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Insight of a lipid metabolism
prognostic model to identify
immune landscape and
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retroperitoneal liposarcoma
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Introduction: The exploration of lipid metabolism dysregulation may provide

novel perspectives for retroperitoneal liposarcoma (RPLS). In our study, we

aimed to investigate potential targets and facilitate further understanding of

immune landscape in RPLS, through lipid metabolism-associated genes (LMAGs)

based prognostic model.

Methods: Gene expression profiles and corresponding clinical information of

234 cases were enrolled from two public databases and the largest

retroperitoneal tumor research center of East China, including cohort-TCGA

(n=58), cohort-GSE30929 (n=92), cohort-FD (n=50), cohort-scRNA-seq (n=4)

and cohort-validation (n=30). Consensus clustering analysis was performed to

identify lipid metabolism-associated molecular subtypes (LMSs). A prognostic

risk model containing 13 LMAGs was established using LASSO algorithm and

multivariate Cox analysis in cohort-TCGA. ESTIMATE, CIBERSORT, XCELL and

MCP analyses were performed to visualize the immune landscape. WGCNA was

used to identify three hub genes among the 13 model LMAGs, and preliminarily

validated in both cohort-GSE30929 and cohort-FD. Moreover, TIMER was used

to visualize the correlation between antigen-presenting cells and potential

targets. Finally, single-cell RNA-sequencing (scRNA-seq) analysis of four RPLS

and multiplexed immunohistochemistry (mIHC) were performed in cohort-

validation to validate the discoveries of bioinformatics analysis.

Results: LMS1 and LMS2 were characterized as immune-infiltrated and

-excluded tumors, with significant differences in molecular features and

clinical prognosis, respectively. Elongation of very long chain fatty acids

protein 2 (ELOVL2), the enzyme that catalyzed the elongation of long chain

fatty acids, involved in the maintenance of lipid metabolism and cellular
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homeostasis in normal cells, was identified and negatively correlated with

antigen-presenting cells and identified as a potential target in RPLS.

Furthermore, ELOVL2 was enriched in LMS2 with significantly lower

immunoscore and unfavorable prognosis. Finally, a high-resolution dissection

through scRNA-seq was performed in four RPLS, revealing the entire tumor

ecosystem and validated previous findings.

Discussion: The LMS subgroups and risk model based on LMAGs proposed in our

study were both promising prognostic classifications for RPLS. ELOVL2 is a

potential target linking lipid metabolism to immune regulations against RPLS,

specifically for patients with LMS2 tumors.
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Introduction

Retroperitoneal liposarcoma (RPLS) is a rare type of

mesenchymal tumor, but the most common subtype of

retroperitoneal sarcoma (1). It is also characterized by

accumulation of intracellular lipid, induction of adipocyte-specific

genes (2), dismal immunotherapy response and poor prognosis (3),

since the significant challenges of large tumor size and adjacent

organ involvement (4). In addition, other therapeutic strategies,

such as combination chemotherapy and molecular targeted drugs

also have limited efficacy due to intrinsic chemo-resistance, even in

histology-tailored neoadjuvant chemotherapy (5). Therefore, novel

strategies are needed to improve the therapeutic condition of RPLS.

Aberrant l ip id metabol i sm and l ip id metabol i sm

reprogramming are critically involved in drug resistance (6), the

adaptation of immune microenvironment (7), energy supplement,

cell signaling (8) and regarded as a new hallmark of tumor

ecosystem (9). Emerging evidence indicated that targeting the

lipid metabolism pathway was an attractive tumor treatment

strategy (10). Previous studies have indicated that lipid

metabolism-associated genes (LMAGs) exhibit potent capability

in predicting the prognosis of various tumors (11–14). However,

lipid metabolism dysregulation in patients with RPLS

remains unknown.

Immunotherapy has been extensively studied as a promising

treatment, but has had limited therapeutic benefit in RPLS, which is

considered as a “non-immunogenic” and highly variable tumor

(15). Increasing evidence suggest that the alterations in lipid

metabolism, including metabolite abundance and accumulation of

lipid biomolecules, lead to local immunosuppression in the tumor

microenvironment (16). However, the association between

abnormality of lipid metabolism and immune microenvironment

remains obscure in RPLS.

Elongation of very long chain fatty acids protein 2 (ELOVL2),

an enzyme that catalyzes the elongation of fatty acids with chain

lengths greater than 18 carbons. Research has shown that ELOVL2
02
is involved in the maintenance of cellular homeostasis in normal

cells (17). Specifically, ELOVL2 was implicated in the regulation of

autophagy (18) and the activity of the mTOR signaling pathway

(19), which played a key role in the regulation of cell growth and

proliferation. It has been suggested that the decline in ELOVL2

expression with age may contribute to the aging process and age-

related diseases. Furthermore, mutations in the ELOVL2 gene have

been associated with intellectual disability and developmental delay

(20). However, further research was still needed to fully elucidate

the functions of ELOVL2 in normal cells and its potential

implications for cancer treatment.

Therefore, in this study, we explored the role of lipid

metabolism dysregulation in RPLS through LMAGs related

immune landscape, using multiple bioinformatics methods. A

novel LMAGs based prognostic risk model was established and

validated in independent cohorts. To the best of our knowledge, this

is the first study to promote the understanding and clinical

applications about lipid metabolism dysregulation and serve as a

reliable reference for further developing target in RPLS.
Materials and methods

Patient and clinical specimens

The cohort-FD consists of 50 RPLS patients (34% female and

66% male) with a mean age of 55 years. In total, 50 tumor samples

were surgically resected and collected in Zhongshan Hospital,

Fudan University between 2018 and 2020. For scRNA-seq, four

fresh surgical specimens (four primary tumors and matched

PBMC) were sequenced and incorporated in further analyses. All

samples were confirmed by pathologists through both cytological

detections during the surgery and the paraffin section after surgery.

Clinical information, including demographics and tumor

clinicopathologic characteristics of all cohorts were summarized

in Supplementary Tables 1 and 2.
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Database search

RNA transcriptome sequencing data of 150 RPLS patients and

detailed characteristics were obtained from the TCGA (https://

portal.gdc.cancer.gov/) and GEO (https://www.ncbi.nlm.nih.gov/

geo/) databases. We excluded RPLS samples with no complete

expression profile data and unknown overall survival (OS) or

living status, and included clinical features such as gender,

pathological grade, tumor stage and survival status in this study.

Additionally, all the obtained data, TPM (transcripts per kilobase of

exon model per million mapped reads) values, were normalized

using the log2 (TPM + 1) transformation.
Consensus clustering

Firstly, 135 genes were found to be associated with the

prognosis of RPLS through the univariate Cox regression analysis.

Consensus clustering was performed according to the expression

matrix of the 135 genes using the R package “Consensus

Cluster Plus”.
Construction, validation and evaluation of
risk model based on LMAGs

Least absolute shrinkage and selection operator (LASSO)

analysis was performed to downsize the OS and DFS related

genes previously filtrated using “glmnet” R package. The

minimum lambda value was defined as the optimal value. The

genes applied for the establishment of risk model was enrolled by

multivariate Cox regression analysis. OS related risk score of each

patient in each cohort was calculated as: OS related risk

score=1.866577428*ACOT7-0.040721477*ARSJ-0.451127087*

ARSK+ 0.479584604*CPT1B-0.000114123*CYP21A2 +

0.424535615*ELOVL2-1 .414705024*FDX2-0 .32557149

*GSTM4 + 0.692304756*HACD1-0.670006158*HSD17B14-

0.763286635*MTMR8-0.734212004*ORMDL2 + 1.159963024

*TNFRSF21. DFS related risk score of each patient in each cohort

was calculated as: DFS related risk score=0.468299088*ACOT1-

0.286593499*FABP6. Patients were divided into high and low risk

groups according to the medium value. ROC and Martingale

residuals method were used to evaluate the predictive efficiency

of model.
Functional analysis

Differentially expressed genes (DEGs) between two LMSs were

visualized using R package “Limma”. Gene Ontology (GO) analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

were performed through “clusterProfifiler” R package and

visualized by Metascape5 (21). Based on “GO biological process”

gene dataset was downloaded from molecular signature database,

Gene Set Enrichment Analysis (GSEA) was conducted to analyze

the difference between subtypes. Compared with LMS2, the
Frontiers in Immunology 03
upregulated differential genes in LMS1 was visualized by PPI

network through the Search Tool for the Retrieval of Interacting

Genes (STRING) online tool and the minimum required interaction

value was set as 0.7 (22).
cBioPortal analysis

cBioPortal for cancer genomics (23) (cBioPortal, http://

www.cbioportal.org, version v3.2.11) is an open-access online tool

integrating the raw data from large scale genomic projects. In this

study, cBioPortal was used to visualize the gene alteration of potential

antigens against tumors in cohort-TCGA, including the correlation

between ELOVL2 gene expression and DNA methylation.
TIMER analysis

Tumor Immune Estimation Resource (24) (TIMER, https://

cistrome.shinyapps.io/timer/) is a comprehensive resource for the

systematical analysis of the immune infiltrates across diverse cancer

types. In this study, TIMER was used to visualize the correlation

between antigen-presenting cell (APC) infiltration and the

expression of the identified potent antigens. The partial

Spearman’s correlation was used to perform purity adjustment.

Spearman correlation analysis was used to analyze the correlation

between the abundance of APCs and the expression of the selected

antigens. Statistical significance was set at P < 0.05.
Construction of immune landscape

The immune score and stromal score of each sample in cohort-

TCGA was calculated by the “estimate” package in R. The

proportion of the 22 types of immune cells in the tumor

microenvironment (TIME) of each sample was evaluated via the

CIBERSORT algorithm in R software (25).
Intra-cohort immune classifications

Unsupervised clustering of samples in each cohort was

performed based on the metagene Z-score for the included

populations of MCP-counter using R software, with the Euclidian

distance and Ward’s linkage criterion, using the gplots package.

Cohort-TCGA and Cohort-GSE30929 were further divided into 5

groups (SIC-A, B, C, D and E) (26).
Establishment of LMAGs based nomogram

Univariate Cox regression analysis was performed to evaluate

the prognostic value of identified signatures and clinicopathological

features. Multivariate Cox regression analysis was used to further

determine the independent prognostic factors. Two nomograms

were established by the “rms” package for predicting OS and DFS.
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The C-index and calibration plot were constructed to estimate the

accuracy and consistency of the prognostic models.
Gene signatures for the
functional orientation

The gene signatures used to determine the functional

orientation were reported as previously described. Each signature

was summarized as the following: immunosuppression (CXCL12,

TGFB1, TGFB3 and LGALS1), T cell activation (CXCL9, CXCL10,

CXCL16, IFNG and IL15), T cell survival (CD70 and CD27),

r egu la tory T ce l l s (FOXP3 and TNFRSF18) , ma jor

histocompatibility complex class I (HLA-A, HLA-B, HLA-C,

HLA-E, HLA-F, HLA-G and B2M), myeloid cell chemotaxis

(CCL2), and tertiary lymphoid structures (CXCL13).
Estimation of TLS and immune
cell enrichment

12 chemokines were highly expressed by TLS, including CCL2,

CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9,

CXCL10, CXCL11 and CXCL13, was applied as the gene signature

of TLS. The enrichment score of TLS was calculated by single-sample

gene set enrichment analysis (ssGSEA)method as implemented by R-

package (27).
Weighted gene co-expression
network analysis

WGCNA algorithm was used to identify the hub genes among

model genes (28). Gene co-expression modules were identified after

a weighted gene co-expression network, and the association

between gene network and clinical phenotype were also explored.

The WGCNA-R package was applied to establish the co-expression

network of all genes in the cohort-TCGA, and the genes with

variance within the first 5000 were identified by the algorithm for

subsequent analysis. The soft-threshold b was determined by the

function “sft$powerEstimate”. The weighted adjacency matrix was

transformed into a topological overlap matrix (TOM) to estimate

the network connectivity, with hierarchical clustering being used to

create the clustering tree structure of the TOM. Different branches

of the clustering tree indicated different gene modules with different

colors. Tens of thousands of genes were classified into modules

based on having similar expression patterns (using their weighted

correlation coefficients).
Single-cell RNA sequencing

The single cell suspensions were converted to barcoded scRNA-

seq libraries using the Chromium Single Cell 30 Library, Gel Bead &

Multiplex Kit, and Chip Kit (10x Genomics), aiming for 6,000 cells

per library. Samples were processed using kits pertaining to V2
Frontiers in Immunology 04
barcoding chemistry of 10x Genomics. Single samples were always

processed in a single well of a PCR plate, allowing all cells from a

sample to be treated with the same master mix and in the same

reaction vessel. For each experiment, all samples were processed in

parallel in the same thermal cycler. Libraries were sequenced on an

Illumina HiSeq4000, and mapped to the human genome

(buildGRCh38) or to the mouse genome (build mm10) using

CellRanger software (10x Genomics, version 3.0.2).
Single-cell transcriptome data processing

The output of the cell-gene count matrix was processed with the

Seurat (v 3.1.0) package of R software (version 3.6.1) for quality

control and down-streaming analysis. Low-quality cells with < 200

genes or with > 40% mitochondrial genes were removed from the

analysis. As the cells from tumor and adjacent normal tissues were

loaded in batch for each patient, the data for each patient as

individual Seurat Object. The Seurat object for each patient was

integrated with the harmony algorithm (R package, Harmony,

version 1.0). The top 50 principal components (PCAs) were used

for graph-based clustering to identify a distinct group of cells at the

indicated resolution. In the subgroup analysis, significant PCAs

identified with the ElbowPlot() function were used for graph-based

clustering for each cell cluster to identify subgroup cells based on

the t-SNE analysis (29). The cell types of the identified cells were

defined based on their expression of the canonical marker genes: T

cells (CD3D, CD3E, CD4, and CD8A), B cells (MS4A1, CD79A,

JCHAIN and CD19), NK cells (NCAM1, NKG7, KLRD1 and

NCR1),Monocyte cells (CD14, FCN1, VCAN and CD300E),

Neutrophil cells (FCGR3B, S100A9, S100A8 and CXCR1),

Macrophages cells (CD163, CD68, C1QA and CSF1R), Dendritic

cells (HLA-DQB2, XCR1, CD1C, and CLEC10A), Mast cells

(TPSAB1, TPSB2, KIT and CPA3), Smooth muscle cells (ACAT2,

TAGLN, MYL9 and MYH11), Endothelial cells (PECAM1, VWF,

CLDN5 and PTPRB), Fibroblasts (DCN, COL1A1, PDPN

and COLA2).
Immunohistochemistry

Serial FFPE sections (4 um) were deparaffinized in xylene and

then rehy- drated in 100%, 90% and 70% alcohol successively.

Antigen unmasking was performed with a preheated epitope

retrieval solution (100X citrate buffer, pH 6.0), and endogenous

peroxidase was inactivated by incubation in 3% H2O2 for 20 mins.

Next, the sections were preincubated with 10% normal goat serum

and then incubated overnight with the following primary

antibodies: anti-ELOVL2 antibody (1:50, 20308-1-AP,

Proteintech); anti-CD3 antibody (1:100, ab16669, Abcam); anti-

CD8 antibody (1:100, ab17147, Abcam). Next, sections were

incubated with the corresponding horseradish peroxidase (HRP)-

conjugated secondary antibodies (ready-to-use, MP-7451 and MP-

7452, VectorLab) for 30 mins at room temperature and and

development with DAB substrate (Vector Laboratories). Sections

were counterstained with hematoxylin. Slides were scanned using
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PANNORAMIC Digital Slide Scanners, and QuPath software was

used to quantify positive staining cells.
Multiplexed immunohistochemistry

mIHC was performed in four DDLPS cases of cohort-sc-RNA

seq. Briefly, Fresh tumor tissues were fixed in 4% paraformaldehyde

solution and embedded in paraffin. FFPE slides were made using 4

mm sections of the tumor samples. Deparaffinization and

rehydration were performed with xylene and ethanol respectively,

followed by microwave antigen retrieval using heated citric acid

buffer (pH 6.0) for 10 minutes and endogenous peroxidase blocking

in 3% H2O2 for 20 minutes. Blocker/Diluent was used to block

nonspecific binding sites. Afterward, relevant primary antibodies

were incubated for 1 hour at room temperature, followed by the

corresponding secondary antibodies for 30 minutes. Slides were

then incubated with fluorescein TSA plus for 10 minutes (Akoya

Boscience, NEL861001KT), after which microwave antigen retrieval

was repeated with the above steps until the last antibody was added.

After multiplexing, DAPI (Sigma, D9542) was used to stain the

nuclei. Antibodies and fluorescent dyes used for multiplexing are

listed in Supplementary Table 3. The slides were scanned by Vectra

3 automated high-throughput multiplexed biomarker imaging

system (Akoya Phenoimager HT). Immune cells were classified

into the following types: T cells (CD3+), B cells (CD20+), DC cells

(CD11b+), NK cells (CD57+), Mac (CD68+) and ELOVL2+ cell.
Statistical analysis

SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and R 4.0.4 (R

Foundation for Statistical Computing, Vienna, Austria; http://

www.r-project.org/) were used for all statistical analyses. Univariate

and multivariate Cox regression analyses, ROC curve analysis and K-

M survival analysis were performed by R software and the

corresponding R packages. The continuous data are expressed as

the mean ± standard deviation (SD). The Wilcoxon test was used for

comparisons between the two groups, and the Kruskal-Wallis test

was used for comparisons of prognosis between groups. Except for

the special instructions, all statistical tests were two-tailed, and a P <

0.05 was considered to be statistically significant.
Results

Identification of multi-omics landscape
and prognostic LMAGs in RPLS

The whole study process, including consensus clustering,

immune landscape visualization, DEGs analysis, nomogram

construction and WGCNA analysis were systematically

evaluated and depicted in the workflow chart, as shown in

Supplementary Table 4.

To systematic appraise the lipid metabolism dysregulation in

RPLS, 741 LMAGs were obtained from the MSigDB database.
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Initially, we encapsulated the incidence of copy number variations

and somatic mutations in cohort-TCGA, where 14862 amplified

genes were screened to identify potent antigens (Figure 1A), while

missense mutation was the most common variant classification

(Figure 1B). Additionally, we investigated the incidence of CNV

among these LMAGs. By evaluating the frequency of CNV status,

existing CNV alterations of LMAGs were also clarified, and the top

35 genes in amplified or deleted CNV status were summarized

(Supplementary Figure 1A).

Subsequently, according to the transcriptomic data, consensus

clustering was performed to cluster RPLS patients into two lipid

metabolism subgroups (LMSs) (K = 2) (Figure 1C) based on 135

overall survival (OS) related genes by univariable Cox analysis

(Supplementary Figure 1B). 31 and 27 patients were clustered

into LMS1 and LMS2, respectively (Supplementary Figure 1C).

Heatmap visualization also indicated that prognostic LMAGs

profiles differed significantly between LMS1 and LMS2, while

LMS2 was enriched with LMAGs (Figure 1D), but predicted poor

prognosis (Figure 1E). Interestingly, two subtypes harbored

heterogenous somatic mutations profiles, demonstrated ATRX

and B4GALNT1 as the genes with the highest mutation frequency

in LMS1, but MUC16 in LMS2 (Supplementary Figures 1D, E).

However, not significant difference was found in genome altered

fraction and mutation counts between LMS1 and LMS2

(Supplementary Figures 1F, G).

Moreover, we also investigated 26 disease free survival (DFS) related

LMAGs through univariate Cox analysis (Supplementary Figure 1H).

Intersecting the results of OS-related and DFS-related genes, 8

overlapping LMAGs (GSTM4, GRHL1, PI4K2B, GK3P, ARSK,

ELOVL2, NR1H4, and ABHD4) were excavated and eligible for

further screen prognostic relevant antigens (Supplementary Figure 1I).

The location on chromosomes and expression levels were visualized in

Figure 1F. The regulatory network described the comprehensive

landscapes of the 8 LMAGs indicating their interactions, correlation

feature (Figure 1G) and prognostic values (Figure 1H). These findings

indicated that the LMAGs classified RPLS patients into two subtypes

with different molecular features and prognosis.
Heterogeneous functional enrichment and
immune landscape in LMAGs subtypes

To better understand the innate difference of survival and

underlying signaling mechanisms between LMS1 and LMS2,

DEGs and functional enrichment analyses were performed,

respectively. A total of 4144 DEGs were identified, of which 3586

genes were downregulated and 558 genes were upregulated in

LMS2, as compared with LMS1 (Figure 2A). GO enrichment

analysis indicated that these up-regulated DEGs were involved in

positive regulation of immune system process, immune response

and regulation of immune system process (Figure 2B). Similarly,

KEGG enrichment analysis also validated these pathways associated

with cytokine-cytokine receptor interaction, chemokine signaling

pathway and B cell receptor signaling pathway, of which are part of

the immune response (Figure 2C). Meanwhile, PPI analysis further

confirmed 15 submodels, all of which were closely associated with
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immune and metabolism (Supplementary Figure 2A). These results

depict that the expression of LMAGs is closely related to immune-

related biological processes, confirming that lipid metabolic

reprogramming is significantly associated with tumor immune

microenvironment (TIME) in RPLS.

To further evaluate the dysregulation of immune and

metabolism remodeling involved in RPLS, a series of TIME
Frontiers in Immunology 06
profiles was conducted. Firstly, we illustrated the distribution

feature of previously reported six pan-cancer immune subtypes

(C1-C6) (30), of which LMS1 and LMS2 were mostly clustered into

C1 (Wound Healing), C2 (IFN-g Dominant), C3 (Inflammatory),

C4 (Lymphocyte Depleted) and C6 (TGF-b Dominant)

(Supplementary Figure 2B). Intriguingly, C3 and C6 presented a

higher proportion in LMS1, while they were associated with better
B

C D

E

F G H

A

FIGURE 1

Identification of multi-omics landscape and prognostic LMAGs in RPLS. (A) The chromosomal distribution of the aberrant copy number genes in
RPLS of cohort-TCGA. (B) Genetic profile of cohort-TCGA. (C) Unsupervised clustering of cohort-TCGA based on the LMAGs. (D) Heatmaps
integrating 135 LMAGs and associated clinicopathologic features in cohort-TCGA. (E) Kaplan-Meier survival curve of OS and DFS for LMSs in cohort-
TCGA. (F) Circos plot depicting the location on chromosomes and expression level of 8 overlapping OS-related and DFS-related LMAGs. (G) Triangle
heatmap showing the correlation features among 8 overlapping LMAGs in cohort-TCGA. (H) Correlation and prognosis analysis showing the inter-
gene communications among eight LMAGs.
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outcomes. Accordingly, immune score, stromal score and

ESTIMATE score were also calculated using the ESTIMATE

algorithm (Figure 2D). Remarkably, LMS1 demonstrated

significantly higher TIME scores and better prognosis than those

in LMS2, implying that favorable immune components and

immune-related molecules were abundant in LMS1.
Frontiers in Immunology 07
Next, the relationship between LMSs and 34 infiltrated immune

cells was further explored. In concordance with previous TIME

scores, LMS1 harbored more infiltrated DC, B cells, CD4+Tem,

macrophages, monocytes and NKT than those in LMS2 (Figure 2E),

indicating the significant impacts of these immune cells in the

progression of RPLS. However, the complete immune response
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FIGURE 2

Heterogeneous functional enrichment and immune landscape in LMAGs subtypes. (A) Volcano plot depicting the gene expression difference
between LMS1 and LMS2. (B, C) Bubble diagram showing the biological processes enriched by GO analysis and the signaling pathways enriched by
KEGG analysis. (D) The comparison of stromal score, immune score and ESTIMATE score calculated by ESTIMATE algorithm. (E) Abundance of
immune-related molecular signatures evaluated by XCELL indicating significant differences between LMS1 and LMS2. (F) Estimation of TLS based on
12-chemokine signature between LMS1 and LMS2. (G) Heatmap showing the transcriptomic expression of 12-chemokine involving TLS according to
LMSs. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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involves a close combination of multiple events, not only the

infiltrated immune cells (4). Thereafter, we further calculated and

compared the immune activity score of each step through TIP

analysis. Similarly, the abundance of anti-tumor immune cells was

significant higher in LMS1 than those in LMS2, as well as in Step1,

Step3 and Step5 (Supplementary Figure 2C). In addition, we

explored substantial differences in TLS-associated 12-chemokine

signature between LMS1 and LMS2 (Figure 2F), while the

expression of lymphoid-structures-associated B-cell-specific

chemokine CXCL13 was notably higher in LMS1 (Figure 2G).

Accumulating evidence indicated that tumor with high TMB

level predicted better efficacy of immunotherapy (31). We then

estimated the value of TMB in both LMS1 and LMS2, but not

significant difference was found (Supplementary Figure 2D).

Intriguingly, patients in LMS1 with low TMB demonstrated a

satisfactory survival benefit. Considering the importance of

immune checkpoint inhibitors in the treatment of solid tumor

(3), we further examined the differences in immune checkpoint

profiles and found notably substantial differences in CD28, CD40,

CD86, HAVCR2 and PD-1, between these two subtypes

(Supplementary Figure 2E). Immunogenic cell death (ICD) has

been classified as a form of regulated cell death (RCD) that is

sufficient to activate an adaptive immune response (32). We next

identified ICD-related genes and analyzed the expression patterns.

Importantly, we discovered that significant higher expression of

FPR1, TLR4 and CXCL10 were enriched in LMS1 (Supplementary

Figure 2F). Taken together, these findings demonstrated the unique

characteristics of TIME within two LMSs, offering a conducive

complement to previous studies.
Identification of immune gene
co-expression modules and immune
hub genes of RPLS

The immune gene co-expression module was designed and

applied to classify immune-related genes, whose expression may

significantly influenced the effectiveness of potential targets (33).

Therefore, we re-analyzed and enrolled immune-related genes to

establish gene modules through WGCNA (Figure 3A). The soft

threshold was set at four in the scale-free network (Supplementary

Figure 3A). The representation matrix was converted to adjacency

and next to a topological matrix. The average-linkage hierarchy

clustering approach was applied with a minimum of 30 genes for

each network according to the standard of a hybrid dynamic shear

tree. Eigengenes of each module were calculated and the close

modules were integrated (height = 0.25, deep split = 3 and min

module size = 30). Notably, six gene modules were identified

(Figures 3B, C), and correlation feature was also visualized

(Supplementary Figure 3B). In addition, the module eigengenes in

LMS1 were significantly higher in yellow and blue modules

(Figure 3D). Moreover, the prognostic analysis indicated that

eigengenes in the brown module was significantly associated with

OS in RPLS (Figure 3E).

Further functional enrichment analysis illustrated that genes

involved in cytokine-cytokine receptor interaction and T cell
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receptor signaling were enriched in the brown module

(Figure 3F). The brown module (361 immune-related genes) was

further selected, and three of them (PLCG1, ZC3HAV1L and

NFAT5) were filtered to build the risk score through LASSO

algorithm (Supplementary Figures 3C, D). Patients were classified

into the high-risk and low-risk groups, while high-risk group

predicted unfavorable OS (P = 0.02) (Figure 3G). The area under

the receiver operating curve (AUC) was 0.75, indicating a good

accuracy of the model (Supplementary Figure 3E). Taken together,

this risk model may serve as a novel tool for prognostic predicting in

RPLS, based on the immunogenic genes co-expression network.
Development of survival and relapse risk
models and nomograms based on LMAGs

Given the significant biological roles of LMAGs in lipid

metabolic reprogramming, the association between LMAGs-

related risk score and the prognosis needed thoroughly study.

Thus, two prognostic models were conducted for OS and

DFS, respectively.

24 LMAGs were found to be considerably linked to the OS of

patients through LASSO regression analysis (Figures 4A, B), 13 of

which were tested and selected for the risk score model from

multivariate Cox analysis (Supplementary Figure 4A). We also

investigated the relationship between risk score and survival

status, and the low-risk subgroup harbored significant more alive

statuses (Figure 4C) and better OS than those in high-risk subgroup

(Figure 4D). Specifically, this OS related model indicated a great

accuracy with AUC values of 0.94 in 1 year, 0.97 in 3 years and 0.97

in 5 years (Figure 4E).

To evaluate and validate the universality of this LMAGs-related

prognostic model from cohort-TCGA, an independent dataset

(cohort-FD) was performed as a validation cohort. The risk score

of each case in cohort-FD was calculated using the same formula as

that for the cohort-TCGA. Similarly, patients in high-risk group

suffered unfavorable OS than those in low-risk group

(Supplementary Figure 4B). In addition, the AUC values of this

model according to ROC analysis were 0.7 in 1 year, 0.8 in 3 years,

and 0.85 in 5 years (Supplementary Figure 4C).

Since this model predicted great potency in clinical prognosis

based on LMAGs, we further investigated the correlation between

risk score and TIME in cohort-TCGA. In concordance with

previous findings, the high-risk subgroup was characterized with

a significantly lower immune score (Figure 4F), and infiltrated less

CD8+ T cells and plasma cells, but more resting memory CD4+ T

cells and Tregs than those in low-risk subgroup (Supplementary

Figure 4D), implying that high-risk subgroup was considered with

the characteristics of immunosuppressive status.

Meanwhile, we also explored the value of model between the two

subgroups stratified by different clinical features. Univariate Cox

analysis indicated that patients with dismal OS were authenticated

with larger tumor size, chemotherapeutic efficacy and high risk score

(Table 1). Multivariate Cox analysis further confirmed that all of

them were independent risk factors (Table 1). Subsequently, we

developed a nomogram for OS prediction using these two clinical
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parameters and the LMAGs-based risk scores. A calibration plot for

internal validation of the nomogram presented excellent consistency

between the nomogram-predicted probability and actual

observations of the 1-, 3-, and 5-year OS (Figure 4G).

Given the significant high local recurrence rate in clinical

treatment of RPLS (34), 21 LMAGs were also found to be

considerably linked to the DFS of patients through LASSO
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regression analysis (Supplementary Figure 4E), 2 of which were

tested and selected for the prediction model in the multivariate

Cox analysis (Supplementary Figure 4F). The association between

risk score and recurrence status was next evaluated, and the low-risk

subgroup harbored significant more alive statuses (Supplementary

Figure 4G) and better DFS than those in high-risk subgroup

(Supplementary Figure 4H). Similarly, this DFS related model also
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FIGURE 3

Identification of immune gene co-expression modules and immune hub genes of RPLS. (A, B) Gene co-expression network analysis based on the
immune-related genes. (C) Dot plot of the co-expression gene modules. (D) The comparison of identified gene modules according to LMSs. (E)
Forest maps depicting prognosis prediction value of six modules in RPLS. (F) Bubble plot showing the top 10 KEGG terms enrichment pathways from
the brown module. (G) Kaplan-Meier survival curve of OS for two risk-score groups in cohort-TCGA. Distribution of survival status according to risk
score in RPLS. Heatmap illustrating the expression panel of three immune hub genes according to the risk score. *P < 0.05, **P < 0.01, and
****P < 0.0001.
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presented a great accuracy with AUC values of 0.72 in 1 year, 0.89 in 3

years and 0.79 in 5 years (Supplementary Figure 4I). In addition,

univariate Cox analysis indicated that patients with worse DFS were

authenticated with tumor residue, poor chemotherapeutic efficacy

and high risk score (Table 2). Multivariate Cox analysis further

confirmed that dismal chemotherapeutic efficacy and high risk

score were independent risk factors (Table 2). Furthermore, a

nomogram for DFS prediction was conducted with excellent

consistency (Supplementary Figure 4J).
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Identification of lipid metabolism-
associated targets

To explore key genes that functioned as potential candidates for

RPLS, we further systematically screened and identified two

candidates (NR1H4 and ELOVL2) with both gene amplification

and mutation, which were also associated both OS and DFS from

the 135 LMAGs (Figure 5A). Given the essential role of antigen-

presenting cells (APCs) in the function of immunological reaction,
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FIGURE 4

Development of survival and relapse risk models and nomograms based on LMAGs. (A, B) LASSO regression analyses for screening optimal OS-
related LMAGs. (C) Distribution of survival status according to risk score in RPLS. Heatmap illustrating the expression panel of 13 OS-related LMAGs
according to the risk score. (D) Kaplan-Meier survival curve of OS for two risk-score groups in cohort-TCGA. (E) Time-dependent ROC curve
analyses of the LMAGs risk signature in cohort-TCGA. (F) The comparison of stromal score, immune score and ESTIMATE score calculated by
ESTIMATE algorithm in two risk-score groups. (G) Nomogram predicting OS for RPLS. *P < 0.05.
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we also evaluated the relationship of these two genes with APCs

using TIMER analysis (35). Intriguingly, ELOVL2, but not NR1H4,

was identified with closely related to APCs (Pearson correlation

coefficient > 0.3; Figure 5B; Supplementary Figure 5A), which could

serve as a potential target and triggered strong immune response. In

addition, similar results were also found in TCGA-SARC

(Supplementary Figure 5B). Notably, survival analysis

demonstrated that high mRNA expression of ELOVL2 was

associated with unfavorable OS and DFS (Figures 5C, D),

suggesting ELOVL2 was of importance in RPLS development and

progression. In concordance with cohort-TCGA, the mRNA

expression of ELOVL2 validated similar prognostic efficiency in

both cohort-FD and cohort-GSE30929 (Supplementary

Figures 5C, D).

Dedifferentiated liposarcoma (DDLPS) was often progressed

from primary or recurrent well-differentiated liposarcomas

(WDLPS), which constituted the most common pathological type

of RPLS (36). Thus, we also investigated the heterogeneous

expression of ELOVL2 in WDLPS and DDLPS. Interestingly, the

expression of ELOVL2 was significantly higher in LMS2 than that in

LMS1 (Figure 5E). Specifically, ELOVL2 exhibited a potential
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enrichment in DDLPS, as compared with WDLPS in both cohort-

FD and cohort-GSE30929 (Supplementary Figures 5E, F),

indicat ing the significant impacts of ELOVL2 in the

dedifferentiation evolution of RPLS.

To further identify the association between immune status and

ELOVL2 expression, a series of TIME profiles was also conducted.

Accordingly, immune score, stromal score, ESTIMATE score

(Figure 5F), infiltrating immune cells and TLS signature

(Supplementary Figures 6A, B) were all calculated. As expected,

we discovered that significant difference was found in the immune

status between ELOVL2high and ELOVL2low subgroups, suggesting

that RPLS patients with high expression of ELOVL2 might towards

a status of immune desert. In addition, GO enrichment analysis

indicated that high expression of ELOVL2 was involved in immune

system process and cell surface reportor signaling. Similarly, KEGG

enrichment analysis also validated cytokine-cytokine receptor

interaction and cytokine signaling pathway (Figures 5G, H).

Accumulating evidence indicated that the increase of DNA

methylation of ELOVL2 leaded to the decrease of its protein

expression and polyunsaturated fatty acid synthesis, but the

accumulation of short chain fatty acids, which is closely related to
TABLE 1 Univariate and multivariate analysis of OS in cohort-TCGA (n=58).

Variables
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age, years (>60 vs. ≤60) 3.778 (0.888-16.075) 0.072

Sex (female vs. male) 0.531 (0.240-1.176) 0.119

Tumor size, cm (>20 vs. ≤20) 2.579 (1.089-6.106) 0.031 5.299 (1.302-21.567) 0.02

Multifocal (single vs. multiple) 2.059 (0.899-4.715) 0.088

Residual tumor (yes vs. no) 2.194 (0.909-5.299) 0.081

Treatment outcome (CR vs. PD) 0.170 (0.047-0.611) 0.007 0.220 (0.052-0.935) 0.04

Recurrence (yes vs. no) 2.388 (0.953-5.983) 0.063

Riskscore (high vs. low) 26.477 (5.915-118.520) <0.001 10.296 (1.960-54.073) 0.006
Bold values identify statistical significance (p < 0.05).
OS, Overall Survival; HR, hazard ratio; CI, confidential interval; CR, Complete Response; PD, Progressive Disease.
Variables with P < 0.05 in the univariate analysis were included in the multivariate analysis.
TABLE 2 Univariate and multivariate analysis of DFS in cohort-TCGA (n=58).

Variables
Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

Age, years (>60 vs. ≤60) 2.686 (0.941-7.666) 0.065

Sex (female vs. male) 1.217 (0.561-2.642) 0.619

Tumor size, cm (>20 vs. ≤20) 1.619 (0.747-3.5008) 0.222

Multifocal (single vs. multiple) 1.594 (0.766-3.319) 0.213

Residual tumor (yes vs. no) 2.169 (1.017-4.626) 0.045 1.880 (0.740-4.779) 0.185

Treatment outcome (CR vs. PD) 0.109 (0.045-0.265) <0.001 0.144 (0.056-0.372) <0.001

Riskscore (High vs. Low) 3.662 (1.748-7.670) <0.001 2.854 (1.088-7.491) 0.033
Bold values identify statistical significance (p < 0.05).
DFS, disease free survival; HR, hazard ratio; CI, confidential interval; CR, Complete Response; PD, Progressive Disease.
Variables with P < 0.05 in the univariate analysis were included in the multivariate analysis.
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aging (37). Thus, we investigated the genome and epigenome

landscape of ELOVL2 in cohort-TCGA (Supplementary

Figure 6C), and 13 ELOVL2 related CpG sites were identified.

However, only the cg20462795 exhibited significantly survival

patterns (Supplementary Figure 6D), depicting that ELOVL2

associated epigenetic metabolic axis could be a novel therapeutic

target in RPLS.
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Transcription factor (TF) is one of the most common tool that

involving in regulating gene expression (38). Thereafter, we further

systematically screened and identified three ELOVL2 related TFs

(TFDP1, TP73 and MYBL2) in TCGA-SARC cohort

(Supplementary Figure 6E). Interestingly, high expression of them

were significantly associated with decreased OS (Supplementary

Figure 6F). Consistent with survival prediction occurring in our
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FIGURE 5

Identification of lipid metabolism-associated targets. (A) The intersection of amplification, mutation, OS-related and DFS-related genes were
identified as potential lipid metabolism-associated targets. (B) Identification of targets associated with APCs. Correlation between ELOVL2 expression
and infiltration of macrophages, dendritic cells and B cells in RPLS. (C, D) Kaplan-Meier survival curves of OS and DFS for ELOVL2 expression in
cohort-TCGA. (E) The comparison of ELOVL2 transcriptomic expression in LMS1 and LMS2. (F) The comparison of stromal score, immune score and
ESTIMATE score calculated by ESTIMATE algorithm according to ELOVL2 expression. (G, H) Bubble diagram depicting the biological processes
enriched by GO analysis and the signaling pathways enriched by KEGG analysis according to upregulated DEGs in ELOVL2high group, compared with
ELOVL2low group. *P < 0.05, ***P < 0.001, and ****P < 0.0001.
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cohort, TFDP1 and MYBL2 exhibited similar survival patterns in

both TCGA-SARC and GTEx databases (data not shown). Taken

together, these results demonstrated that gene expression was

determined by the synergistic regulation of both transcription and

epigenetic factors.
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ELOVL2 dominated lipid metabolism
reprogramming and executive TIME affect
prognosis in RPLS

Considering the dysregulation of immune status and

metabolism remodeling involved in RPLS, we discovered that
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FIGURE 6

ELOVL2 dominated lipid metabolism reprogramming and executive TIME affect prognosis in RPLS. (A) Correlation among the transcriptomic
expression of ELOVL2 and PLCG1 in three databases (cohort-TCGA, GSE30929 and FD). Spearman’s correlation coefficient was calculated. (B)
Kaplan-Meier survival curves of OS for PLCG1 expression in cohort-FD. The comparison of PLCG1 transcriptomic expression in LMS1 and LMS2.
(C) Kaplan-Meier survival curve of OS for combined riskscore of ELOVL2 and PLCG1 in cohort-TCGA. (D) Heatmap showing the transcriptomic
expression of genes involving TIME according to ELOVL2 and PLCG1 expressions. The histogram on the right showing the results of differential
expression analysis of each gene in indicated comparisons on the top of each column. (E) t-SNE plot showing of the overview of 11 cell clusters in
the integrated single-cell transcriptomes of 54126 cells from four RPLS. Clusters are named as indicated cell subsets according to the specific gene
expression patterns, color-coded according to ELOVL2 and PLCG1. (F) Representative mIHC images show the positivity of CD3, CD8, CD20, CD11b,
CD68, and ELOVL2 in case 3 and case 1. Scale bar, 100 um. *P < 0.05, **P < 0.01, and ***P < 0.001.
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ELOVL2 played an essential role in tumor progression and even

dedifferentiation, and served as the only one lipid metabolism

related target biomarker. Moreover, PLCG1, ZC3HAV1L and

NFAT5 were selected as immune hub genes through immune

gene co-expression modules analysis and predicted great

prognostic efficacy. Therefore, we re-analyzed the association

between ELOVL2 and three hub genes.

Firstly, we validated these hub genes in cohort-FD and cohort-

GSE30929 through survival analysis. Interestingly, the expression of

PLCG1 was positive associated with ELOVL2 in all cohorts

(Figure 6A). In addition, PLCG1 was significantly higher in LMS2

than that in LMS1, and exhibited similar survival patterns in all

cohorts (Figure 6B). Next, the combined prognostic analysis of

ELOVL2 and PLCG1 was also performed. Patient stratification

based on these three groups presented that the Group I was

associated with favorable prognosis, whereas the Group III was

associated with dismal prognosis, and Group II was associated with

medium prognosis (Supplementary Figure 7A). Subsequently, we

developed another prognostic model for OS prediction based on

ELOVL2 and PLCG1, which suggested a great prognostic

efficacy (Figure 6C).

In order to systematically comprehend the extent of relevancy

between ELOVL2 and PLCG1 within TIME, we re-analyzed the

expression profile in cohort-TCGA. Based on comparative analysis,

we observed remarkable positive correlation between ELOVL2 and

PLCG1. In addition, the infiltration of T cells, monocytics, dendritic

cells, MDSC and M2-TAM were significantly lower with high

expression of ELOVL2 and PLCG1. Moreover, the chemokine

enrichment of CCL3, CCL4, CCL5 and CCL18, as well as

PDCD1LG2 and HAVCR2 were significantly negative associated

with high expression of ELOVL2 and PLCG1 (Figure 6D). These

results demonstrated that highly expression of ELOVL2 and PLCG1

in TIME of RPLS was involved with a immune-exculded phenotype.

To fully characterize the specific cellular localization ELOVL2

and PLCG1 in RPLS, we first evaluated them in the human protein

atlas and further validated them in situ single cell spatial

phenotype analysis through single cell RNA-sequencing and

immunohistochemistry (IHC) in cohort-FD. Interestingly,

ELOVL2 was seemed enriching in fibroblasts (no images in

database), while PLCG1 in T cells (Supplementary Figure 7B).

At the single-cell level, ELOVL2 was expressed in tumor cells,

cancer associated fibroblasts (CAFs) and smooth muscle cells

(SMCs), while PLCG1 was presented in CD4+ and CD8+ T

cells, as expected (Figure 6E; Supplementary Figure 7C).

According to the analysis of bulk-RNA seq data, case 1/2 was

defined as LMS2 and case 3/4 with LMS1, respectively. Next,

mIHC was performed to validate previous findings in these four

DDLPS. Consistent with RNA-seq data,

CD3+T cell, CD20+B cell, CD11b+DC cell and CD68+

macrophages presented a higher infiltration in case3 and case4,

but less ELOVL2+ cells. On the contrary, less CD3+T cells, CD20+B

cells and CD68+ macrophages, but more ELOVL2+ cells were found

in case 1 and case 2 (Figure 6F; Supplementary Figure 7E).

Moreover, the densities of CD3+ and cytotoxic CD8+ T cells in

the area of tumor and invasive margin were quantified by IHC. We

observed that the density of CD3+ and cytotoxic CD8+ T cells were
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significantly but negatively associated with ELOVL2+ cells

(Supplementary Figure 7D). In concordance with previous

findings, the mRNA expression level of CD3 and CD8 was

negatively associated with ELOVL2 (Supplementary Figure 7F).

Taken together, the dysregulation of lipid metabolism might

remodel an immune desert of TIME further supported their

crucial roles in the evolution of RPLS.
Discussion

RPLS is one of the most aggressive malignancies with a

heterogeneous molecular profile, lipid metabolism dysregulation,

limited medical efficacy and highly local recurrence rate (39). The

combination of doxorubicin and ifosfamide is the first-line option

in treating advanced RPLS, with limited clinical benefits and a

median OS of just 8 to 14 months (40). Although immunotherapy

has revolutionized oncology from the therapeutic point of view, its

effectiveness in RPLS remains limited (41).

To the best of our knowledge, this is the first study aimed to

systematically screen lipid metabolism related targets for RPLS. We

conducted the profiles of somatic mutations and amplification in

LMAGs, revealing potential targets that might be considered in

RPLS. Considering the targets selected using the gene alteration

profile might not be functionally significant, prognostic efficiency in

OS and DFS and immune correlations were further evaluated to

confirm the clinical relevance of the targets. ELOVL2 correlated

with significantly prognosis and infiltration of APCs was identified.

For instance, ELOVL2 was identified as an unique tissue-

independent age-associated DNA methylation marker (42) and a

specific superenhancer-associated gene implicated the LC-PUFA

synthesis network as a critical metabolic dependency (43), and was

associated with worsened patient survival in glioblastoma (44). In

addition, ELOVL2 deficient indicated an increased infiltration of

TH1/TH17 cells and a decrease of Treg (45). Thus, although basic

and clinical investigation is further required, the potential of

ELOVL2 to be successful targets was consolidated in RPLS.

Lipid metabolism and synthesis is based on the normal function

of endoplasmic reticulum (ER). Previous results indicated that the

accumulation of free fatty acids in the ER would eventually lead

abnormal protein overloading and chronic ER stress (46).

Meanwhile, the reduction of PUFA synthesis upon ELOVL2

decreasing can affect cellular metabolic homeostasis and

mitochondrial energy metabolism (47). Unexpected, we found

significantly activation of glucose metabolism pathway with

ELOVL2 deficiency, such as gluconeogenesis, pentose phosphate

pathway, pentose and glucuronate interconversions, fructose and

mannose metabolism. This finds indicated that ELOVL2 deficiency

may induce a switch in metabolism from the tri-carboxylic acid

cycle to glycolysis, which eventually produces more reactive

oxidative species (ROS) and causes oxidative stress. In addition,

more mannose type O-glycan biosynthesis and lysine degradation

was also found in the overexpression of ELOVL2. As the key

regulator in PUFAs synthesis, more fatty acid elongation, but less

arachidonic acid metabolism could be found in high group of

ELOVL2, which was consistent with the recently published data
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(48). However, the relationship between abnormal expression

phenotype of ELOVL2 and ER stress, mitochondrial dysfunction

and cellular senescence still needs to be further studied.

Lipid metabolism reprogramming is a cretical marker of

tumorigenesis and development. Previous study had indicated

that a large number of lipid related genes underwent copy

number amplification in the process of malignant development of

RPLS (49). Therefore, it could be inferred that the amplification and

high expression of lipid related gene-ELOVL2, was associated with

malignant progression of RPLS with dismal prognosis. However,

ELOVL2 displayed a heterogeneous role in the prognostic value in

breast cancer (BC) (50) and glioma (44) (Supplementary Figure 8),

respectively. In BC, ELOVL2 was hypermethylated and

downregulated in the samples from tamoxifen resistance BC

patients compared with those from tamoxifen-sensitive patients.

Strikingly, in addition to having tumor suppressor activity, ELOVL2

was shown to recover tamoxifen sensitivity up to 70% in the MCF-

7/tamoxifen resistance cells and in a xenograft mouse model (50).

Furthermore, the depletion of ELOVL2 induced metastatic

characteristics in BC cells via the SREBPs axis (51). In contrast,

ELOVL2 depletion altered the phospholipid composition of the cell

membrane by controlling fatty acid elongation, disrupting the

structural characteristics of the cell membrane, and reducing

EGFR signaling in glioblastoma cells (44). Taken together, we

believed that abnormal lipid metabolism, including abnormal

activation and inhibition, could both interfered with lipid

metabolism reprogramming through different signal pathways in

different types of cancers.

Since the tumor immune status is an another determinant of

cancer associated efficacy, we further characterized the immune

landscape in the different ELOVL2 subtypes. Interestingly, high

ELOVL2 group is defined as immunological “cold” phenotype. In

addition, the molecular signatures of this subtype is consistent with

the immune status, indicating that patients with different immune

signature may respond distinctly to immune therapy. To

circumvent the poor immunogenicity of this subtype, targeted

immune associated-biomarkers that reinvigorate the immune

system by fascinating immune cell infiltrating may be a

suitable option.

We demonstrated that RPLS patients could stratified into two

LMSs with significant differences in molecular features and clinical

prognosis. Patients with the LMS1 tumor had immune “hot”

phenotype, whereas those with the LMS2 tumor had immune

“cold” phenotype. Therefore, the lipid metabolism-associated

molecular subtypes and risk model based on LMAGs were

promising and complements the previous classification for RPLS.

With the prevalence of COVID-19 in the worldwide, the mRNA

vaccine has highlighted its important strategic position, and greatly

accelerating the development process of mRNA vaccine.

Meanwhile, it also speeds up the research and development of

mRNA cancer vaccine (52). The mRNA cancer vaccines represent

promising novel method to treat malignancies with monotherapy or

combination therapy (53). ELOVL2 is a potential target linking

lipid metabolism to immune regulations for RPLS, specifically for

patients with LMS2 tumors. However, given the function of

ELOVL2 in lipid homeostasis and cellular homeostasis in normal
Frontiers in Immunology 15
cells, there is likely profound central tolerance against ELOVL2. On

the contrast, ELOVL2 may be a target for small molecule inhibition

for RPLS.

In summary, our study identified ELOVL2 as the potential

effective target for RPLS, and patients with LMS2 tumor indicated

an immune-excluded phenotype might benefit more from small

molecule inhibition targerted ELOVL2.
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Glossary

APC Antigen presenting cells

AUC Area under the curve

CAFs Cancer associated fibroblasts

CNAs Copy number alterations

COVID-19 Corona virus disease 2019

DCs Dendritic cells

DDLPS Dedifferentiated liposarcoma

DEG Differential expression gene

DFS Disease-free survival

ELOVL2 Elongation of very-long-chain fatty acids 2

ER Endoplasmic reticulum

GEO Gene expression omnibus

GO Gene ontology

GSEA Gene set enrichment analysis

GSE GEO Series

GTEx Genotype-tissue expression

ICD Immunogenic cell death

IHC Immunohistochemistry

KEGG Kyoto encyclopedia of genes and genomes

LASSO Least absolute shrinkage and selection operator

LC-PUFA Long chain polyunsaturated fatty acids

LMAGs Lipid metabolism-associated genes

LMS Lipid metabolism subgroups

MCP-
counter

Microenvironment cell populations-counter

MDSC Myeloid-derived suppressor cells

mRNA Messenger ribonucleic acid

MHC-II Major histocompatibility complex-II

MSigDB The molecular signatures database

M2-TAM M2 Tumor-associated macrophage;

NKT Natural killer T cell

NR1H4 nuclear receptor subfamily 1 group H member 4

OS Overall survival

PBMC Peripheral blood mononuclear cell

PCA Principal component analysis

PD-1 Programmed cell death protein 1

PD-L1 Programmed cell death protein ligand 1

PLCG1 Phospholipase C gamma 1

PPI Protein-protein interaction networks

(Continued)
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ROC Receiver operating characteristic curve

RCD Regulated cell death

ROS Reactive oxidative species

RPLS Retroperitoneal liposarcoma

SARC Sarcoma

sc-RNA-seq single-cell RNA-sequencing

SD Standard deviation

SPSS Statistical product and service solutions

STRING Search tool for the retrieval of interacting genes

TCGA The cancer genome atlas

Tem Effective memory T cell

TF Transcription factor

Th1 T helper cell 1

Th17 T helper cell 17

TIME Tumor immune microenvironment

TIMER Tumor immune estimation resource

TIP Tracking tumor immunophenotype

TLS Tertitary lymphoid structures

TMB Tumor mutation burden

TOM Topological overlap matrix

TPM Transcripts per kilobase of exon model per million mapped
reads

Treg Regulatory T cells

WDLPS Well-differentiated liposarcomas

WGCNA Weighted correlation network analysis.
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