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The development of cachexia in the setting of cancer or other chronic diseases is

a significant detriment for patients. Cachexia is associated with a decreased

ability to tolerate therapies, reduction in ambulation, reduced quality of life, and

increased mortality. Cachexia appears intricately linked to the activation of the

acute phase response and is a drain on metabolic resources. Work has begun to

focus on the important inflammatory factors associated with the acute phase

response and their role in the immune activation of cachexia. Furthermore, data

supporting the liver, lung, skeletal muscle, and tumor as all playing a role in

activation of the acute phase are emerging. Although the acute phase is

increasingly being recognized as being involved in cachexia, work in

understanding underlying mechanisms of cachexia associated with the acute

phase response remains an active area of investigation and still lack a holistic

understanding and a clear causal link. Studies to date are largely correlative in

nature, nonetheless suggesting the possibility for a role for various acute phase

reactants. Herein, we examine the current literature regarding the acute phase

response proteins, the evidence these proteins play in the promotion and

exacerbation of cachexia, and current evidence of a therapeutic potential

for patients.
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GRAPHICAL ABSTRACT

The acute phase response in cachexia.
Introduction

Cachexia is a devastating process that accompanies chronic

inflammatory illnesses such as cancer, sepsis, chronic obstructive

pulmonary disease (COPD), chronic heart failure (CHF),

rheumatoid arthritis (RA), and chronic kidney disease (CKD.)

Clinically, cachexia is diagnosed as a weight loss greater than 5%,

weight loss greater than 2% in individuals with BMI < 20 kg/m2, or

sarcopenia (1). Cachexia is classically described in cancer and is

prevalent in up to 80% of cancer patients, however cachexia also

exacerbates chronic illness such as COPD with prevalence as high as

15% of patients (2). Predictive scores have been developed which

utilize serum inflammatory markers, nutritional parameters, weight

loss, and muscular evaluation to identify those with cachexia and

those who are at risk (3–5).

Cachexia is driven by an inflammatory response involving

cross-talk between many organs throughout the body. The acute

phase response (APR) involves changes in plasma protein

concentrations as well as behavioral, psychological, biochemical,

and nutritional changes in the organism. A plasma protein whose

concentration increases or decreases by at least 25% in response to

inflammation is defined as an acute phase protein (6). These

proteins are created in response to inflammation as a result of

tissue insult and function to restore tissue homeostasis and repair,

including regulating cell proliferation, scar formation, and immune

defensive functions. Acute phase protein synthesis is initiated by
Frontiers in Immunology 02
cytokine signaling, mainly through interleukin-6 (IL-6), IL-1, TNF

Alpha (TNFa), and Interferon Gamma (IFNg). Previous studies

have extensively described the acute phase proteins (APP) produced

by the liver. APP it is divided into positive acute phase proteins and

negative acute phase proteins. Positive APPs levels increase during

the APR whereas negative APPs levels decrease (6–8). Overall, APP

concentrations are affected during cancer (Table 1) as well as many

other inflammatory states. To date, less is known how these factors

regulate metabolism, muscle and fat homeostasis.

The APR has been shown to increase the patient’s resting

energy expenditure, a feature of elevated catabolism (159). This

supports the assertion APPs have a molecular role in the

progression of cancer and chronic illness related cachexia. The

liver is not the only organ capable of synthesizing proteins in the

APR (160), and understanding the APR relationship to cachexia

remains poorly defined. Therefore, we sought to review current

understanding of how the APR promotes cachexia. Currently, we

could identify no studies demonstrating the in vivomanipulation of

APP activation and improvement or other effects on the cachectic

response. In our review of the literature, we sought a comprehensive

list of acute phase proteins. We used the well-established list of

acute phase proteins described by Gabay and Kushner (6) as well as

our expert judgement as the basis for our literature search and

review. Through our expert consensus we have identified CD-14

and lipocalin as APP of interest and included these in our

examination. Herein, we review our current understanding of the
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TABLE 1 Acute phase reactant proteins produced by the liver, lung, skeletal muscle, and tumor microenvironment.

Acute Phase
Protein Name

Liver
Synthesis

Lung
Synthesis

Skeletal
Muscle

Synthesis

Tumor and Tumor
Microenvironment

Synthesis

Expression change
correlative to

cachexia

Demonstrated
role In

Cachexia

Albumin G,P
R-G (9)
M-P (10)

H-G (11)
H-P (3, 4, 12)

No

Alpha 1 Acid
Glycoprotein

G,P
M-G (13)
H-P (14)

H-P (14)
No

Alpha 1
Antichymotrypsin

G,P H-P (15)
No

Alpha 1
Antitrypsin

G,P H,M-P (16) H-P (17) H-G (18)
No

Alpha 1 Protease
Inhibitor

G,P
H-G (19, 20)
H-P (19, 20)

H-P (21)
No

Alpha 2 HS
Glycoprotein

G,P GP-G (22)
H-G (23)
H-P (23)

No

Alpha Fetal Protein H-P (24–26) No

Angiotensinogen G,P
R-G (27, 28)
R-P (29)

M-G (30)
M-P (31)

H-P (29, 32)
No

C3 G,P
H,M-G (33)
H-P (34)

H-G (35)
H-P (35)

H,M-G (36, 37)
H-G (38)
H,M-P (36)
H-P (38)
M-P (39)

M-G (40)
M-P (40)
H-P (41)

No

CD14 G,P
M-G (42, 43)
H-G (44)
M-P (42)

H-G (44)
H-G (45)
H,M-P (46)

No

Ceruloplasmin G,P
M-G (47)
R-G (48)
R-P (48)

M-G (47)
H-G (49)
M-P (47)
H-P (49)

No

CRP G,P
H-G (50, 51)
H-P (50, 51)

H-P (52, 53)
No

Factor XII G,P
H-G (54)
H-P (54)

No

Ferritin G,P
H-G (55, 56)
H-P (55–57)

R-G (58)
M-G (59)
M-P (59)

H-P (60, 61)
M-G (62, 63)
H,M-P (64)
H-P (65)

No

Fibrinogen G,P

F-G (66)
H-G (67)
F,H-P (66)
H-P (67)

M-P (68)

H-G (69, 70)
M-G (71)

H-P (69, 70)
M-P (71)

M-G (68)
M-P (68)

Yes (68)

Fibronectin G,P
H-G (72, 73)
H-P (72, 73)

R-P (74)
M-P (75)

H-P (76)
M-P (77)
H-P (78)

No

Granulocyte
Colony Stimulating

Factor
G,P

H-G (79)
H-P (80)

M-G (81, 82)

H-G (83)
M-G (84)
D-G (85)

H-P (86, 87)

No

Haptoglobin G,P
H-G (88)
H-P (88)

M-G (40)
M-P (40, 89)

H-G (26, 88, 90)
H-P (26, 88, 90)

M-G (40)
M-P (40, 68, 91)

H-P (92)

No

Hemopexin G,P
R-G (93)
R-P (93)
M-P (94)

M-P (95) H-P (96)
M-G (68)

M-P (40, 97)

No

(Continued)
F
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TABLE 1 Continued

Acute Phase
Protein Name

Liver
Synthesis

Lung
Synthesis

Skeletal
Muscle

Synthesis

Tumor and Tumor
Microenvironment

Synthesis

Expression change
correlative to

cachexia

Demonstrated
role In

Cachexia

Insulin Like
Growth Factor

G,P
H-G (98, 99)
H-P (98, 99)

H-P (100, 101)
M-P (102)

M-G (103)
M-P (103)

No

Inter Alpha
Trypsin Inhibitors

G,P H-P (104)
No

Interleukin 1
Receptor
Antagonist

G,P
H-G (105)
H-P (105,

106)
H-P (107)

M-G (108)
M-P (108, 109)

M-P (110)
No

Lipocalin G,P
H-G (111)
M-G (47)

M-G (112)
M-P (112)

H-G (111, 113, 114)
M-G (115)

H-P (111, 114)
M-P (115)

M-G (68)
M-P (116)

Yes (116)

Lipopolysaccharide
Binding Protein

G,P H-P (117, 118)
No

Pancreatic
Secretory Trypsin

Inhibitor
G,P H-P (119)

No

Plasminogen G,P No

Plasminogen
Activator Inhibitor

1
G,P

H-G (120)
M-G (121)
H-P (122)
M-P (121)

H-G (123)
H,R-G (124)
H-P (123)

H-P (125)
R-P (126)
M-P (127)

No

Protein S G,P M-P (128) H-P (129) No

Retinol Binding
Protein 4

G,P R-G (130) R-G (130)
H-P (131, 132)
M-P (133)

No

Secreted
Phospholipase A2

G,P

H-G (134,
135)

H-P (134,
135)

H-G (136)
H-P (137)

H-P (109, 138)

No

Serum Amyloid A G,P
H-G (139)
Rb-G (140)
H-P (139)

H,M-G (141)
H,M-P (141)

H-G (142)
H-P (142, 143)

M-G (68)
M-P (68)

No

Thyroxine Binding
Globulin

G,P H-P (144)
No

Tissue
Plasminogen
Activator

G,P
No

Transferrin G,P

B,H,M-G
(145)

R-G (146)
R-P (146)

M-P (147)
R-P (148)

No

Transthyretin G,P
R-G (130)
M-G (149)
M-P (150)

H-G (151)
H-P (151)
M-P (152)

No

Urokinase
H-G (123)
H-P (123)
M-P (153)

H-G (154)
H-P (155)

No

Vitronectin G,P M-G (156) M-G (156)
H-G (157, 158)
H-P (157, 158)

No
F
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The acute phase reactants that were studied in cachexia are listed on the final row. The first letter in each cell indicates the study model; H denotes human, M denotes mouse, R denotes rat, GP
denotes guinea pig, F denotes ferret, D denotes dog, Rb denotes rabbit, B denotes baboon. The second letter indicates if the results found were genotypic or phenotypic. P denotes if a study
mentioned protein expression found in the tissue and G denotes if a study found genetic expression in the tissue.
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positive and negative acute phase response related proteins and

their possible role in promoting cachexia. We specifically examine

APP production and presence in extrahepatic tissues including

lung, skeletal muscle, and tumor microenvironment as

contributors towards cachexia.
Inflammation the acute phase
response and their relationship to
cachexia, a central role for IL-6

Inflammation is responsible for protein production during the

acute phase response which critically requires IL-6 to produce many

APP (161).Cytokines are the primary signaling mechanism by

which the up and down regulation of acute phase proteins occurs.

Innate immune cells are activated through toll like receptors to

produce IL-1 and TNF alpha. These cytokines lead to further release

of IL-6 (162, 163). IL-6 stimulation of hepatocytes produces

increased positive acute phase reactants such as CRP, SAA, Alpha

1 anti-chymotrypsin, fibrinogen and decreased negative acute phase

reactants such as albumin, transferrin, and fibronectin (161). IL-6

also has been shown to directly cause cachexia through a cross-talk

mechanism between tumor, muscle, and fat requiring IL-6 signaling

(164). Inflammation is the dominant driver of cachexia as the body

struggles to maintain the balance of host defense versus the negative

impacts of immune defenses on the host itself (165, 166).

Measurement of the inflammatory response may be done through

surrogate acute phase proteins such as C Reactive Protein (CRP),

which is considered the most widely accepted index of systemic

inflammation (1). CRP has been predictive of degree of cachexia as

well as survival in cancer patients (3, 167). CRP is one of many

examples of acute phase reactant that are a byproduct of

inflammation and have a relationship to cachexia. There are

many examples of regulation of acute phase response signaling in

cachexia (168). In the following sections we describe extra-hepatic

organ, muscle, and tumor production of such acute phase reactants.
Acute phase reactant proteins
in cachexia

In this section, we document the APP described in the literature

as potential mediators of cachexia. Table1 provides a comprehensive,

current summary of the literature regarding APP, their tissue of

origin, and current evidence for a role in inducing cachexia.
Positive acute phase reactant proteins
in cachexia

Alpha 1 antitrypsin

Alpha 1 antitrypsin(A1AT) is synthesized in the liver and serves

to inhibit neutrophil elastase in the lung (169). A1AT protein is also

produced by the lung and tumor microenvironment of lung cancer
Frontiers in Immunology 05
where it promotes metastasis, chemotherapy resistance, and

decreases survival (16, 17). Although alpha 1 antitrypsin

deficiency correlates with pulmonary cachexia (18), a clear role

for A1AT has not been established in cancer cachexia.
Complement

The complement system is a critical component of innate and

adaptive immunity. It consists of about 30 proteins that follow three

different pathways to provide many functions such as defense

against pathogens, opsonization, chemoattraction, apoptosis, and

thrombosis (170). Historically, complement has been described as a

product of the liver (171). Complement C4, C9, Factor B, C1

inhibitor, C4b-binding protein, and mannose binding lectin are

recognized as acute phase proteins, however only factor B has been

shown to participate in the tumor microenvironment (172) and

none are synthesized by the lung or skeletal muscle according to the

current literature. C3 is unique, in that all three pathways converge

on this one common downstream protein, and because it has the

most data regarding cachexia, we will discuss it further.
C3

C3 has been shown to be synthesized by the lung, skeletal

muscle, and is detected in the tumor microenvironment (33–39).

The only study that demonstrated extrahepatic production of

complement utilized the colon-26 carcinomas bearing mice (C26

mouse model) which develop cancer cachexia. This study showed

increased skeletal muscle production of C3 (40). C3 has been shown

in clinical studies to be upregulated in cachexia. Pre-operative

pancreatic cancer patients who had cachexia and elevated CRP

had an increase in serum C3a compared to non-cachectic

pancreatic cancer patients (41). Complement, specifically C3,

serves as a candidate for further research in cachexia. Currently,

there are no functional studies which evaluate its role in cachexia.
CRP

CRP is one of the most measured APP that is secreted by the

liver. CRP functions in the immune response in opsonization,

phagocytosis, and cytokine signaling (173, 174). CRP mRNA and

protein is expressed in the lung, however not in the skeletal muscle

or tumor microenvironment (50, 51). When myoblasts are exposed

to high levels of CRP, cell proliferation is inhibited (175). One

challenge of examining the contribution of CRP to cachexia is that it

is not synthesized in murine models of cachexia. Therefore, the

relationship observed between CRP and cachexia is predominantly

limited to clinical studies. In clinical studies of cachexia, the acute

phase response is synonymous with CRP. Pro-inflammatory

cytokines induce the APR and in turn CRP (7, 159, 176, 177).

Specifically, IL-6 impacts CRP as shown by a reduction in CRP

serum levels in weight-losing cancer patients by blocking IL-6 (52).

In patients with pancreatic cancer who underwent neoadjuvant
frontiersin.org
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chemoradiation therapy, CRP was increased and a value of greater

than 10 kU/L was associated with reduced survival (53). Fearon

et al. has also noted that CRP may offer prognostic value in cachexia

(1). The Glasgow Prognostic Score utilizes CRP as a predictor of

cachexia severity (3). The modified Glasgow Prognostic Score has

been proposed to identify pre-cachectic patients that may benefit

from multimodal therapy to benefit the onset of cachexia (178).

CRP has a role in clinical management of patients with cachexia,

however it will be difficult to determine an underlying mechanism

without murine studies.
Ferritin

Ferritin is an APP involved in the cellular stress response as well

as iron regulation and homeostasis by storing iron and releasing it

during times of cellular need (179). It is mainly produced in the

liver. In chronic inflammatory states such as cancer, in addition to

ferritin, cytokines upregulate hepcidin which acts to block iron

absorption (180). Cytokines inhibit the proliferation of erythroid

progenitor cells in bone marrow and erythropoietin production by

the kidney. Ultimately all of these mechanisms lead to anemia of

chronic disease, a common condition in cachexia (181) Currently,

erythropoiesis-stimulating-agents such as epopoetin alpha, which

has similar actions as endogenous erythropoietin, are given to treat

this anemia (182). The series of interactions with ferritin, hepcidin,

and iron homeostasis serve as potential targets for cachexia therapy

that may alleviate the morbidity of anemia of chronic disease. The

lung expresses ferritin mRNA and protein when exposed to stressed

conditions. The skeletal muscle increases ferritin mRNA after

denervation, it increases protein expression when exposed to

adiponectin, and the tumor microenvironment displays ferritin

protein accumulation (55–61). In-vitro models of cancer cachexia

have demonstrated upregulated ferritin mRNA and protein

expression in various tumor cell lines (62–64). In cachectic

patients with gastric cancer, ferritin protein expression was

upregulated in skeletal muscle compared to non-cachectic gastric

cancer patients (65). Finally, it has been shown that by providing

iron supplement in both mice and human patients with cancer

cachexia, muscle function and strength improved (64). Ferritin has

demonstrated evidence of involvement in cachexia both

preclinically and clinically, and further studies should target the

ferritin and hepcidin mechanisms of iron storage in chronic disease

to increase bioavailability of iron in cachectic patients.
Fibrinogen

The majority of fibrinogen is predominantly synthesized in the

liver and is involved in coagulation where it is cleaved into fibrin to

form a platelet plug. The platelet plug can also trap other cell types

including erythrocytes and leukocytes in pathological situations

(183). Fibrinogen is produced extrahepatically in the lung during

inflammation, skeletal muscle during cachectic catabolism, and in

the tumor microenvironment where it is deposited from serum as

well as synthesized by tumor cells themselves (66–68, 184, 185).
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Fibrinogen has been studied extensively in cachexia. Initial work by

O’Keefe and colleagues identified protein turnover in cachexia

contributes to fibrinogen production (186). Preston and

colleagues demonstrated that using labeled phenylalanine,

increase in circulating amino acids from skeletal muscle

breakdown were ultimately used for fibrinogen synthesis in

patients with pancreatic adenocarcinoma (187). Functional

studies of cancer cachexia mice treated with C26 tumors had

increased serum fibrinogen, however the synthesis was assumed

to be hepatic (188). Another study of C26 treated mice performed a

secretome analysis on the skeletal muscle and identified fibrinogen

as potentially being synthesized and secreted by the skeletal muscle.

Bonetto and colleagues have shown that myotubes exposed to IL-6

induced STAT3 signaling which coincided with increased

fibrinogen protein expression (68). Fibrinogen production was

increased as cachexia severity worsened in the C26 mouse model.

Given that fibrinogen is produced by many extrahepatic tissues and

is a protein of interest in cancer cachexia, it remains a protein of

great interest in future studies on the APR in cachexia.
Fibronectin

Fibronectin is mainly synthesized by the liver and has several

functions. It is involved in extracellular matrix cell adhesion, it allows

for host defense through participation in the immune response, and

it stabilizes clot in thrombogenesis (189). Fibronectin mRNA and

protein is expressed in the lung during inflammation, the protein is

found in normal and regenerating skeletal muscle, and the

extracellular matrix of the tumor microenvironment influencing

tumor spread and growth (72–74, 76, 190, 191). Fibronectin has

been examined in cachexia models. Transforming growth factor-beta

(TGF-b) null mice experienced leukocyte infiltration in the heart,

lungs, pancreas, stomach, colon, and salivary glands that ultimately

lead to cachexia. This immune response was reduced by daily

administration of fibronectin, which may have impeded the ability

of leukocytes to invade target tissues (77). Fibronectin was found to

be deposited in subcutaneous adipose tissue from gastrointestinal

cancer patients with cachexia. There was also increased TGF-b found

in these samples suggesting that TGF-b signaling may have resulted

in fibronectin deposition (78). Further investigation of the

inflammatory response, fibronectin, and cachexia may elucidate an

underlying mechanism. The current evidence does not offer a clear

mechanism at this time.
Haptoglobin

Haptoglobin is a protein produced by the liver that scavenges

and binds to hemoglobin, the oxygen carrying component of red

blood cells, after destruction of red blood cells. Haptoglobin may

also play a role in host defense during the inflammatory response

(192). Haptoglobin is synthesized by the lung during inflammation,

skeletal muscle during cachexia, and tumor microenvironment

where it causes cellular changes, which promote metastasis (40,

88, 90). Haptoglobin protein levels are increased in a ciliary
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neurotrophic factor induced cachexia rat model and cachexia

associated with congestive heart failure in human patients (91,

92). Bonetto and colleagues have also shown an increased serum

haptoglobin in the C26 cancer cachexia mouse model (68), in

addition to several other acute phase proteins. Massart and

colleagues demonstrated similar findings (40). Analysis of the

contribution of lung and tumor microenvironment derived

haptoglobin in cachexia serves as an area for future research.
Hemopexin

Similar to haptoglobin, hemopexin is mainly synthesized in the

liver and binds to heme after hemolysis to prevent toxicity from

generation of reactive oxidative species (193). Hemopexin is

expressed in the lung during inflammation and infection, skeletal

muscle during atrophy, and it is present in the tumor

microenvironment where it is associated with metastatic disease

(93–96). There are several studies of cancer cachexia models that

demonstrate a relationship to hemopexin. Proteomic profiling of

C26 cancer cachexia mice gastrocnemius show an increased

expression of a hemopexin precursor (97). This is consistent with

other C26 data that demonstrates a 17-fold increase in hemopexin

gene expression in skeletal muscle as well as almost 9000 times

more hemopexin protein found in C26 skeletal muscle compared to

controls (40, 68). Although these studies are associative a clear

mechanistic link has yet to be demonstrated.
Interleukin 1 receptor antagonist

As the name suggests, Interleukin 1 Receptor Antagonist (IL-

1Ra) is an acute phase protein produced by the liver, inhibits the IL-

1 receptor and thereby acts as an anti-inflammatory mechanism

(194, 195). In addition to synthesis by the liver, alveolar

macrophages in the lung synthesize IL-1Ra, the protein has been

detected in the skeletal muscle of patients with the muscular

inflammatory diseases, dermatomyositis and polymyositis. High

IL-1Ra levels were detected within the tumor microenvironment

after immunotherapy and its anti-inflammatory properties may

promote cancer growth (105–109). IL1-Ra has a role in cachexia

however it may not directly affect tumor growth. IL1-Ra injected

intratumorally in a C26 cancer cachexia model reduced IL-1

signaling within the tumor and increased mouse lean mass and

fat mass, at least partially reversing the wasting effects of cachexia

(110). IL-1Ra requires further evaluation as an APP in cachexia, but

it has shown promise that an underlying mechanism may exist.
Lipocalin 2

Lipocalin 2 is also known as neutrophil gelatinase-associated

lipocalin and is a member of the lipocalin superfamily. Lipocalin 2 is

mainly produced by neutrophils and is involved in the

inflammatory response as well as metabolism (116). Lipocalin 2

also occurs in the lung, which produces lipocalin mRNA. Skeletal
Frontiers in Immunology 07
muscle produces lipocalin mRNA and protein in ob/ob mice, and

the tumor microenvironment has increased lipocalin mRNA and

protein (47, 111–115). Lipocalin mRNA has been upregulated in the

quadriceps of mouse model of cachexia (68). Lipocalin has been

further studied in a mouse model of cachexia and was shown to

control cachexia-anorexia by inhibiting appetite and exacerbating

the cachexia phenotype. Infusion of an antagonist for the lipocalin

receptor reversed cachexia. Interestingly, this study also correlated

lipocalin levels in patients with pancreatic cancer and found

increased mortality in the setting of lipocalin upregulation (116).

This study implicates lipocalin as a regulator of cachexia

metabolism, and future studies should attempt to evaluate

lipocalin antagonists in human patients.
Plasminogen activator inhibitor type 1

Plasminogen Activator Inhibitor Type 1 (PAI-1) is a pro-

coagulation protein involved in the coagulation cascade. Tissue

plasminogen activator(tPA) and urokinase plasminogen activator

(u-PA) help transform plasminogen into plasmin, which dissolves

fibrin clot. PAI-1 serves as an inhibitor of both tPA and u-PA (196).

PAI-1 is synthesized by the liver as well as the lung, skeletal muscle,

and tumor microenvironment (120–123, 125, 197). PAI-1 has a

relationship to cachexia as well. PAI-1 has been shown to be elevated

in the myocardium of Walker-256 carcinoma bearing cachectic mice

(126). A study of radiation therapy applied to U87MG cells, a

glioblastoma cell line, caused these cells to secrete PAI-1 exosomes.

When C2C12 myoblasts were treated with PAI-1 exosomes they

experienced muscle wasting (127). This preliminary data regarding

PAI-1 in cachexia is unable to demonstrate a clear mechanism, and

this remains an area of focus for research of the APR in cachexia.
Serum Amyloid A

Serum Amyloid A(SAA) is synthesized by the liver during the

APR and has many functions including both pro and anti-

inflammatory actions critical for host survival (198). Increased

SAA mRNA and protein are found in the lung and skeletal

muscle during a state of inflammation, as well as the tumor

microenvironment which may lead to worse tumor-free survival

in patients (139–143). C26 cancer cachexia mice show elevated

levels of both SAA mRNA and protein in the skeletal muscle (40,

68). SAA lacks a mechanistic connection to cachexia and more work

should be done to evaluate SAA in cachexia.
Negative acute phase reactant
proteins in cachexia

Albumin

Albumin is made primarily by the liver and regulates

intravascular oncotic pressure and transports ligands throughout

the body (199). Albumin mRNA and protein are expressed in the
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lung and skeletal muscle (9, 10, 200). Clinically, albumin has been

studied as a biomarker to predict cachexia using scores such as the

Glasgow Prognostic Score (3, 4, 12). Furthermore, there are several

lines of preclinical evidence, as well. Decreased albumin in cancer

cachexia is correlated to increased mortality (201). Intramuscular

injections of TNFa, induced cachexia and coincided with decreased

hepatic albumin synthesis (11). Of note, the decrease in albumin

preceded the development of cachexia. Albumin is currently viewed

as a marker of cachexia, and there is a lack of data that may explain

its role in contributing to the process of cachexia.
Insulin like growth factor 1

Insulin Like Growth Factor 1 (IGF1) is a protein that is widely

produced but mainly synthesized in the liver. IGF1 is involved in

growth and anabolism as well as cell homeostasis and the

bioavailability of sex hormones (202). IGF expression is present in

skeletal muscle during growth, development and damage repair. In the

tumor microenvironment, IGF protein may lead to tumor progression

(98–102). Cisplatin is a commonly used chemotherapy and is sufficient

to induce muscle wasting. IGF administered in conjunction with

Cisplatin prevented wasting of myotubes and mouse skeletal muscle

suggesting a mechanism to prevent chemotherapy induced muscle

wasting (103). In congestive heart failure-associated cachexia, skeletal

muscle displays reduced IGF and reactivation of IGF signaling

pathways prevented skeletal muscle proteolysis (203). IGF requires

more functional data in vitro and in vivo as well as human studies

specifically evaluating IGF in cancer cachexia.
Discussion

The APR is highly active in response to inflammatory stimuli and

a critical part of the innate immune system including the potentially

detrimental cachexia response. APR proteins are traditionally thought

to be produced mainly by the liver. However, increasing evidence

demonstrates that the lung, skeletal muscle, and tumor

microenvironment express large quantities of APPs at the mRNA

and protein level. Furthermore, it has been shown that cachexia

provides the substrates that fuel synthesis of APPs. As an example,

Preston and colleagues have demonstrated amino acids from muscle

produced fibrinogen is increased in cachectic patients (187). Various

studies described above have associated the APR proteins with

cachexia. Albumin and CRP concentration have been predictive of

patient outcomes and serve as examples of APP that have clinical

applicability to cachexia. Only fibrinogen and lipocalin have had a

sufficiently demonstrated role in cachexia. Fibrinogen has both

increased mRNA and protein expression that is synthesized by the

liver and skeletal muscle through IL-6/STAT3. Fibrinogen

concentration increases as severity of cachexia increases and a

mechanism of STAT3 increasing fibrinogen synthesis through

proteolysis resulting in cachexia has been proposed. Lipocalin offers

another plausible APP-induced cachexia mechanism as lipocalin

crosses the blood-brain barrier and alters feeding behavior resulting

in cachexia. However, there is a clear paucity of functional
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experimental data surrounding the APR in cachexia and further

research is needed to elucidate this relationship. Murine models are

critical in cachexia research, especially in the vital role of testing

treatment efficacy and safety prior to human exposure (204). These

results must be interpreted with caution, as murine models may be

limited in their ability to replicate the human phenotypes of cancer

and their complex microenvironment. Such models are injected with

tumor cell lines as opposed to spontaneous growth, develop cachexia

within weeks, and grow tumors that may be proportionately larger

then human tumors (205). The acute phase response serves as a

candidate for a potential molecular target that may help improve

patient prognosis from cancer cachexia. Expression of many APR

change and correlate to cachexia, but a mechanistic link has remained

elusive. Investigating the molecular mechanisms by which the APPs

are involved in cachexia has the potential to identify new targets and

open new strategies to help the patients overcome cancer-associated

cachexia. Untangling the relationship between the APR and cachexia

still requires further investigation as it remains unclear if the APR is a

mediator of cachexia.
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Rincón D, Talamás-Rohana P, et al. Haptoglobin and CCR2 receptor expression in
ovarian cancer cells that were exposed to ascitic fluid: exploring a new role of
haptoglobin in the tumoral microenvironment. Cell Adh Migr (2015) 9(5):394–405.
doi: 10.1080/19336918.2015.1035504

91. Henderson JT, Seniuk NA, Richardson PM, Gauldie J, Roder JC. Systemic
administration of ciliary neurotrophic factor induces cachexia in rodents. J Clin Invest
(1994) 93(6):2632–8. doi: 10.1172/JCI117276

92. Karim A, Muhammad T, Shah I, Khan J, Qaisar R. Relationship of haptoglobin
phenotypes with sarcopaenia in patients with congestive heart failure. Heart Lung Circ
(2022) 31(6):822–31. doi: 10.1016/j.hlc.2022.01.003

93. Yang N, Zhang L, Tian D, Wang P, Men K, Ge Y, et al. Tanshinone increases
Hemopexin expression in lung cells and macrophages to protect against cigarette
smoke-induced COPD and enhance antiviral responses. Cell Cycle (2022) 22(6):1–21.
doi: 10.1080/15384101.2022.2129933

94. Wang XF, Zhang XY, Gao X, Liu XX, Wang YH. Proteomic profiling of a
respiratory syncytial virus-infected rat pneumonia model. Jpn J Infect Dis (2016) 69
(4):285–92. doi: 10.7883/yoken.JJID.2015.244

95. Nagase T, Tohda C. Skeletal muscle atrophy-induced hemopexin accelerates
onset of cognitive impairment in Alzheimer’s disease. J Cachexia Sarcopenia Muscle
(2021) 12(6):2199–210. doi: 10.1002/jcsm.12830

96. Suzuki Y, Takadate T, Mizuma M, Shima H, Suzuki T, Tachibana T, et al.
Stromal expression of hemopexin is associated with lymph-node metastasis in
pancreatic ductal adenocarcinoma. PloS One (2020) 15(7):e0235904. doi: 10.1371/
journal.pone.0235904

97. Shum AMY, Poljak A, Bentley NL, Turner N, Tan TC, Polly P. Proteomic
profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric
and mitochondrial protein expression. Oncotarget (2018) 9(31):22001–22. doi:
10.18632/oncotarget.25146

98. Tollefsen SE, Lajara R, McCusker RH, Clemmons DR, Rotwein P. Insulin-like
growth factors (IGF) in muscle development. Expression IGF-I IGF-I receptor an IGF
binding Protein during myoblast differentiation. J Biol Chem (1989) 264(23):13810–7.
doi: 10.1016/S0021-9258(18)80073-4

99. Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M,
et al. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans:
characterization of the MGF E peptide actions in vitro. In Vivo (2009) 23(4):567–75.

100. Reinmuth N, Kloos S, Warth A, Risch A, Muley T, Hoffmann H, et al. Insulin-
like growth factor 1 pathway mutations and protein expression in resected non-small
cell lung cancer. Hum Pathol (2014) 45(6):1162–8. doi: 10.1016/j.humpath.2014.01.010

101. Fu S, Tang H, Liao Y, Xu Q, Liu C, Deng Y, et al. Expression and clinical
significance of insulin-like growth factor 1 in lung cancer tissues and perioperative
circulation from patients with non-small-cell lung cancer. Curr Oncol (2016) 23(1):12–
9. doi: 10.3747/co.23.2669

102. Tang H, Liao Y, Xu L, Zhang C, Liu Z, Deng Y, et al. Estrogen and insulin-like
growth factor 1 synergistically promote the development of lung adenocarcinoma in
mice. Int J Cancer (2013) 133(10):2473–82. doi: 10.1002/ijc.28262

103. Sakai H, Asami M, Naito H, Kitora S, Suzuki Y, Miyauchi Y, et al. Exogenous
insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice. J
Cachexia Sarcopenia Muscle (2021) 12(6):1570–81. doi: 10.1002/jcsm.12760

104. Martin J, Midgley A, Meran S, Woods E, Bowen T, Phillips A, et al. Tumor
necrosis factor-stimulated gene 6 (TSG-6)-mediated interactions with the inter-alpha-
inhibitor heavy chain 5 facilitate tumor growth factor beta1 (TGFbeta1)-dependent
fibroblast to myofibroblast differentiation. J Biol Chem (2016) 291(26):13789–801. doi:
10.1074/jbc.M115.670521

105. Moore SA, Strieter RM, Rolfe MW, Standiford TJ, Burdick MD, Kunkel SL.
Expression and regulation of human alveolar macrophage-derived interleukin-1
receptor antagonist. Am J Respir Cell Mol Biol (1992) 6(6):569–75. doi: 10.1165/
ajrcmb/6.6.569

106. Yanagawa H, Sone S, Haku T, Mizuno K, Yano S, Ohmoto Y. Contrasting effect
of interleukin-13 on interleukin-1 receptor antagonist and proinflammatory cytokine
production by human alveolar macrophages. Am J Respir Cell Mol Biol (1995) 12
(1):71–6. doi: 10.1165/ajrcmb.12.1.7811472
Frontiers in Immunology 11
107. Grundtman C, Salomonsson S, Dorph C, Bruton J, Andersson U, Lundberg IE.
Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal
muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum (2007)
56(2):674–87. doi: 10.1002/art.22388

108. Fan YC, Lee KD, Tsai YC. Roles of interleukin-1 receptor antagonist in prostate
cancer progression. Biomedicines (2020) 8(12):602. doi: 10.3390/biomedicines8120602

109. Lu S, Dong Z. Overexpression of secretory phospholipase A2-IIa supports
cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate
cancer cells. Int J Oncol (2017) 50(6):2113–22. doi: 10.3892/ijo.2017.3964

110. Strassmann G, Masui Y, Chizzonite R, Fong M. Mechanisms of experimental
cancer cachexia. Local involvement IL-1 colon-26 tumor. J Immunol (1993) 150
(6):2341–5.

111. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue
expression of the gene for neutrophil gelatinase-associated lipocalin from humans.
Genomics (1997) 45(1):17–23. doi: 10.1006/geno.1997.4896

112. Choi EB, Jeong JH, Jang HM, Ahn YJ, Kim KH, An HS, et al. Skeletal lipocalin-
2 is associated with iron-related oxidative stress in ob/ob mice with sarcopenia.
Antioxidants (Basel) (2021) 10(5):758. doi: 10.3390/antiox10050758

113. Zhang PX, Chang JX, Xie JJ, Yuan HM, Du ZP, Zhang FR, et al. Regulation of
neutrophil gelatinase-associated lipocalin expression by C/EBPbeta in lung carcinoma
cells. Oncol Lett (2012) 4(5):919–24. doi: 10.3892/ol.2012.859

114. Shiiba M, Saito K, Fushimi K, Ishigami T, Shinozuka K, Nakashima D, et al.
Lipocalin-2 is associated with radioresistance in oral cancer and lung cancer cells. Int J
Oncol (2013) 42(4):1197–204. doi: 10.3892/ijo.2013.1815

115. Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski
GB, Bekaii-Saab T, et al. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by
regulating inflammation in the tumor microenvironment. Cancer Res (2017) 77
(10):2647–60. doi: 10.1158/0008-5472.CAN-16-1986

116. Olson B, Zhu X, Norgard MA, Levasseur PR, Butler JT, Buenafe A, et al.
Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nat
Commun (2021) 12(1):2057. doi: 10.1038/s41467-021-22361-3

117. Heymann CJF, Bobin-Dubigeon C, Muñoz-Garcia J, Cochonneau D, Ollivier E,
Heymann MF, et al. Lipopolysaccharide-binding protein expression is associated to the
metastatic status of osteosarcoma patients. J Bone Oncol (2022) 36:100451. doi:
10.1016/j.jbo.2022.100451

118. Qiao B, Chen Z, Huang J, Lam AK, Mei Z, Li Y, et al. Lipopolysaccharide-
binding protein as a biomarker in oral and maxillofacial tumors. Oral Dis (2021) 29
(3):892–901. doi: 10.1111/odi.14042

119. Shibata T, Ogawa M, Takata N, Matsuda K, Niinobu T, Uda K, et al.
Distribution of pancreatic secretory trypsin inhibitor in various human tissues and
its inactivation in the gastric mucosa. Res Commun Chem Pathol Pharmacol (1987) 55
(2):243–8.

120. Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V, et al.
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