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Activation of ryanodine-sensitive
calcium store drives
pseudo-allergic dermatitis via
Mas-related G protein-coupled
receptor X2 in mast cells

Zhao Wang †, Xi Zhao †, Hongmei Zhou, Delu Che, Xiaojie Du,
Dan Ye, Weihui Zeng*‡ and Songmei Geng*‡

Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
Mast cell (MC) activation is implicated in the pathogenesis of multiple

immunodysregulatory skin disorders. Activation of an IgE-independent

pseudo-allergic route has been recently found to be mainly mediated via Mas-

Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR)

regulates intracellular calcium liberation. Calcium mobilization is critical in the

regulation of MC functional programs. However, the role of RYR in MRGPRX2-

mediated pseudo-allergic skin reaction has not been fully addressed. To study

the role of RYR in vivo, we established a murine skin pseudo-allergic reaction

model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced

vascular permeability and neutrophil recruitment. Then, we confirmed the role

of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2

cells, RYR inhibitor pretreatment dampened MC degranulation (detected by b-
hexosaminidase retlease), calcium mobilization, IL-13, TNF-a, CCL-1, CCL-2
mRNA, and protein expression activated by MRGPRX2 ligands, namely,

compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80

by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and

RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown.

MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were

substantially inhibited by RYR3 knockdown, while RYR2 had less contribution.

Collectively, our finding suggests that RYR activation contributes to MRGPRX2-

triggered pseudo-allergic dermatitis, and provides a potential approach for

MRGPRX2-mediated disorders.
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1 Introduction

Skin hypersensitivity reaction is caused by skin exposure to

allergens. Mast cells are regarded as the primary cells that

contributes to this process (1–3). Mast cell activation is implicated in

a wide spectrum of dermatoses including chronic allergic contact

dermatitis and atopic dermatitis (4). Although mast cell activation

has been investigated for decades, the primary trigger is believed to be

IgE. However, not all patients respond to anti-IgE treatment (5, 6).

Moreover, MC secretagogues such as compound 48/80 (c48/80) and

neuropeptide substance P (SP) have been applied to induce

experimental itch in pseudo-allergic patients and MCs ex vivo for

decades (7, 8), which does not rely on the IgE-dependent route and was

termed pseudo-allergic reaction. Meanwhile, SP was positively

correlated with disease severity (9, 10). This indicates the existence of

an alternative pathway.

In recent years, Mas-related G protein-coupled receptor X2

(MRGPRX2) was identified to be expressed on skin mast cells and

basophils (mouse orthologue is MrgprB2) (11, 12). MRGPRX2

mediates a type of allergic reaction which resembles the symptom of

IgE-triggered hypersensitivity reactions (13). The finding of

MRGPRX2 explains the phenomenon that patients exhibited skin

allergic responses while serum IgE was not elevated. Although

MRGPRX2 is deeply mediated in multiple pseudo-allergic skin

reactions and is implicated in several skin diseases, the mechanism of

MRGPRX2-mediated MC activation is under investigation.

Calcium signaling is crucial for mast cell activation and is

implicated in both MC degranulation and the generation of

cytokines. Calcium activation patterns by MRGPRX2 and FcϵRI are
drastically diverse (14, 15). MRGPRX2-triggered calcium influx is

rapid, while FcϵRI-mediated calcium activation is relatively delayed.

Multiple calcium channels are expressed on human skin MC.

Intracellular and extracellular calcium synergistically regulate cellular

events, which are regulated by the activation of diverse calcium

channels (16). Intracellular calcium release comes from the activation

of calcium channels expressed on the sarco/endoplasmic reticulum and

mitochondria (16). Inositol 1,4,5-trisphosphate receptor (IP3R)

activation-induced intracellular calcium mobilization has been

confirmed in both FcϵRI- and MRGPRX2-mediated routes (17, 18).

Ryanodine receptor (RYR) is one of the primary intracellular

calcium release channels apart from IP3R. RYR is known for

regulating the contraction of muscles and widely expresses in the

sarco/endoplasmic reticulum (19, 20). Ryanodine is a plant

component, which has high affinity to RYR. It has divergent roles

depending on the concentration, and nanomole concentrations activate

RYR by holding it in an open subconductance state, while a higher

concentration inhibits the channel (21). Previous publications

employed ryanodine as an intracellular depletor (22, 23). With the

application of RYR inhibitor, namely, dantrolene, RYR can be more

specifically targeted (24). In rat peritoneal mast cells, dantrolene

inhibited calcium mobilization and histamine release activated by

FcϵRI aggregation (25). However, it remains unknown if the

activation of MRGPRX2 triggered functional regulation of MC relies

on RYR-sensitive calcium signals. Thus, in the present study, we aimed
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to elucidate the mechanism of calcium signaling by RYR activation,

which is elicited by MRGPRX2 activation.
2 Materials and methods

2.1 Mice

C57BL/6 mice (8–10 weeks of age, weighing 20–25 g, male and

female) were obtained from the Laboratory Animal Center of Xi’an

Jiaotong University. Animal experiments were approved by the

Ethics Committee of the Second Affiliated Hospital of Xi’an

Jiaotong University (protocol code 2022125, 7 June 2022).

Animals were housed under standard conditions (20–25°C,

relative humidity 40%, light and dark cycle 12 h) with free access

to water and standard dry feed. Mice were randomly divided into a

control group and an experimental group.
2.2 Murine Evans blue dye
extravasation model

C57BL/6 mice (8–10 weeks of age, weighing 20–25 g, male and

female) were intraperitoneally injected with 50 µl of dantrolene (10mg/

kg in DMSO) or vehicle for 2 consecutive days. Then, each mouse was

injected intravenously with 0.2 ml of 0.4% Evans blue dye in saline.

After 1 h, mice were anesthetized with an intraperitoneal injection of

80mg/kg 1% pelltobarbitalum natricum. The thickness of the ear was

determined by a vernier caliper. Then, an intradermal injection of SP

(50 µM in 20 µl saline) was performed randomly into one side of the

ear, and the vehicle (saline) was intradermally injected into the other.

After 30 min, the mice were euthanized, ear thickness was measured

again, and pictures of the ears were taken. Ear tissues were collected,

dried for 24 h at 60°C, and weighed. Tissues were immersed and

minced in 300 ml of acetone-saline (7:3). Following by 30 min

ultrasonication, tissues were centrifuged for 20min at 3,000 rpm.

Two-hundred-microliter aliquots of the supernatant were seeded into

96-well plates, and the optical density (OD) was read at 620 nm.
2.3 In vivo murine skin pseudo-allergic
reaction model

C57BL/6 mice (8–10 weeks of age, weighing 20–25 g, male and

female) were intraperitoneally injected with 50 µl of dantrolene (10mg/

kg in DMSO) or saline of the same volume for 2 consecutive days. SP

(50 µl of 200 µM SP in saline) or vehicle were intradermally injected

into one side of the ear pinna to activate MrgprB2 (murine orthologue

of humanMRGPRX2). Three hours later, all mice were euthanized and

ears were cut and digested with 1.5 mg/ml collagenase type IV (Gibco,

Waltham, USA) with DNase I at 10 mg/ml (Roche, Basel, Switzerland)

at 37°C in a shaking incubator for 75 min. Cells were filtrated and

centrifuged at 400×g for 10 min at 4°C. Pellet-containing cells were

processed for flow cytometric analysis.
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2.4 Flow cytometry

Cells were incubated with CD11b-PE (Clone:M1/70) and Ly6G-

APC (Clone: RB6-8C5) for 45 min, all from liankebio (Hangzhou,

China). Live versus dead cells were stained using Zombie Yellow™

Fixable viability dye (BioLegend, CA). The data were acquired with

a BD FACSCelesta flow cytometer (San Jose, CA) and analyzed by

FlowJo software version 10.7.2 (Tree Star Inc., Ashland, OR).

Neutrophils were gated as CD11b+Ly6G+ live cells.
2.5 Cell line cultures

The human mast cell Laboratory Allergic Disease 2 (LAD2) cell

line was kindly provided by A. Kirshenbaum and D. Metcalfe (NIH,

USA). LAD2 cells were cultured with Basal Iscove’s medium (Procell

Life Science & Technology Co., Ltd., Wuhan, China) supplemented

with 10% FCS (VivaCell, Shanghai, China) at 37°C with 5% CO2.

Hemidepletion was performed once a week and supplements of SCF

(at 100 ng/ml) (SinoBiological, Beijing, China) and IL-4 (at 20 ng/ml)

(Sigma-Aldrich, California, USA) were provided once a week.
2.6 Human skin mast cell isolation

Foreskins were obtained from circumcisions with the written

informed consent of the patients or their legal guardians. The study

was approved by the Ethics Committee of the Second Affiliated

Hospital of Xi’an Jiaotong University (protocol code 2022125, 7

June 2022) and experiments were conducted according to the

Declaration of Helsinki Principles. Briefly, skin samples were cut

into strips and digested with a 3.5 U/ml dispase (Sigma-Aldrich,

California, USA) at 4°C overnight to remove the epidermis. Then,

the dermis was chopped and digested with 1.5 mg/ml collagenase

type 1 (Gibco, Waltham, USA) and 0.75 mg/ml hyaluronidase type

1-S (Sigma-Aldrich, California, USA) with DNase I at 10 mg/ml

(Roche, Basel, Switzerland) at 37°C in a shaking incubator for

75 min. Cells were filtrated and labeled with anti-human c-Kit

magnetic microbeads to positively select MC by cell preparation

columns (both fromMiltenyi Biotec, Bergisch Gladbach, Germany).

Purified skin MCs were cultured in Basal Iscove’s medium with 10%

FCS at the concentration of 5 × 105/ml, supplemented with SCF (at

100 ng/ml) and IL-4 (at 20 ng/ml) twice a week.
2.7 b-Hexosaminidase release assay

Cells (5 × 104) treated with or without RYR inhibitor (dantrolene,

100 µM, MedChemExpress, Monmouth Junction, USA) were

resuspended in 100 µl of PAG-CM buffer (Piperazine-N,N-bis[2-

ethanesulfonic acid]-Albumin-Glucose buffer containing 3 mM

CaCl2 and 1.5 mM MgCl2, pH 7.4) and stimulated with vehicle

(spontaneous release), compound 48/80 (c48/80) (5 µg/ml, Sigma-

Aldrich, St. Louis, Missouri) or substance P (SP) (30 mM,
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were centrifuged and supernatants (SNs) were collected and the

pelleted MCs were rapidly frozen with 100 ml of H2O. After

thawing, 50 ml of SNs or cell lysates were incubated with the same

volume of 4-methyl umbelliferyl-N-acetyl-beta-D-glucosaminide

(Sigma-Aldrich, Munich, Germany) solution at 5 mM in citrate

buffer (pH 4.5) for 60 min at 37°C. Sodium carbonate buffer (100

mM; pH 10.7) was added to stop the reaction. Fluorescence intensity

was determined at excitation at 355 nm and emission wavelength of

460 nm. % b‐hexosaminidase release = [fluorescence intensity SN/

(fluorescence intensity SN + fluorescence intensity lysate)] × 100. The

net release was calculated by subtracting spontaneous release.
2.8 Intracellular calcium mobilization assay

Cells (1 × 105 cells/sample) were loaded with 2 mM Fluo-4 AM

(Beyotime, Shanghai, China) with 0.02% Pluronic F-127 (Beyotime,

Shanghai, China) for 45 min at 37°C in the dark, followed by de-

esterification for an additional 15 min at room temperature. Then, the

cells were washed and resuspended with PAG-CM buffer. For assay

with inhibitor, cells were loaded with dantrolene (100 µM) for 15 min

before ligand stimulation. Calcium signals were determined using a

Fluorescence Spectrophotometer (BMG LABTECH, Ortenberg,

Germany) with an excitation wavelength of 494 nm and an emission

wavelength of 516 nm. The signal was recorded every 2 s for 2 min at

baseline, and additionally 5 min after stimulation.
2.9 RT-qPCR

Briefly, total RNA was isolated with RNA fast200 (Feijie, Shanghai,

China) and reverse‐transcribed with a SweScript All-in-One First-

Strand cDNA Synthesis SuperMix for qPCR (Servicebio, Wuhan,

China) as detailed by the manufacturer. PCR was carried out with the

2×Universal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan,

China). Primers were 5’-TTGCGGAGCAAGAGATTCCC and 5’-

GGCAGTGCCTCAGCATTTTT for CCL-1, 5’-CCCCAAGCA

GAAGTGGGTTC and 5’-TTGGGTTGTGGAGTGAGTGTT for

CCL-2, 5’-CTGGGCAGGTCTACTTTGGG and 5’-CTGGAGGCCC

CAGTTTGAAT for TNF-a, and 5’-CATCCGCTCCTCAATCCTCT

and 5’-GATGCTCCATACCATGCTGC for IL-13. The values were

normalized to the housekeeping genes b-actin, cyclophilin B, and

GAPDH. The primers were 5’-CTGGAACGGTGAAGGTGACA and

5’-AAGGACTTCCTCTAACAATGCA for b-actin, 5’-AAGATGT
CCCTGTGCCCTAC and 5’-ATGGCAAGCATGTGGTGTTT for

Cyclophilin B, and 5’-CCTCTGACTTCAACAGCGAC and 5’-

TTACTCCTTGGAGGCCATGTG for GAPDH. The 2−DDCT method

was used to calculate the relative expression levels of the target genes

against three housekeeping genes, and the mean expression level of the

target gene was calculated by dividing it against reference genes for

the analysis.
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2.10 ELISA

MCs were seeded at 1 × 106 cells/ml and treated with or without

dantrolene (100 µM) for 15 min and then the cells were stimulated

with vehicle (spontaneous release), compound 48/80 (c48/80) (5 µg/

ml), or substance P (SP) (30 mM) for 24 h. Then, supernatants were

collected for IL-13, TNF-a, CCL-1, and CCL-2 measurements.

ELISAs were performed according to the manufacturer’s

instructions (all from Mlbio, Shanghai, China).
2.11 siRNA-mediated knockdown in
LAD2 cells

MCs were plated at 1 × 106/ml and treated with 80 nM of RYR2-

and RYR3-targeting siRNA or non-targeting siRNA with RNAi-

Mate (at 1 mg/ml, GenePharma, Shanghai, China) for 48 h, and

employed for downstream analyses. The siRNA sequences were as

follows: RYR2 forward: 5’-GGCUCUAAUUAGAGGAAAUTT,

RYR2 reverse: 5’-AUUUCCUCUAAUUAGAGCCTT, RYR3

forward: 5’-GCAGAUCAACAUGCUGCUUTT, and RYR3

reverse: 5’-AAGCAGCAUGUUGAUCUGCTT.
2.12 Statistics

Statistical analyses were performed using PRISM 9.0 (GraphPad

Software, La Jolla, CA, USA). For the difference between two groups

with paired experimental design, comparisons were performed by the

t-test (when data were normally distributed) or theWilcoxonmatched-

pairs signed-rank test (when data were not normally distributed). For

the difference between two groups with unpaired experimental design,

the Mann–Whitney test was performed. For the difference between

more than two groups, comparisons were performed by the RM one-

way ANOVA with Dunnett’s multiple comparisons tests (when data

were normally distributed) or Friedman test with Dunn’s multiple

comparison test (when data were not normally distributed). When the

data were compared to a fixed number, differences between groups

were compared using the one-sample t-test (normally distributed) or

Wilcoxon signed-rank test (not normally distributed). p < 0.05 was

considered statistically significant.
3 Results

3.1 RYR inhibitor attenuates SP-induced
vascular permeability and immune cell
infiltration in the murine skin pseudo-
allergic reaction model

The mouse ortholog of MRGPRX2 is MrgprB2, which

resembles the activation pattern of human MRGPRX2 (11). To

verify if the activation of RYR leads to the vascular permeability by

MRGPRX2 activation, dantrolene was employed. Dantrolene is an
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We monitored Evans blue dye extravasation by intradermal

injection of SP in ear pinna. For mice that received dantrolene

intraperitoneally for 2 consecutive days, intradermal injection of SP

leads to less Evans blue dye extravasation than that in the control

group (Figures 1A, B). By measuring the thickness of the ear pinna,

which reflects the swelling of the skin, we found that SP injection

induced rapid ear swelling, yet dantrolene pre-treatment inhibited

the swelling induced by SP (Figure 1C). Furthermore, we quantified

skin immune cell infiltration by flow cytometric analysis.

Neutrophil was labeled as CD11+ Ly6G+ cells. SP intradermal

injection caused the recruitment of inflammatory cells in the ear

pinna. Dantrolene pretreatment inhibited SP-induced neutrophil

infiltration (Figures 1D, E).
3.2 RYR inhibitor perturbs MRGPRX2-
mediated LAD2 degranulation and
calcium mobilization

To study the role of RYR in MRGPRX2-mediated MC

activation, we detected b‐hexosaminidase release in a human MC

line, LAD2 cells, to assess MC degranulation. We found that

dantrolene significantly inhibited both c48/80 and SP-triggered

degranulation (Figures 2A, B). The inhibitory effect of dantrolene

on c48/80-triggered degranulation was further verified in human

skin-derived MCs (Supplementary Figure 1A).

To confirm if RYR activation regulates calciummobilization, we

detected calcium influx triggered by MRGPRX2 ligands after RYR

inhibitor pre-treatment. Calcium signaling activated by MRGPRX2

ligands (both c48/80 and SP) was significantly inhibited by

dantrolene (Figures 2C, D). Moreover, the baseline calcium signal

was also inhibited by dantrolene before treatment (Supplementary

Figure 2). Inhibited calcium mobilization by dantrolene was

replicated in human skin-derived MCs (Supplementary

Figure 1B). Thus, MRGPRX2-triggered degranulation and

calcium mobilization depend on the activation of RYR.
3.3 MRGPRX2 activation-induced cytokine
production relies on the activation of RYR

Apart from degranulation, cytokine production is regulated by

calcium signal in MCs (28–30). To further determine if RYR is

implicated in MRGPRX2-triggered cytokine and chemokine

generation, we detected IL-13, TNF-a, CCL-1, and CCL-2

expression. After the inhibition of RYR activity by dantrolene,

LAD2 cells were stimulated by MRGPRX2 ligands c48/80 and SP.

IL-13, TNF-a, CCL-1, and CCL-2 mRNA generation were

perturbed after the application of RYR inhibitor (Figure 3). We

also detected selected cytokine mRNA expression in human skin-

derived MCs triggered by c48/80, and decreased IL-13, TNF-a,
CCL-1, and CCL-2 mRNA were detected after dantrolene pre-

treatment (Supplementary Figure 1C). In accordance with mRNA
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data, all the cytokine/chemokine detected were downregulated by

RYR inhibitor at the protein level (Figure 4).
3.4 RYR3 is required in MRGPRX2-
mediated LAD2 cell activation, while RYR2
has variable contribution

To further verify the role of RYR in MRGPRX2-mediated MC

activation, we selectively silenced the expression of the RYR gene.

Three isoforms of RYRs have been identified (RYR1, RYR2, and

RYR3) (26). To select the RYR isoforms that potentially participate

in the functional regulation of LAD2 cells, we compared the

expression level of the transcripts based on the GEO dataset

(GSE216269) (31). From this dataset, the expression of

unstimulated LAD2 cells were selected for assessment; RYR2 and

RYR3 showed relatively higher expression (Supplementary

Figure 3A). The expression of candidate genes was further
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quantified by RT-qPCR in our study. In all three identified

isoforms, RYR3 had the highest expression, which was followed

by RYR2, and RYR1 was rarely expressed in LAD2 cells

(Supplementary Figure 3B). Thus, we selectively knocked down

the expression of RYR2 and RYR3, and both RYR2- and RYR3-

selective siRNAs resulted in the effective knockdown of their

respective targets (Supplementary Figures 3C, D).

Interference with RYR3 suppressed the degranulation by both

agonists employed, i.e., c48/80 and SP. RYR2 siRNA also decreased

the secretion of LAD2 cells, although it did not reach significance

(Figures 5A, B). In terms of calcium mobilization, RYR3-specific

siRNA decreased the calcium signal induced by both ligands

(Figures 5C, D). RYR2 only significantly inhibited SP-triggered

calcium influx; c48/80 had the tendency but did not

reach significance.

Then, we attempted to ascertain that MRGPRX2-mediated

cytokine generation relies on RYR activation in siRNA KD LAD2

cells. RYR3 downregulated IL-13, TNF-a, CCL-1, and CCL-2
D

A B

E

C

FIGURE 1

Dantrolene attenuates SP-induced in vivo murine skin anaphylaxis model. Dantrolene or saline was i.p. injected for 2 consecutive days, and then SP
(50 µM) or saline was intradermally injected into one side of the ear. (A–C) Vascular permeability was quantified by Evans blue extravasation, and the
thickness of the ear was determined by a vernier caliper (n = 6). (A) Representative photo of Evans blue extravasation in the murine skin anaphylaxis
model. (B) Quantification of Evans blue extravasation. (C) Ear tissue thickness after the injection of SP or saline. (D, E) Ear tissue was collected
and neutrophil infiltration (CD11b+ Ly6G+ live cells) was determined by flow cytometry (n = 5–7). (D) Representative flow cytometry images.
(E) Percentage of neutrophils in the live skin cell population. Data shown are mean ± SEM. Ctrl.: control, inh.: inhibitor. ns: not significant,
*p < 0.05, **p < 0.01.
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D

A B

C

FIGURE 2

RYR inhibitor perturbs MRGPRX2-mediated mast cell degranulation and calcium mobilization. LAD2 cells were treated with RYR inhibitor (dantrolene,
100 µM) for 15 min and then the cells were stimulated with c48/80 (5 µg/ml) or SP (30 µM). (A, B) b‐Hexosaminidase release and (C, D) calcium
mobilization was determined, respectively. The data are from 7 to 15 independent experiments. ns: not significant, Ctrl.: control, inh.: inhibitor.
**p < 0.01, ***p < 0.001, ****p < 0.0001.
A

B

FIGURE 3

MRGPRX2 activation-induced cytokine mRNA generation relies on the activation of RYR. Cells were preincubated with or without RYR inhibitor
(dantrolene, 100 µM) for 15 min and stimulated with (A) SP (60 µM) or (B) c48/80 (5 µg/ml). Cytokine mRNA was determined by RT-qPCR. The data
were normalized against the cell receiving no inhibitor and stimuli. Data shown are mean ± SEM of n = 7–11. inh.: inhibitor. *p < 0.05, **p < 0.01.
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mRNA synthesis triggered by c48/80 and SP. RYR2 siRNA also

downregulated all the cytokine genes detected, while only c48/80

stimulated CCL-1 and CCL-2 significantly decreased (Figure 6).
4 Discuss ion

MRGPRX2-mediated MC activation has drawn much attention

recently, due to its non-IgE-dependent feature. Moreover,

MRGPRX2-mediated MC activation is implicated in multiple

dermatoses, e.g., chronic spontaneous urticaria and atopic

dermatitis (1, 32, 33). In the present study, we demonstrate that

RYR-sensitive calcium signaling is activated after MRGPRX2

activation. MRGPRX2-mediated MC granule secretion, calcium

mobilization, and cytokine generation are inhibited by both RYR

inhibitor and siRNA-mediated KD. MRGPRX2 activation is also

inhibited by an RYR inhibitor in an in vivo mouse skin

anaphylaxis model.

The induction of calcium signaling after antigen-specific IgE

triggering in mast cells has been noticed for a long time. It has been

recognized that the depletion of intracellular calcium stores led to

the entry of extracellular calcium (34, 35). Both the activation of

intracellular calcium stores and cell membrane-expressing calcium

channels contribute to mast cell degranulation and cytokine
Frontiers in Immunology 07
production (18, 28). The classical IgE-induced calcium signal was

recognized as the production of inositol 1,4,5-trisphosphate (IP3)

by phospholipase Cg (36), and the IP3/thapsigargin-sensitive pool

from the endoplasmic reticulum (ER) induced the depletion of the

intracellular calcium store. Depletion of this pool leads to the influx

of external calcium by activating cell membrane expressing calcium

channels. The calcium activation pattern was different in FcϵRI
versus MRGPRX2. MRGPRX2-triggered calcium influx is quicker

than that triggered by FcϵRI aggregation (14). This indicates that

the calcium activation model in one channel cannot be applied to

another. Considering that the intracellular calcium store is the first

responder in the calcium signaling events, the ER-expressing

calcium signal might be more crucial in MRGPRX2-related MC

functional regulation than that in FcϵRI-mediated mast

cell activation.

Intracellular calcium stores in MCs were widely believed to be

activated by the IP3 receptor (IP3R) (16, 37, 38). The role of RYR,

which is also an ER-expressing calcium channel, was seldom

reported. We found that the calcium influx triggered by

MRGPRX2 can be effectively inhibited by an RYR inhibitor,

namely, dantrolene. The inhibition was consistent across two

MRGPRX2 ligands applied, i.e., c48/80 and SP. Although

dantrolene can effectively inhibit calcium influx activated by

MRGPRX2, the inhibition was not complete. As MRGPRX2
A

B

FIGURE 4

MRGPRX2-activated cytokine protein release is inhibited by RYR inhibitor. LAD2 cells were preincubated with or without RYR inhibitor (dantrolene,
100 µM) for 15 min and stimulated with (A) SP (60 µM) or (B) c48/80 (5 µg/ml) for 24 h. Supernatants were collected and IL-13, TNF-a, CCL-1, and
CCL-2 protein release was quantified by ELISA. Data shown are mean ± SEM of n = 8–12. Ctrl.: control, inh.: inhibitor. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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activates multiple calcium channels, the utilization of other calcium

channels also contributes to intracellular calcium oscillation, e.g.,

the activation of IP3R, STIM1, and Orai channels (28, 39). MC

degranulation largely depends on calcium signaling, as we have

previously reported with IP3R and Orai-dependent SOCE (40).

Moreover, the baseline calcium level was dampened after pre-

incubation with an RYR inhibitor (Supplementary Figure 2).

Intracellular calcium level normally remains at very low

concentrations, which is sufficient for the regulation of numerous

basic cellular processes including proliferation, differentiation, and

cellular motility (41). The decrease of intracellular calcium level at

the resting state indicates that the RYR channel is involved in the

maintenance of fundamental cellular function. RYR can be activated

by multiple ways, including interaction with L-type calcium channel

(dihydropyridine receptor) and activation of various ions (calcium

and magnesium) and proteins [protein kinase A, FK506 binding

proteins, calmodulin, and calcium/calmodulin-dependent protein

kinase II (CaMKII)] (21). L-type calcium channel, which is a store-

operated calcium channel (SOC), has been reported to mediate

FcϵRI aggregation-induced MC activation (42). Moreover, MC

activation by both FcϵRI aggregation and MRGPRX2 activates

calcium/calmodulin (43–45).
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Previous studies have demonstrated that MC degranulation is

regulated by calcium signals. The role of ER-expressing IP3R,

STIM1, Orai channels, and TRP channels has been profoundly

illuminated in multiple studies (16, 28, 39). The receptors that

cannot activate calcium influx cannot trigger degranulation, e.g.,

ST2/IL-33R, TLR4, or TSLPR (46–49). We found that the RYR

inhibitor downregulated MRGPRX2-triggered degranulation.

Partial inhibition of MRGPRX2-mediated MC degranulation by

RYR inhibitor is consistent with the calcium mobilization data,

indicating that the calcium signal might be compensated by other

calcium channels.

It is well known that calcium signaling is essential for the

generation of multiple proinflammatory cytokines (16, 50). MCs are

capable of generating multiple cytokines. Based on our previous

studies (51), we selected several cytokine genes to detect in the

present study. CCL-1, CCL-2, TNF-a, and IL-13 mRNA and

proteins were downregulated by MRGPRX2 activation.

Downstream of calcium signaling, multiple signaling pathways

including MAPKs and calcineurin-NFAT signaling pathways are

activated (40, 52). CCL-1, CCL-2, TNF-a, and IL-13 were all

regulated by TAK1, which is the kinase downstream of

calmodulin (53, 54). The role of RYR in the generation of the
A

B D

C

FIGURE 5

RYR3 contributes to the degranulation and calcium mobilization activated by MRGPRX2. LAD2 cells were treated with RYR2- and RYR3-specific
siRNA or non-target siRNA, respectively, then (A, B) b‐hexosaminidase release and (C, D) calcium mobilization was detected. The data are from
seven to nine independent experiments. ns: not significant, *p < 0.05.
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cytokines listed was further demonstrated by the knockdown of

individual RYR isoforms. Herein, we confirmed the participation of

RYR3 in this process.

Finally, we used the mouse cutaneous anaphylaxis model to verify

the role of RYR in Mrgprb2 activation in vivo. MC degranulation is

associated with increased vascular permeability, which leads to

vasodilation and vascular leakage. Decreased skin edema and

vascular leakage triggered by SP with dantrolene pretreatment

demonstrated the role of RYR in MRGPRX2-mediated skin allergy.

In terms of immune cell recruitment, which represents the late-phase

response following MC activation, the curtailed neutrophil

recruitment represents the inhibited inflammation by RYR

inhibition. Interestingly, in ex vivo studies, the reduction rate of b‐
hexosaminidase release is less than the vascular leakage and immune

cell infiltration in in vivo studies. Apart from the reason that to trigger

a certain symptom needs adequate amount of stimulator, the release
Frontiers in Immunology 09
of the MC granule could be under the triggering threshold after the

inhibition by dantrolene. Moreover, RYR expresses on multiple cell

types, e.g., keratinocyte and neutrophils (55, 56). Pre-treatment of

dantrolene can also inhibit the activation of RYR on other cells; thus,

the inhibition in animal studies was higher than that in ex

vivo experiments.

In conclusion, MRGRPX2 activation regulates pseudo-allergic

reactions, and emerging compounds including FDA-approved

drugs were identified as MRGPRX2 ligands. The role of

MRGPRX2 is insinuated in the pathogenesis of urticaria, atopic

dermatitis, and psoriasis. We identified RYR as a calcium channel,

which is activated by MRGPRX2. The activation leads to MC

degranulation and the generation of CCL-1, CCL-2, TNF-a, and
IL-13. The ex vivo studies were verified by RYR isoform

knockdown. Moreover, the pivotal role of RYR3 was identified.

With the cutaneous anaphylaxis mouse model, we found that
A B

C

FIGURE 6

Cytokine mRNA generation via MRGPRX2 relies predominantly on the activation of RYR3. LAD2 cells were treated with RYR2- and RYR3-specific
siRNA or non-target siRNA, then stimulated with (A) c48/80 (5 µg/ml) or (B) SP (60 µM). TNF-a, CCL-1, and CCL-2 mRNA expression were
determined by RT-qPCR. The data were normalized against the cell receiving no inhibitor and stimuli. Data shown are mean ± SEM of n = 7. ns: not
significant, *p < 0.05, **p < 0.01, ***p < 0.001, **** p<0.0001..
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MRGPRX2-induced vascular permeability and immune cell

recruitment were impaired by dantrolene. The present study

suggests the potential novel therapeutic approaches targeting RYR

for the treatment of allergic diseases.
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