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Stress mechanism involved in
the progression of alcoholic liver
disease and the therapeutic
efficacy of nanoparticles

Hiral Aghara, Prashsti Chadha, Devangi Zala
and Palash Mandal*

P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand,
Gujarat, India
Alcoholic liver disease (ALD) poses a significant threat to human health, with

excessive alcohol intake disrupting the immunotolerant environment of the liver

and initiating a cascade of pathological events. This progressive disease unfolds

through fat deposition, proinflammatory cytokine upregulation, activation of

hepatic stellate cells, and eventual development of end-stage liver disease,

known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with

stress mechanisms such as oxidative stress mediated by reactive oxygen species,

endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in

increased inflammation. While the initial stages of ALD can be reversible with

diligent care and abstinence, further progression necessitates alternative

treatment approaches. Herbal medicines have shown promise, albeit limited by

their poor water solubility and subsequent lack of extensive exploration.

Consequently, researchers have embarked on a quest to overcome these

challenges by delving into the potential of nanoparticle-mediated therapy.

Nanoparticle-based treatments are being explored for liver diseases that share

similar mechanisms with alcoholic liver disease. It underscores the potential of

these innovative approaches to counteract the complex pathogenesis of ALD,

providing new avenues for therapeutic intervention. Nevertheless, further

investigations are imperative to fully unravel the therapeutic potential and

unlock the promise of nanoparticle-mediated therapy specifically tailored for

ALD treatment.

KEYWORDS

alcoholic liver disease, metabolism, gut-liver, stress mechanism, nanoparticle mediated
treatment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1205821/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1205821/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1205821/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1205821/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1205821&domain=pdf&date_stamp=2023-09-29
mailto:palashmandal.bio@charusat.ac.in
https://doi.org/10.3389/fimmu.2023.1205821
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1205821
https://www.frontiersin.org/journals/immunology


Aghara et al. 10.3389/fimmu.2023.1205821
1 Introduction

The liver, as one of the largest immune organs in the human

body, plays a crucial role in maintaining overall immunity by

creating an immunotolerogenic environment (1–3). Comprised

mainly of hepatocytes, which make up 70% of its composition,

the liver also contains various non-parenchymal cells such as

hepatic sinusoidal endothelial cells, hepatic stellate cells (HSC),

Kupffer cells (liver macrophages), and pit cells (liver-specific natural

killer cells) (4). The parenchymal cells of the liver produce innate

immunity proteins, bactericidal proteins, and opsonins,

contributing significantly to the body’s innate immune response

(5, 6). Additionally, the liver has unique characteristics where liver

allografts are more readily accepted due to heightened innate

immunity and suppressed adaptive immunity compared to other

organs (5, 7). However, if the liver’s immunotolerant environment

is disrupted by factors such as viral infections, an unhealthy diet, or

certain drugs, it can lead to liver disease.

Excessive and prolonged alcohol intake is a major cause of liver

disease, specifically known as alcoholic liver disease (ALD). ALD,

along with non-alcoholic liver disease (NAFLD), which is now

referred to as metabolism-associated liver disease, pose significant

health problems worldwide. Alcohol abuse is considered the leading

risk factor for disease and disability globally, contributing to a

mortality rate of 4.8% worldwide, with approximately 10% of these

mortalities occurring in India (8). Furthermore, alcohol’s negative

impact extends to socioeconomic activities. To provide context, a

standard beer or wine cooler typically contains 5% alcohol, with

355mL of the drink containing 14 grams of pure alcohol. Malt
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liquor contains around 7% alcohol, with 355mL of the drink

containing 19.60 grams of pure alcohol. Furthermore, 740mL of

12-14% wine contains approximately 70-80 grams of pure alcohol.

The dietary guidelines in the United States suggest that consuming

one drink per day for women and two drinks per day for men is

considered moderate and does not typically lead to liver disease (9).

The pattern of ALD progression is illustrated in Figure 1 (10). If

an individual consumes more than 40g of pure alcohol per day for

an extended period, they may develop alcoholic fatty liver disease

(AFL). In AFL condition, excess alcohol would interrupt fat

oxidation by inhibiting b oxidation of fatty acid and 5ʹ-AMP-

activated protein kinase (AMPK). If alcohol consumption is halted

at this stage, AFL can be reversed to a healthy state. However, if an

individual continues to consume high amounts of alcohol,

inflammation will occur along with fat deposition, leading to the

stage called alcoholic steatohepatitis (ASH). At this stage gut

dysbiosis also takes place and it interacts with liver residential

macrophages which further activate quiescent hepatic stellate

cells. It will produce collagen and extra cellular matrix protein.

Some growth factors like TGF-b and platelet derived growth factor-

b are most known for HSC proliferation. Due to quiescent

Hepatic Stellate Cells (HSCs) activation, the disease progresses to

liver fibrosis and at this stage retinol storage decreases and

extracellular matrix increases. Activated quiescent HSCs produce

more collagen which would further promote capillarization of

hepatic sinusoidal endothelial cells and interrupt nutrient

transport. Further, the disease progresses to alcoholic cirrhosis

and hepatocellular carcinoma, which denote end-stage liver

disease (11, 12).
FIGURE 1

Alcohol metabolism and ALD progression. In a healthy state, ethanol is converted to acetaldehyde by alcohol dehydrogenase and then to acetate by
aldehyde dehydrogenase. But in presence of excess ethanol, the MEOS pathway is activated leading to increased acetaldehyde levels. During the initial
stage of alcoholic liver disease (ALD), there is an increase in lipid generation and reduction in fatty acid oxidation, resulting in lipid accumulation in the
liver. Approximately 10-35% of individuals progress to alcoholic steatohepatitis, characterized by sterile inflammation and elevated cytokines and
chemokines. Kupffer cells are activated by gut endotoxins during this stage. Continued heavy alcohol consumption leads to liver fibrosis, where around
40-50% of individuals experiencing activation of quiescent hepatic stellate cells due to Kupffer cell activation. Natural killer cell activity declines, further
promoting hepatic stellate cell activation which accelerates fibrosis. Subsequently, 8-20% of individuals develop liver cirrhosis, an early stage of end-
stage liver disease, and approximately 3-10% progress to hepatocellular carcinoma, an advanced stage of liver disease.
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2 Alcohol metabolism

Alcohol metabolism occurs via two main pathways, the alcohol

dehydrogenase (ADH) pathway and the non-ADH pathway which

is also recognized as the microsomal ethanol oxidizing system

(MEOS) (13). The ADH pathway is a primary pathway for

ethanol metabolism in liver cells and occurs in cytosol due to

presence of necessary enzymes. The MEOS pathway involves

enzymes like catalase and CYP2E1 which are present in the

peroxisomes and microsomes of cells. Pathways involving all the

above enzymes are oxidative pathways. The non-oxidative

metabolism of ethanol is not prominent but leads to the

formation of fatty acid ethyl esters (FAEEs) or phosphatidic acid

(PA) (14). The literature reports that if the alcohol concentration in

blood is less than 10M/L, then alcohol metabolism will take place

via the ADH pathway (15). As the blood alcohol concentration

elevates, the other two pathway will also participate in

ethanol metabolism.

Alcohol catabolism occurs, and initially acetaldehyde is formed

and further converted into acetate via acetaldehyde dehydrogenase

(ALDH). Since acetaldehyde is a toxic compound and acts as a

mutagen, it is rapidly catabolized to acetate (16). However, as the

alcohol concentration increases, more acetaldehyde is formed,

posing a risk to cells. Acetaldehyde can bind to proteins and

DNA, leading to structural and functional changes, the generation

of neoantigens, and activation of the immune system (17). The

progression of ethanol metabolism is accompanied by an increase in

reactive oxygen species (ROS). These ROS contribute to the

formation of lipid peroxides, which can further deform the

structure of DNA and proteins through binding (18). Excessive

lipid peroxidation results in the formation of electrophile products

like Malondialdehyde (MDA) and 4 Hydroxynonenal (4-HNE),

which bind with essential proteins, disrupting cellular homeostasis

(18, 19). Figure 1 shows alcohol metabolism and ALD progression.

With an increase in alcohol intake, the cellular antioxidant

defense mechanism weakens. Antioxidants such as glutathione and
Frontiers in Immunology 03
superoxide dismutase (SOD) are naturally present in cells, and their

levels decrease as alcohol consumption rises. This results in an

inverse relationship between the concentration of free radicals and

antioxidants within the cells. Furthermore, excessive alcohol intake

can also have an impact on vitamin levels. The elevated alcohol

concentration triggers various stress mechanisms within the body.

3 Alcohol and oxidative stress

A proper balance between antioxidants and reactive oxygen

species (ROS) is generally maintained in every cell (20). ROS, being

highly unstable free radicals, are generated by cellular mechanisms

and play essential roles in cellular communication and other

processes. Various species of ROS, including H2O2, O2
-, and `OH

are produced due to increased NOX4 activity (21). While ROS

have several detrimental effects, they are generally important for

transmitting messages and eliciting responses. There are two types

of antioxidant mechanisms that remove excess ROS (22, 23) and

both are equally vital for cellular function. Maintaining homeostasis

between these two mechanisms is crucial. Imbalances in these

mechanisms can lead to disease conditions (24, 25) which may

arise from factors such as lifestyle choices, drug use, chemotherapy,

and other epigenetic factors. Within cells, two types of antioxidant

mechanisms exist. The first is an endogenous or enzymatic

antioxidant mechanism generated within cells, while the second is

an exogenous or non-enzymatic antioxidant mechanism

supplemented by food products (26). Elevated ROS levels can

damage cells and activate apoptosis-related mechanisms. ROS

also play significant roles in various cell signaling pathways, such

as NFkB, MAPK, ion channeling, and the ubiquitin proteasome

response (27). These pathways can further trigger Endoplasmic

reticulum (ER) response and other pathways, which will be

discussed later. Figure 2 illustrates the damage caused by ROS to

cells (28–32).

Ethanol and acetaldehyde both are toxic to cells. The presence

of these toxins results in mitochondrial damage further affecting
FIGURE 2

ROS-related damage to cells. Reactive oxygen species are important for cell-to-cell crosstalk but in excessive amounts they lead to diseased
conditions. By binding protein, lipid, and DNA, they damage the cellular mechanism and also dysregulate antioxidant activities. They also dysregulate
the DNA repair mechanism and cause more DNA damage. Further increased ROS concentrations damage cells by generating lipid peroxidation
which further damages cell membrane and causes cell death.
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various mechanisms which damage the cells (32). There are

numerous factors involved in ROS generation. Therefore, it is

important to understand these mechanisms and the harm caused

by ROS generation in ALD.
3.1 Ways of ROS generation and disease
progression in ALD

At the early stage of ALD, fat generation occurs and the

oxidation rate of fatty acids is slower (33). Even at the first stage,

there are many elements that help ROS generation. Some are

mentioned below:
Fron
• NAD+: NADH ratio: As the conversion of ethanol to

acetaldehyde and acetate occurs, it also generates NADH,

which dysregulates the cellular redox potential (10).

Numerous metabolic processes depend on NAD+ since it

is essential for maintaining the cellular levels of sirtuins

(34), which play a crucial role in the antioxidant system and

DNA repair in cells (35, 36). Additionally, sirtuins are

important for the brain in maintaining circadian rhythm

(37). A reduced NAD+:NADH ratio impacts histone

deacetylase activity (38). The increased NADH also affects

the antioxidant defense mechanism by reducing its power

(39).

• Sterol regulatory binding protein (SREBP1C) and other

early growth responses (EGR1) are activated by the

CYP2E1 cycle, which in turn activates the lipogenic gene

(33, 40). According to (41–44), CYP2E1 is crucial in the

detoxification of xenobiotics and other hazardous

compounds. The detoxification of bioactive compounds

generates toxic compounds or carcinogenic products

which further contribute to disease progression (45, 46).

In liver cells, ROS generation is significantly affected by the

activity of CYP2E1 (47, 48).

• According to Vasiliou et al., (49), the microsomal ethanol-

oxidizing system (MEOS) pathway plays a significant role in

ethanol sensi t iv i ty . An increased acetaldehyde

concentration further reduces the ability of ALDH2 to

convert acetaldehyde to acetate (13, 50, 51). Acetaldehyde

is a carcinogenic substance (52) that further alters many

biomolecule components and produces ROS (16, 53). It also

leads to the formation of DNA adducts, causing mutations,

and induces changes in protein structure, resulting in the

formation of neoantigens. These neoantigens are further

detected by T cell immune cells and form inflammatory

responses (17). In addition, acetaldehyde also interacts with

other mechanisms (54–56).

• Excessive alcohol consumption damages the mitochondria,

which leads to ROS production. An elevated amount of

NADH can hinder ATP production and negatively impact

the electron transport chain. Excessive alcohol

consumption also decreases the function of mitochondrial

respiratory complexes, specifically complex I, III, IV, and V,
tiers in Immunology 04
which are involved in converting ADP to ATP. This

metabolic state promotes higher H2O2 production.

Ethanol further amplifies the imbalance of oxidative

phosphorylation and ROS generation (25, 57–59).

According to (60), increased NADH levels contribute to

more ROS formation, which can interact with cellular

components such as lipids, proteins, nucleic acids, and

especially mitochondrial DNA (mtDNA), enhancing

oxidative stress and leading to apoptosis. ROS production

affects mtDNA and compromises cellular energy

metabolism, resulting in the production of even more

ROS. In summary, higher concentrations of ROS damage

mitochondria, leading to further elevated concentrations of

ROS.

• Overall, in all the other mechanisms, there is one more

mechanism which has been studied and is still being

explored regarding ALD progression. It also damages

mitochondria, produces more ROS, and contributes to

disease progression. Necroptosis is a cell death mechanism

which is activated due to RIPK1 and RIPK3 (receptor

interacting protein kinase 1 and 3) (61, 62). As mitochondrial

ROS generation increases, it also triggers inflammation.

Damage associated molecular patterns (DAMP), interferon,

death ligand-like tumor necrosis factor, Fas ligand, toll-like

receptors, and Tumor necrosis factor-related apoptosis-

inducing ligand can activate RIPK1 and RIPK3. As alcohol

accumulation increases, it activates RIPK1 and RIPK3.

Individually RIPK1 can cause inflammatory activity by

neutrophil infiltration and producing proinflammatory

cytokines and chemokines. Furthermore, RIPK3 is also

elevated due to overexpression of cytochrome p450E1. As

RIPK3 phosphorylates and it interacts with mixed lineage

kinase domain-like protein (MLKL) and leads to membrane

disruption and necroptosis (63, 64). By that mechanism is also

increases oxidative stress by generating more ROS and

inflammatory response (65). Further molecular mechanisms

still need to be clarified to prevent the progression of

the disease.
ROS not only affects main pathways but also hinders non-

relevant pathways, such as Brahma-related gene 1 (BRG1)

expression (31). BRG1 is responsible for the activation of various

antioxidant mechanisms which are mutated due to excess ROS (66).

Even the overexpression of BRG1 further correlates with SREBP1c

and contributes to lipid metabolism (67–69). Research is still

underway to explore the connection between BRG1 and other

inflammatory genes and pathways, as there are conflicting

findings in some studies regarding the formation and role of

BRG1 (70). The relationship between BRG1 and other pathways

needs to be explored in regard to ALD.

ROS and acetaldehyde have the ability to disrupt the structure

of proteins. In the presence of intracellular stress factors such as the

accumulation of misfolded proteins in the endoplasmic reticulum

(ER), a chaperone-mediated stress response is activated to aid in the

recovery and restoration of ER function. However, in cases where
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recovery is not feasible and the stress becomes overwhelming, the

unfolded protein response (UPR) directs the cell towards either

autophagy, which helps maintain cellular homeostasis, or apoptosis,

leading to the clearance of the affected cell. Autophagy pathways,

including PERK/ATF4, IRE1a, ATF6, and Ca+, can be activated

and play a dual role. They can inhibit apoptosis by dampening the

activity of apoptosis-associated caspases, thereby promoting cell

recovery. Alternatively, they can also induce apoptosis, leading to

the removal of accumulated proteins, lipid droplets, and damaged

cellular components through autophagy (71). However, excessive

alcohol accumulation can inhibit autophagy, which contributes to

disease progression by generating endoplasmic reticulum

stress (72).
4 Alcohol and ER stress

Cell damage can be caused not only by oxidative stress but also

by ER stress, which acts as a secondary hit model for disease

progression (73). The ER-associated degradation (ERAD) reaction

is activated in response to unfolded or damaged proteins, aiming to

maintain homeostasis. Under adverse conditions, ERAD supports

the preservation of cellular equilibrium. Oxidative stress increases

the production of ROS, which, in turn, triggers the activation of ER-

associated genes due to stress metabolites, protein adducts, and

protein misfolding. Additionally, other cellular responses, such as

increased synthesis of CYP2E1 and a decreased liver S-

adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio,

contribute to the development of ER stress (74, 75). SAM acts as a

methyl donor and aids in the formation of glutathione, an

important antioxidant. SAH, on the other hand, acts as a

potential inhibitor of methylation. Furthermore, decreased NAD+

levels during alcohol metabolism directly increase the concentration

of N-nicotinamide methyltransferase (NNMT), which plays a

crucial role in maintaining the balance between NAD+

metabolism and the methionine cycle. Increased NNMT levels

further elevate SAH. The decreased SAM : SAH ratio leads to an

increase in CYP2E1, lipid peroxidation, the upregulation of ER

stress marker genes, and prevention of DNA methylation (76–79).

In ER stress, the activation of the PERK-ATF4 pathway plays a

critical role in hepatic NNMT activation. Some researchers have

reported that NNMT inhibition protects against alcohol-induced

fatty liver disease and the generation of hepatic de novo lipogenesis

(80, 81). There is a connection between oxidative stress and ER

stress which still needs to be explored.

Various types of proteins are targeted in ALD. Excessive alcohol

intake and its byproducts can cause denaturation or deformation of

many proteins. As hepatocytes are rich in ER, they play a crucial

role in maintaining protein homeostasis within cells. In adverse

conditions, the unfolded protein response (UPR) becomes more

prominent and helps maintain cellular homeostasis. However,

prolonged activation of UPR can lead to inflammation and

interaction with other pathways (82). The UPR consists of three

main branches that increase the folding capacity of the ER,

promoting protein folding and reducing protein translation by
Frontiers in Immunology 05
affecting mechanisms involved in protein synthesis and

polypeptide formation (75, 83). This process increases ER-

associated degradation (ERAD) and reduces protein translation

by affecting mechanisms involved in protein synthesis and

polypeptide formation (75). Within the ER, transmembrane

sensors such as BiP, GRP78, and intraluminal chaperones are

inactivated when they detect calcium depletion. The UPR is

activated only after three transmembrane proteins, namely,

inositol-requiring protein 1 (IRE1), dsRNA-activated protein

kinase (PKR)-like ER kinase (PERK), and activating transcription

factor 6 (ATF6), dissociate from BiP/GRP78, which serves as an

inhibitory binding chaperone.

In healthy states, due to IRE1 activation, XBP1 is spliced

(sXBP1) and plays a vital role in activating other ERAD pathway

genes, which further halt protein translation. Furthermore, PERK

initiates phosphorylation of elF2-a subunit and activates ATF4, and

it helps in activating ERAD, amino acid metabolism, antioxidant

stress response, CHOP, and GADD34 activation (84). ATF6 is

activated in the Golgi and it functions as a transcription factor that

promotes the expression of XBP1, CHOP, and ER chaperons.

Among all of them, CHOP is crucial for ER associated apoptosis.

In normal conditions, all the above-mentioned factors play key roles

in maintaining homeostasis in cells; but in adverse conditions, their

overexpression induces inflammatory response by activation of

NFkB and IL-1b (74, 82). Additionally, the JNK pathway is

activated by the ER stress-induced response, which is critical for

the progression of this disease (84). ER stress-induced apoptosis is

caused due to the upregulation of proapoptotic proteins like CHOP,

cell cycle arrest, and DNA damage (gene/protein) such as

GADD34/135. Caspase 12 and 4, JNK, and IFN3 signaling

components are increased as a result of ER stress and cause cell

death (85).

The lipid peroxidation products MDA, MAA, 4-HNE, and

acrolein are highly active and can impair structure and activity,

ultimately leading to the generation of ER stress. Smathers et al.,

(86), concluded in their study that 4-HNE contributes to modifying

Hsp70, Hsp90, and protein disulfide isomerase (PDI) in an animal

model. All these targeted proteins are important for ATPase

activity, the rearrangement of misfolded protein, and

dysfunctional restoration of mismatched impaired protein

disulphide bonds. These are the mechanisms by which 4-HNE

contributes to ER stress and hepatic lipid accumulation. Acrolein is

also one of the lipid peroxidation byproducts, which is not well

explored in alcoholic liver disease. Chen et al., (87), showed in their

work that alcohol consumption leads to hepatic acrolein

accumulation and a decrease in glutathione-s-transferase-Pi

(GSTP) that helps to metabolize acrolein. Acrolein induces

proapoptotic signals and increases in ER stress. Furthermore,

adducts formed due to acetaldehyde bind to advanced glycation

end products and increase ROS generation, hepatocyte ballooning,

apoptosis, and steatosis by hepatic fatty degeneration and gut

leakiness (88). Acetaldehyde also impairs mitochondrial

glutathione and sensitize cells to TNF (89).

In addition to the aforementioned mechanisms, it has been

demonstrated that ER stress contributes to both inflammation and
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lipogenesis. The presence of essential enzymes on ER would further

renders the crucial site for lipid metabolism (90). ER stress genes,

predominantly the PERK/ATF4 pathway, can activate SREBP1c,

which in turn elevates the concentrations of FAS and ACC (91, 92).

According to (93)‘s research, ER stress causes elevated levels of in

lipogenic enzyme due to the cleavage of SREBP1C by site 1 protease

(S1P) and site 2 protease (S2P). Many researchers describes ER

stress-mediated disease progression as the second stage of alcohol-

related liver disease as a result of upregulated ER stress

inflammatory and steatosis pathways.

Prolonged ER stress promotes cell apoptosis by activating NFkB
and inhibiting the translation of IkB, leading to macrophage

activation generating an inflammatory response. Along with these

other mechanisms, ER stress also influences the activation of

lipogenic factors such SREBP1C (84, 94). Currently, it can be said

that oxidative stress generated due to ethanol metabolism is an

important factor for ALD progression. Researchers have also

carried out experiments with zebrafish to prove this theory (95). As

fat accumulation and inflammation increase in the liver, they can also

disrupt the gut environment and contribute to disease progression.
5 Alcohol and its relationship with
gut microbiota

Collectively, the bacteria, fungi, viruses, archaea, and eukarya

colonizing the GI tract are termed ‘gut microbiota’ (96). The gut

microbiota are vital components of our daily lives, actively

contributing to vitamin synthesis, the creation of both essential

and non-essential amino acids, and the production of short-chain

fatty acids. They form a mutualistic relationship with the host and

protect against environmental factors and some antigens by

generating immunogenic responses (97). The gut contains more

than 1012 to 1014 microbial cells, which is nearly equivalent to the

total number of the cells in entire body (98). Scientists became

interested in the mutualistic link between the host and gut

microbiota because changes in gut bacteria are critical in the

development of disease and also affect the metabolism of many

vitamins, amino acids, enzymes, and short chain fatty acids. From

infancy until adulthood, several bacterial alterations take place to

maintain homeostasis.
5.1 Alcohol, gut dysbiosis, and their effect
on gut flora

Alcohol does not only affect liver; it also affects other organs like

the brain (99), gut intestinal track (100), kidney (101), breast (102),

and heart (103). Due to excessive alcohol consumption, gut

microflora also gets disturbed (104). According to (105), when an

excessive amount of alcohol is administered, the established

bacterial community will seek more alcohol because it will assist

to maintain its dominance in the gut ecosystem. Additionally, they

looked at the higher Actinobacterial concentration in the gut of the

alcohol group. Firmicutes and Bacteroidetes made up the majority
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of the gut microbiota, while Proteobacteria, Verrucomicrobia,

Actinobacteria, and Fusobacteria were also present but in the

minority (106).

Firmicutes, a class of bacteria with a predominance of gram-

positive bacteria, and Bacteroidetes, a class of bacteria with a

predominance of gram-negative bacteria, are more prevalent in

the gut microbiota in normal conditions, making up approximately

90% of it (96, 106). But, comparing Firmicutes and Bacteroidetes,

the concentration of Firmicutes is higher. Other bacteria classes

include Proteobacteria, Actinobacteria, Fusobacteria, and

Verrucomicrobia (106–108). Firmicutes are composed of many

bacteria like Lactobacillus and other opportunistic pathogenic

bacteria like Clostridium which are relatively low. The Firmicutes

and Bacteroidetes (F/B) ratio is important to maintain intestinal

homeostasis. As the F/B ratio is increased, depending on lifestyle,

food intake, and other environmental factors, gut homeostasis is

affected. Due to a heavy alcohol intake, the F/B ratio gets disturbed

and increases and, because of this, gut dysbiosis is generated (109).

Additionally (110), mentioned that due to a high fat diet,

Bacteroides and Actinobacteria are majorly benefited while the

opposite goes for Firmicutes and Proteobacteria. This explains

that diet and lifestyle affect gut microbial composition. Similarly,

alcohol changes gut microbiota by enhancing the F/B ratio (111).

showed that due to excessive alcohol consumption, Proteobacteria

and many species of Bacteroidetes benefit but most abundant phyla

of Firmicutes are inhibited in the presence of alcohol. Mainly,

Lactobacillus and Bifidobacterium along with Faecalibacterium

prausnitzii and Akkermansia muciniphila are inhibited (112).

Such a shift from good bacteria to harmful bacteria results in gut

dysbiosis and affect bacterial products. It further triggers other

immune regulators and helps in disease progression.

The gut microbiota is composed of a mixture of bacteria, fungi,

viruses, and archaea. While the bacterial component of the

microbiota is well understood, other microbial groups have not

been extensively studied. Nevertheless, they also play a significant

role in maintaining eubiosis and promoting gut homeostasis (113).

Ethanol consumption leads to fungal dysbiosis, which in turn

contributes to the generation of immune responses (114).

Common fungal species found in the gut include Candida spp.,

Saccharomyces cerevisiae, Penicillium commune, and Aspergillus

versicolor (115). These species are present in higher

concentrat ions , whi le others such as Galactomyces ,

Debaryomyces, Cladosporium, and Trichosporon are present in

lower abundance. With increased alcohol consumption, the

concentration of Candida albicans, a pathogenic fungus known to

induce inflammatory responses, also increases (114). Conversely,

the concentrations of Galactomyces, Debaryomyces, and

Saccharomyces cerevisiae decrease (116, 117). Patients with

alcoholic hepatitis have been found to exhibit reduced fungal

diversity due to the overgrowth of Candida albicans (118). In

patients with alcoholic hepatitis, the presence of anti-

Saccharomyces cerevisiae antibodies indicates a systemic immune

response against fungal products (116).

Gut viruses are different in every person and because of that are

recognized as virus fingerprints. Some scientists describe them as
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‘dark matter’ in the intestine. The human gut contains 10 times

more phages than symbiotic bacteria. According to GVD, 97.7% of

the viral population are phages, 2.1% are eukaryotic viruses, and the

remaining are archaeal viruses (119). In normal conditions, the

majority of phages come from the Caudovirales order. In chronic

ethanol feeding, gut virome abundance is also disrupted and the

concentration of Lactobacillus phages and Propionibacterium

phages decrease while Streptococcus and Lactococcus phages are

increased and help in the progression of disease severity (120, 121).
5.2 Consequences of gut dysbiosis
due to alcohol

The shift from good to bad bacteria disrupts many intestinal

mechanisms such as the production of many short chain fatty acids

(SCFA) like Butyrate, change in the mucus layer integrity,

endotoxemia, increased bacterial acetaldehyde dehydrogenase

activity, and intestinal impermeability development. Due to all

these conditions, gut leakiness can occur. In every step, molecular

mechanisms are involved which are directly or indirectly related to

the gut dysbiosis generated due to heavy alcohol intake (122, 123).
Fron
• Gut microbes help to ferment indigested dietary products

into SCFAs. Due to alcohol consumption, this process is

negatively impacted in the conversion of Butyrate co-A to

Butyrate. It occurs due to change in 2 butyryl-CoA: acetate

CoA transferase (BUT) and the butyrate kinase (BUK) gene

(124). The impact of ethanol on gut tight junctions and gut

metabolites is still unknown. Researchers have shown

interest in decoding these particular mechanisms in order

to discover how ethanol changes intestinal metabolite

composition and how those metabolites protect against

ethanol driven injury. Several researchers have explored

the positive impact of exogenously administered SCFAs,

namely butyrate, propionate, and acetate. These

compounds appear to enhance AMPK activity and reduce

metabolic stress. Even the tight junctions of Caco2

monolayer cells are restored after treatment with SCFAs

(125–128). SCFAs are further helpful in generating immune

signal cascades coupled with G protein (129). CPT1A gene

expression is important for fatty acid oxidation. Due to a

heavy alcohol intake, CPT1A expression decreases. But

when the butyric treatment is given, it acts as an inhibitor

to histone deacetylase (HDAC) and increases CPT1A

expression (130). In this way, alcohol consumption

changes butyric concentrations, which is one of the

essential SCFAs.

• Muc2 overexpression is observed in alcoholics, which

further correlates with antibiotic resistance and gut

leakiness (permeability). Due to gut dysbiosis, Muc2

expression is increased which further acts as a glycan

source for the bacteria and the overgrowth of undesirable

bacteria is observed. In many muc2 deficient mice, alcoholic

steatohepatitis is delayed (131–135). But there are still some

contradictory studies that deny these observations.
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Therefore, further studies still need to be performed in

order to understand the mechanism.

• Gut leakiness is generated due to ethanol which affects the

tight junctions of intestinal cells, which leads to alterations

of gut permeability. Increased acetaldehyde concentrations

brought on by bacterial alcohol dehydrogenase activity

causes leaky gut (136). Tight junctions and adherent

junction protein’s integrity mainly depend on protein

phosphorylation and dephosphorylation. Many proteins

are involved in tight junction integrity. Acetaldehyde is

one of the major effective molecules that rearranges the

components of tight junction proteins. Due to increase in

acetaldehyde, tyrosine phosphorylation of ZO-1, E cadherin

also increases. This phosphorylation activity can be

attenuated via protein tyrosine phosphatase activity which

is hindered because of the increased concentration of

acetaldehyde (137, 138). Further endotoxins trigger the

dysregulation of tight junction proteins by activating

NFkB, TNF-a mediated damage, and the downregulation

of ZO-1 (139, 140).

• Zinc is a trace element that helps to maintain cell

homeostasis, detoxification, antioxidant defense, and in

gene regulation. Zinc acts as a nutraceutical substance to

maintain the barrier function of the epithelium (141). Zinc

deficiency is another factor for gut permeability by

disassembling tight junction proteins (142), and, due to

zinc deficiency, antioxidant mechanisms also get disrupted

and inflammatory response gets activated (143–146). It is

also associated with hepatic nuclear factor 4a (HNF4a)
activity and causes damage to lipid metabolism by

dysregulating PPARa (147–149). Zinc helps to maintain

the intestinal barrier integrity and regeneration of impaired

epithelium. It helps in invading molecular ions and

pathogens by occluding proteolysis and occluding

transcription. By barrier disfunction, neutrophil

infiltration will be carried out and mucosal inflammation

will be carried away (150, 151).

• Reg3 gene encodes a number of regenerating islet-derived

genes which show antimicrobial and bactericidal activity

(109, 152, 153). This family of genes plays an important role

in maintaining gut homeostasis and acts as an antimicrobial

defense mechanism (154, 155). Chronic ethanol feeding

reduces the expression of Reg3 in the intestine (156–158).

This compromised mechanism further contributes to

disease progression.
There are still different mechanisms which need to be

uncovered and found to understand the mechanisms behind

disease progression so that some therapeutic targets can be

generated which can help in disease amelioration. For instance,

Reg3 protein genes have antimicrobial and bactericidal activity and

are connected to the MYD88 pathway but the cell signaling behind

these still needs to be explored (159). Further, gut dysbiosis due to

ethanol dysregulates indole 2 acetic acid (IAA), type 3 innate

lymphoid cells, and aryl hydrocarbon receptors (AHR), and

causes an increase in inflammation (156).
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5.3 Inflammation due to gut dysbiosis

As gut dysbiosis takes place, endotoxin and other material from

the gut first enter the liver via the portal vein. In normal conditions,

liver sinusoidal endothelial cells (LSEC) help to maintain

homeostasis by removing toxicants, viruses, waste products, and

lipopolysaccharide (LPS). They also play a key role in maintaining

quiescent hepatic stellate cell conditions. But in adverse conditions,

they convert to their proinflammatory phenotype and further also

help in activating quiescent hepatic stellate cells. LSEC produce

proinflammatory cytokines like TNF-a, MCP-1, and macrophage

inflammatory protein -1 (MIP-1). They also generate immune

response and activate Kupffer cells and HSC.

Hepatic stellate cell activation is a significant feature in the

progression of alcoholic liver disease. These cells, known for their

role in lipid storage, particularly retinoic acid (Vitamin A), are

impacted by increased alcohol intake. The activity of CYP2E1

interferes with retinyl ester formation and disrupts the balance of

the extracellular matrix (160, 161). Furthermore, bacterial

lipopolysaccharides (LPS) and endotoxins not only activate

Kupffer cells but also stimulate hepatic stellate cells (162, 163).

This activation triggers the MyD88-dependent pathway, leading to

the production of inflammatory cytokines and transforming growth

factor b (164). Activated Kupffer cells produce interferon regulatory

factors, which in turn activate quiescent hepatic stellate cells,

transforming them into myofibroblasts (165). Pit cells, also

referred to as natural killer (NK) cells, normally exhibit

antifibrotic and anti-inflammatory activities. However, in diseased

conditions, their functionality is compromised, leading to an

inability to carry out their intended functions (114). Additionally,

their cytotoxicity towards activated hepatic stellate cells is reduced

due to changes in their surface ligands and the accumulation of

higher levels of TGF-b (166).

The interaction between the gut and liver plays an essential role.

Liver residential macrophages- Kupffer cells play a significant role.

There are two types of Kupffer cells, M1 and M2, and they switch

from M2 to M1 as per immunogenic conditions. M1 is activated

because of bacterial products like lipopolysaccharides (LPS) and

produces proinflammatory molecules. The moment when M1 is

activated, M2 macrophages, which are mainly known for anti-

inflammatory activity, are suppressed (167, 168). As mentioned

earlier, ethanol and its byproducts create gut dysbiosis, causing

endotoxemia. As the release of LPS endotoxins increase, they can

enter the blood circulation system and hence can travel to many

organs. It can also cross the blood–brain barrier and liver

parenchymal layer, causing maximum damage. Endotoxins travel

through the portal vein and enter the liver. Due to LPS, liver Kupffer

cells are activated via pathogen-associated molecular patterns

(PAMPs); Tall like receptor (TLR4). LPS-binding protein (LPB)

helps LPS to translocate and bind to CD14. It further facilitates

binding to the TLR4/MD2 complex. These endotoxins or LPS bind

to TLR4 in order to support MD2 and CD4+. This complex further

targets two major mechanisms. The reason behind the triggering of

specific mechanisms is still a gray area. Majorly, the MyD88 and

TRIF pathways are activated. Both the pathways produce different
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types of inflammatory molecules and further cause more liver injury

(169–173). Kupffer cell activation mechanisms are well known and

have been extensively studied, but the activation resulting from

fungal expression is not as well investigated. The C-type lectin-like

receptor (CLEC7A) on Kupffer cells has the ability to bind to 1-3b
glucan, which is present on the fungal cell wall. Upon activation,

Kupffer cells produce IL-1b (174).
6 Treatment for alcoholic liver disease

Alcohol damages not only the liver but also affects other organs

and disrupts their physiological mechanisms. If the right abstinence

conditions, diet, and healthy lifestyle are adopted, ALD can be

treated in its early stages and reversed. There are some targeted

drugs that are being observed in clinical trials. S-adenosyl

methionine and granulocyte colony stimulation factor drugs

produced average results in clinical phase 2 trials (175).

Furthermore, there are other pharmaceutical agents are being

studied clinically and, from them, metadoxine completed a phase

IV trial and produced effective results for severe alcoholic hepatitis

(176). There are several other steroid-like corticosteroid-based

treatments available, but if positive results are not observed then

they are discontinued. Other anti-inflammatory treatments, such as

pentoxifylline (15), antioxidant treatments, like SOD, and natural

antioxidant treatments, like silymarin (33), are also available.

Research is ongoing for probiotics (177–179) and synbiotics (180)

as well. VSL#3 is in clinical trials (Clinical.Trail.gov identifier no.

NCT05007470). In the end stage of liver disease, liver

transplantation is the only option and even after liver

transplantation, proper lifestyle and diet changes should

be maintained.
6.1 Nanoparticles and their use as a
therapeutic agent

Though there are various treatments available, none are FDA

approved and have some drawbacks. To minimalize the drawbacks,

nanoparticles are used. There are various type of nanoparticle and

nano-formulations are used to check against different types of liver

disease, targeting the same mechanism involved in ALD. The use of

nanoparticles for ALD should be studied more. Some of the

research done on various liver diseases and nano-formulations are

mentioned in Table 1. There are several bare nanoparticles used to

treat liver disease mentioned in Table 2.
7 Conclusion

Excessive alcohol consumption is a lifestyle-related issue that

poses significant harm to various organs, with the liver being one of

the most affected. It disrupts the balance of reactive oxygen species

(ROS) and antioxidant mechanisms, leading to an imbalance in

liver homeostasis. Alcohol also contributes to gut dysbiosis, further
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TABLE 1 Nano-formulations and their role in liver disease.

mechanism Disease relevant Reference
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(181)
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Human study (placebo-
controlled clinical trial)
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fibrotic activity CCl4-induced hepatic fibrosis (184)
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, and enhanced oral delivery.
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marker enzyme and collagen levels. CCl4-induced hepatic fibrosis.
Toxicity study on zebra fish
embryos
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bility, stability, intestinal absorption, and NAFLD (methionine choline
diet)

(187)

and NrF2 and decreased MDA (reduced
s and proinflammatory cytokines)

Paracetamol intoxication in
liver

(188)

xO1 signaling pathway.
atic insulin sensitivity, anti-oxidant, and lipid

Non alcoholic steatohepatitis
(NASH) and diabetic rat
model
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ic oxidative stress, increased PPAR-a mediated
ation, and increased adipose tissue lipolysis

NASH/ALD mice model (190)

operties, free radical scavenging properties Dichlorvos-induced hepatic
toxicity in adult male Wistar
rats
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ression of phase II enzyme, antioxidant
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Dacarbazine-induced hepatic
toxicity

(192)

A
g
h
ara

e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
3
.12

0
5
8
2
1

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Sr
no.

Particle for-
mulation

Original drawback Nano-formulation Targeting

1 Rapamycin Water insoluble mPEG-PLGA Decrease trigly
mediated lipid
oxidation

2 Resveratrol Water insoluble and Poor intestinal
metabolism

PLGA Alleviated lipo
proliferation c

3 Curcumin Water insoluble Nano curcumin

4 Silymarin Water insoluble and low bootability Gold nanoparticle Enhanced anti

5 Silymarin Water insoluble, low oral bioavailability, low
membrane permeability, and low bootability

Chitosan-lipid polymer hybrid Higher uptake
lowering effect

6 Phyllanthin Low water solubility PLGA Reduced liver

7 Naringenin Poor water solubility, low oral bioavailability Nanostructured lipid carrier Increased solu
bioavailability

8 Roselle Seed Oil
(Hibiscus sabdariffa
L.)

Poor water solubility Nanoemulsion using Tween 80 and
Polyethylene glyco (PEG).

Increased GSH
oxidative stres

9 Luteolin Low water soluble and low bioavailability Zinc oxide nanoparticle P13K/AKT/Fo
Improved hep
lowering effect

10 SOD1 – Cu/Zn Poly L lysine- polyethylene
glycol copolymer (Cu/Zn SOD PLL
PEG)

Reduced hepat
fatty acid oxid

11 CoEnzyme Q10 Lipid solubility, low bioavailability, and
higher dosage for oral administration

Coenzyme Q10 nanoparticle Antioxidant pr
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TABLE 2 Ameliorating effect of nanoparticles on liver disease.

Disease condition and
model

Reference

s NAFLD with fipronil insecticide on
male albino mice
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HeLa and HepG2 cells against H2O2-
mediated cell death
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ALD mice model (195)
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(197)

SIRT1 expression. NAFLD mice (198)
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ered TNFa, MDA, and total oxidative status (TOS). Histological
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NAFLD and CCl4-induced liver and
intestine damage
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In vivo CCl4-induced hepatic fibrosis
and cirrhosis
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Paracetamol-induced toxicity (204)

ing property Murine hepatic schistosomiasis (205)
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MAPK signaling pathways
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exacerbating the progression of the disease towards irreversible

stages. While several drugs have been developed for the treatment of

alcoholic liver disease (ALD), none have received FDA approval as

targeted therapies. There are numerous underlying mechanisms

involved in ALD, many of which remain unexplored. Recently,

researchers have shown interest in nanomedicine as a potential

targeted treatment approach. Nanoparticles are being investigated

for various chronic liver conditions due to their ability to minimize

side effects, deliver drugs specifically to the intended site, and

enhance the bioavailability of natural compounds. Some

nanoparticles have shown promising results by targeting the same

mechanisms involved in ALD. Although finding a targeted drug for

ALD is crucial, it is equally important to uncover other mechanisms

implicated in the progression of the disease.
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