model genes and immune
cell infiltration results. (C) Analysis of differences in immune-related functions under different risk groups. (D) Differences in TIDE scores among RCC
patients in different risk groups. (E) Results of differences in stromal cell score, immune cell score, and comprehensive score among RCC patients
under different risk groups. The symbol * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001.
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Drug sensitivity analysis based on
DRG score

We performed a drug sensitivity analysis for several cancer

drugs in the high-risk and low-risk groups, using the IC50 values of

the drugs to indicate drug sensitivity, and screened out many drugs

with sensitivity differences; we selected only six drugs for

demonstration. The high-risk group was more sensitive to

Carmustine, Erlotinib, and Gefitinib (Figures 8A–C), and the low-

risk group was more sensitive to JAK_8517, Sorafenib, and

Temozolomide (Figures 8D–F). These results suggest that the

DRG score is crucial for drug selection.
MSH3 could be an important prognostic
predictive marker in RCC

When we investigated the expression of five model genes in

RCC, we found that four genes (MSH3, CRB3, AUP1, RNF10) had
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significant expression differences (Figure 9A). The correlation

chord plot showed a close association between the five model

genes (Figure 9B). During the study of MSH3, it was found that

as the expression of MSH3 increased, the expression of the

remaining four genes also changed to varying degrees

(Figure 9C). MSH3 expression was downregulated in RCC

(Figure 9D), and patients with low MSH3 expression had worse

OS (Figure 9E), and the ROC curve reveals that the accuracy of

using MSH3 to predict the prognosis of RCC patients is good

(Figure 9F). In addition, we found that MSH3 correlated with

clinical traits in RCC patients. Patients with higher histological

grading had lower MSH3 expression (Figure 9G), patients who

developed metastasis had low MSH3 expression (Figure 9H), and

patients with low MSH3 expression had worse OS, DSS, and PFI

(Figures 9I–K).

Next, we analyzed the correlation between MSH3 and immune

checkpoint-related genes and found that there are many immune

checkpoint gene expression levels associated with MSH3

(Figure 10A). We demonstrated the immune microenvironment
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FIGURE 7

Correlation analysis of cluster results, somatic cell variation analysis, and functional enrichment analysis under different risk groups. (A) The Sankey
diagram shows the relationship between DRGCluster, geneCluster, risk level, and survival status. (B) In the DRGCluster, there are differences in risk
score among different clusters. (C) In the geneCluster, there are differences in risk score among different clusters. (E, F) The waterfall diagram shows
the genes that most frequently undergo somatic mutations under different risk groups. (G) There were differences in tumor mutation load among
different risk groups. (D) The main enriched functions of RCC patients in the high-risk group. (H) The main enriched function of RCC patients in the
low-risk group. (I) The GSVA results demonstrate pathways that differ in the enrichment of RCC patients between the high-risk and low-risk groups.
The DEGs between the high-risk and low-risk groups are mainly enriched in GO (J) and mainly enriched in KEGG (K).
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infiltration landscape associated with MSH3 through a box graph

and lollipop diagram (Figures 10B, C). T cells regulatory (Tregs) are

common immune cells in the tumor microenvironment that can

suppress immune responses. They promote the occurrence and

development of cancer by making the body produce antigen

tolerance to tumor cells, thereby allowing tumor cells to escape

the immune-killing effect of the body. The correlation analysis

between MSH3 and Tregs showed that the lower the expression of

MSH3, the higher the Tregs content, indicating a poor prognosis

(Figure 10D). Moreover, we performed a Spearman correlation

analysis of MSH3 and NCKAP1, and the results showed a strong

positive correlation between MSH3 and NCKAP1 (Figure 10E).

According to the TCGA database immunotherapy pan-cancer data

file, the immunotherapy related to MSH3 is shown using a violin

diagram (Figures 10F, G). The GSEA results showed that the group

with high expression of MSH3 was mainly enriched in allograft

rejection, while the group with low expression ofMSH3 was mainly

enriched in coagulation, epithelial-mesenchymal transition,

myogenesis, and protein secretion (Figure 10H). We conducted

differential analysis on samples with high and low expression levels

of MSH3 and performed functional enrichment analysis on the

obtained differential genes. The results of GO analysis showed that

these differential genes were mainly enriched in humoral immune

response, extracellular matrix organization, acute inflammatory

response, protein activation cascade, collagen-containing

extracellular matrix, blood microparticle, immunoglobulin

complex, immunoglobulin complex, circulating, serine-type

endopeptidase inhibitor activity, immunoglobulin receptor

binding, peptidase inhibitor activity, receptor-ligand activity

functions (Figure 10I). KEGG analysis showed that these genes
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were mainly enriched in Neuroactive ligand-receptor interaction,

Cytokine-cytokine receptor interaction, IL-17 signaling pathway,

cAMP signaling pathway, JAK-STAT signaling pathway,

Hematopoietic cell lineage, Dopaminergic synapse, Circadian

entrainment, Cholesterol metabolism, Primary immunodeficiency

pathways (Figure 10J). In previous studies, NCKAP1 is a promoter

gene of a novel cell death modality called disulfidptosis, and

overexpression of NCKAP1 promotes disulfidptosis in tumor cells,

thereby inhibiting tumor cells. Taken together, we believe that

MSH3 can be a key marker for predicting the prognosis of RCC

and hope to add to the research on the immune microenvironment,

immunotherapy, function, and pathway related to cancer.
Overexpression of MSH3 promotes
disulfidptosis in 786-O cells and A498 cells
under glucose starvation conditions

To further verify the expression level of MSH3 in RCC, we

examined the protein expression level of MSH3 in human renal

cortical proximal tubular epithelial cells and RCC cell lines. The

results show that the protein level of MSH3 in RCC cell lines is

much lower (Figure 11A), which is consistent with our previous

conclusions. We successfully overexpressed SLC7A11 in 786-O and

A498 cell lines (Figure 11B). We transfected MSH3 in the SLC7A11

overexpressed cells and the result showed that transfection of MSH3

had no significant effect on the expression of SLC7A11 (Figure 11C).

The results of cell death assays showed that overexpression of MSH3

promoted cell death induced by 786-O Cells (Figure 11D) and A498

Cells (Figure 11E) under glucose starvation and SLC7A11
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FIGURE 8

Correlation analysis between risk groups and drug sensitivity. (A) Carmustine. (B) Erlotinib. (C) Gefitinib. (D) JAK_8517. (E) Sorafenib. (F) Temozolomide.
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overexpression conditions. Glucose starvation depletes ATP, and

glucose starvation does decrease the intracellular relative ATP levels

of RCC Cells. However, testing the relative ATP levels of RCC Cells

overexpressed withMSH3 and SLC7A11 showed that overexpression of

MSH3 had no significant effect on relative ATP levels (Figures 11F, G),

but significantly promoted cell death under glucose starvation

conditions. Therefore, the cell death induced by overexpression of

MSH3 under glucose starvation and SLC7A11 overexpression

conditions is not caused by ATP depletion. To demonstrate whether

overexpression of MSH3 in RCC Cells under glucose starvation and

SLC7A11 overexpression conditions can promote the occurrence of

disulfidptosis, and to rule out the occurrence of other known cell death

modes. We use a variety of cell death inhibitors, including the

ferroptosis inhibitors ferrostatin-1 (Ferr-1) and the apoptosis

inhibitor (Z-VAD-FMK). In addition, we use a highly effective

disulfide bond reductant tris - (2-carboxyethyl) - phosphine (TCEP).

The above reagents were used to treat RCC Cells overexpressed with

MSH3 under glucose starvation and SLC7A11 overexpression

conditions, respectively. The results showed that Ferr-1 and Z-VAD

had no salvage effect on the cell death of RCC Cells induced byMSH3

overexpression under glucose starvation and SLC7A11 overexpression

conditions, while TCEP completely inhibited the cell death of RCC
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Cells induced by MSH3 overexpression under glucose starvation and

SLC7A11 overexpression conditions (Figures 11H, I). In summary, our

results suggest that overexpression of MSH3 combined with glucose

starvation can induce disulfidptosis in SLC7A11 overexpressed

RCC cells.
Discussion

As one of the most important cancers of the urinary system,

RCC has caused indelible suffering and death to patients all over the

world, and its poor prognosis has imposed a serious burden on

society and the nation. Researchers have been working tirelessly to

find biological targets that can predict or improve the prognosis of

RCC patients. Encouragingly, more and more articles have been

published, such as the cuproptosis-associated 13 genes model as a

strong predictor of the efficacy of immunotherapy and targeted

therapy for RCC (25), the ferroptosis-related prognostic prediction

model for RCC (26), the fatty acid metabolism-related prognostic

model of breast cancer (27), and the tumor microenvironment-

related prognostic prediction model for non-small cell lung cancer

(28). Until now, there are few studies related to disulfidptosis, which
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FIGURE 9

The key gene MSH3 has an important impact on the prognosis of patients with RCC. (A) Expression of five model genes in the TCGA-KIRC dataset.
(B) Correlation graph between MSH3 and the other four genes. (C) Model gene-related thermograms that vary with MSH3 expression. (D) Expression
of MSH3 in the TCGA-KIRC dataset. (E) A survival analysis curve that reflects the relationship between MSH3 expression levels and OS in patients
with RCC. (F) ROC curve of MSH3 predicting 5-year survival probability of RCC patients. (G–K) Box diagram showing the correlation between MSH3
and clinical characteristics of RCC patients. The symbol * indicates p<0.05 and *** indicates p<0.001.
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is a newly discovered novel cell death modality. Its specific

involvement in RCC, the mechanisms of its occurrence and

the pathways involved are unknown. With more studies like ours,

we believe that the day is approaching when the mechanism of

disulfidptosis in RCC will be fully demonstrated and disulfidptosis

will be applied to the diagnosis and treatment of RCC to improve

the prognosis of RCC patients. Therefore, we investigated the

existing 24 DRGs, most of which have differential expression

levels compared to normal tissues. By analyzing these genes, we

concluded that disulfidptosis could be used as a biomarker for the
Frontiers in Immunology 15
diagnosis and prognosis of RCC, and a series of studies were

carried out.

In our study, we identified three disulfidptosis-related subtypes

based on DRGs and then screened the differentially expressed genes

among the three subtypes to identify the three genetic subtypes.

We found that patients with different subtypes had different

OS, immune cell infiltration outcomes and immunotherapy

sensitivity. In a step-by-step identification and screening process,

we constructed a prognostic model consisting of five genes. And we

divided RCC patients into high-risk and low-risk groups according
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FIGURE 10

A comprehensive evaluation of bioinformatics related to MSH3. (A) Immune checkpoint-related genes associated with MSH3. The infiltration of
immune cells related to MSH3 is shown in box graph (B) and lollipop graph (C). (D) Correlation graph between Tregs cells and MSH3 expression
level. (E) The result of correlation analysis between the expression of NCKAP1 and MSH3. (F, G) Immunotherapy regimens with sensitivity differences
at different levels of MSH3 expression. (H–J) MSH3-related GSEA enrichment analysis graph (H), MSH3-related GO enrichment analysis graph (I), and
MSH3-related KEGG enrichment analysis graph (J). The symbol * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001.
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to their risk scores. Then, the utility value of the model in the

clinical application of RCC was determined by bioinformatics

technology analysis and model validation. The Kaplan-Meier

curves showed that the OS of patients in the high-risk group was
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significantly lower than that of patients in the low-risk group, which

highlighted the validity of the model in predicting the prognosis of

RCC patients. In the time-dependent ROC curve analysis, the area

under the curve of the ROC curve indicated that the prognostic
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FIGURE 11

Cell experiments demonstrate that MSH3 promotes disulfidptosis. (A) The results of the western blot showed the expression of MSH3 in HK-2 and
RCC cell lines. (B) SLC7A11 overexpression cell lines were successfully constructed in 786-O cell lines and A498 cell lines, respectively, with the
empty vector (EV) as the control group. (C) After overexpression of SLC7A11, the effect of transfection with MSH3 on MSH3 and SLC7A11 expression.
(D, E) After overexpression of SLC7A11, cell death of the transfected 786-O and A498 cell line in different treatments. (F, G) ATP levels of the
transfected 786-O and A498cell line under glucose starvation and SLC7A11 overexpression conditions were measured. (H, I) After treatment with
different reagents, the cell death of the 786-O and A498 cell line overexpressed with SLC7A11 and MSH3 under glucose starvation conditions was
measured. The symbol * indicates p<0.05 and *** indicates p<0.001.
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model was highly accurate in predicting RCC prognosis. Consistent

results were also obtained in the validation cohort. Interestingly,

during the analysis of model genes, we identified the MSH3 gene,

whose low expression was associated with a poor prognosis of RCC.

Further studies confirmed that overexpression of MSH3 under

glucose starvation and SLC7A11 overexpression conditions

promoted the development of disulfidptosis in RCC cell lines.

The other four model genes (CRB3, AUP1, RNF10, ELF1) all have

been almost confirmed to function in RCC in different ways. With

further studies, our model was superior to traditional clinical

features in predicting patient prognosis, indicating good

classification of the model. Finally, our analysis confirmed the

validity and accuracy of the model in predicting the prognosis of

RCC patients.

Notably, we found thatMSH3may induce disulfidptosis in RCC

cell lines by some mechanism under glucose starvation conditions.

MSH3 is a DNA mismatch repair gene that encodes the MSH3

protein that binds toMSH2 to form the heterodimer MutSb, which
accomplishes the function of repairing large-scale incorrect base

insertion and deletion (29). MSH3 is associated with the

development of various cancers (30), and some studies have

shown that MSH3 is associated with the development of primary

nasopharyngeal (31), prostate cancer (32), esophageal cancer (33),

colorectal cancer (34), breast cancer (35), while studies on renal cell

carcinoma are rare. In our study, we found that MSH3 expression

was reduced in RCC patients and correlated with clinical traits, and

patients with lower MSH3 expression had a worse prognosis. Also,

MSH3 was closely associated with tumor microenvironment

infiltration, immune checkpoint genes, and immunotherapy

sensitivity. Our study showed that MSH3 expression was

negatively correlated with the amount of Tregs cells, which play a

role in promoting tumor development and immune evasion in

kidney cancer. Finally, the results of cellular experiments showed

that MSH3 expression was indeed downregulated in RCC cell lines,

which is also consistent with our previous findings. After

overexpression of SLC7A11, the onset of cell death was detected

by overexpression of MSH3 in glucose-starved treated RCC Cells

and was rescued after treatment with TCEP. Therefore, we suggest

that MSH3 may be a potential prognostic biomarker for RCC

patients. However, the biological role of MSH3 in RCC has not

been elucidated, and the mechanism of how disulfidptosis is

induced also needs further experimental investigation.

It is well known that tumor cells together with lymphocytes,

immune cells and tumor cell blood vessels surrounding tumor cells

build the tumor microenvironment (36–38).. A considerable

number of studies have confirmed that tumor microenvironment

infiltration has a dramatic impact on tumor formation and

progression as well as treatment resistance (39–41). Our study

demonstrates the immune landscape of tumor microenvironment

infiltration under different subtypes and different risk groupings,

and their relevance to clinical traits and immunotherapy. Based on

the results that tumor microenvironmental infiltration and

immunotherapy differ significantly across subtypes and different

risk subgroups, we suggest that the DRG risk score model is crucial

for the development, progression, and treatment of RCC. Among
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the disulfidptosis subtypes, subtype B had a higher level of immune

cell infiltration than the other subtypes and was associated with the

worst prognosis. Similarly, the proportion of some cancer-

promoting tumor-infiltrating immune cells such as Tregs cells

increases with increasing risk scores (42). It had been suggested

that TIDE scores tend to reveal the likelihood of tumor immune

escape, so a higher TIDE score in the high-risk group may explain

the worse prognosis for patients in this group (43). As we have

observed, some studies have shown the potential value of disulfides

in tumor diagnosis and treatment. For example, thiol/disulfide

homeostasis (TDH) alteration could be used as an early

diagnostic and therapeutic target for ccRCC (44). In addition, a

link between disulfidptosis and tumor immunity has been found

(45). Our results are consistent with previous studies, but there are

still too few studies on the relationship between disulfidptosis and

tumor immunity, and the mechanism of this needs to be

further explored.
Conclusion

In this study, we investigated the effect of DRGs on RCC

prognosis, identified disulfidptosis-related subtypes, and

demonstrated the immune landscape of different subtypes. We

then developed a new prognostic prediction model based on five

DRGs and confirmed that it can accurately predict OS in RCC

patients, demonstrating differences in clinical features, somatic cell

variants, tumor microenvironment infiltration, and drug sensitivity

associated with risk scores. Finally, we also identified the MSH3

gene, which is associated with prognosis and disulfidptosis in RCC

patients. In summary, Our study may provide new insights into the

subtype and treatment of RCC.
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