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Chlamydia trachomatis, one species of Chlamydia spp., has the greatest impact on human health and is the main cause of bacterial sexually transmitted diseases and preventable blindness among all Chamydia spp. species. The obligate intracellular parasitism and unique biphasic developmental cycle of C. trachomatis are the main barriers for the development of tools of genetic manipulation. The past decade has witnessed significant gains in genetic manipulation of C. trachomatis, including chemical mutagenesis, group II intron-based targeted gene knockout, fluorescence-reported allelic exchange mutagenesis (FRAEM), CRISPR interference (CRISPRi) and the recently developed transposon mutagenesis. In this review, we discuss the current status of genetic manipulations of C. trachomatis and highlights new challenges in the nascent field of Chlamydia genetics.
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1 Introduction

Chlamydia are a group of gram-negative, obligate intracellular pathogens, and their broad host ranges from single-celled eukaryotes to cattle, sheep and humans (1). The main species capable of commonly infecting humans include Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci. Among them, C. trachomatis has the greatest impact on human health. The eye infection of C. trachomatis can cause trachoma, which is the main cause of preventable blindness in developing countries of the world (2). According to the data of the World Health Organization (WHO) in June 2022, at least 125 million people are living in trachoma-endemic areas face the risk of trachoma blindness (2). Besides, genitourinary infection caused by C. trachomatis may lead to venereal lymphogranuloma or infertility (3).

C. trachomatis has a unique biphasic developmental cycle that alternates between two morphologically and functionally distinct developmental stages: the small, structurally stable, infectious elementary body (EB) and the large, metabolically vigorous, replicative reticulate body (RB) (1, 4). Infection begins with attachment and internalization of EBs to host cells. RBs replicate within a membrane bound compartment - the inclusion, early genes are transcribed and EBs differentiate into RBs (~6–8 hours post-infection) (1, 5, 6). Next, effectors that mediate nutrient acquisition and maintain the viability of the host cell are expressed. The bacteria divide by binary fission and the inclusion substantially expands (~8–16 hours post-infection) (6, 7). Last, RBs gradually re-differentiate back into EBs. By host cell lysis or by extrusion of intact inclusions, EBs are released to infect neighboring host cells at the end of the developmental cycle (~24–72 hours post-infection) (1, 8, 9).

Although the sequence of the first C. trachomatis genome was published in 1998 (10), the functional analysis of proteins of C. trachomatis has been limited by the lack of tools of genetic manipulation for a long time. A major barrier to the development of genetic manipulation is its dependence on a host replication and the unique biphasic developmental cycle. RB is only present in the host cell, and it is difficult for exogenous DNA to reach the bacterial cytoplasm through the four-layers of biofilm (11). Even EB can exist in the environment, it has a hard cell wall and low metabolic activity, so it is unlikely to reabsorb and integrate foreign DNA (11).

Fortunately, in the past decade, the development and application of several tools of genetic manipulation of C. trachomatis has made some progress, greatly expanding the current research on the biological characteristics of C. trachomatis and the function analysis of its virulence factors. The first step in almost all methods of genetic manipulation of Chlamydia is transformation. Four transformation methods have been reported: electroporation, chemically induced mutagenesis, polyamidoamine dendrimers (PAMAM dendrimers), and CaCl2 transformation (4, 12, 13). In this review, we categorize and summarize the tools of genetic manipulation that have been developed for C. trachomatis according to the methods of plasmid transformation (Figure 1; Table 1).




Figure 1 | Progressing of the genetic manipulation of Chlamydia trachomatis. FRAEM, fluorescence-reported allelic exchange mutagenesis. CRISPRi, CRISPR interference.




Table 1 | Progressing of the genetic manipulation of Chlamydia trachomatis.






2 Electroporation

Electroporation is universally effective in introducing heterologous DNA into obligate intracellular bacteria via brief electric pulses, which induce transient and reversible cell membrane permeabilization (47), and time constant and exponential decay pulse types, episomal DNA maintenance are the key features. Tam et al. successfully introduced the shuttle plasmin pPBW100 into C. trachomatis EBs by electroporation for the first time in 1994, and used it to infect McCoy cells and detected Chlamydia containing the chloramphenicol resistance gene in cell cultures (14). A similar electroporation method was used to mobilize an engineered vector into C. psittaci 6BC EBs and a efficiency was obtained with 10 µg of circular vector (1.9 ± 1.1×106, n=7) (48). For the successfully transformation, EBs must be highly purified and obtained by centrifugation through Renografin density gradients, and this complex procedure maybe limit the wide adoption of electroporation by other labs. Although the optimal transformation conditions for C. trachomatis electroporation have not been fully grasped, the study of Tam shows that exogenous DNA can be introduced into EBs by electroporation and the expression of heterologous screening tags can be achieve, which laid the foundation for the development of C. trachomatis electroporation technology in the future (14).




3 Chemical mutagenesis

Chemical mutagenesis is a technology that uses chemical mutagens such as base analogues, deamination agents, and alkylating agents to mutate DNA (49, 50).

C. trachomatis was subjected to low-level ethyl methanesulfonate (EMS) mutagenesis to generate chlamydiae that contained less than one mutation per genome in 2011 and a tryptophan synthase gene (trpB) null mutant incapable of avoiding the anti-microbial effect of IFN-γ–induced tryptophan starvation was isolated (15). Then mutagenesis in Chlamydia was performed by exposure of infected cells to either of the DNA alkylating compounds EMS or N-ethyl-N-nitrosourea (ENU), followed by plaque isolation of clonal strains in 2015 (4). In the study, Kokes et al. used ethyl methyl sulfonate (EMS) and N-ethyl-N-nitrosourea (ENU) to perform chemical mutagenesis on C. trachomatis to generate a mutant library, screening of mutants impaired in F-actin assembly and identifying InaC as an inclusion body membrane protein that binds host ARF and 14-3-3 proteins and regulates F-actin recombination and Golgi reorganization around vesicles (16).

Although studies have shown that it is possible to achieve either one mutation (15) or multiple mutations per genome of C. trachomatis (16–18) by adjusting different concentrations of mutagen, identifying and linking genotype and phenotype without a molecular signature is laborious and tedious, and most of the mutations identified are non-essential genes (51). Therefore, with the continuous development of genetic manipulation, the application of chemical mutagenesis will be gradually phased out.




4 Transformation of dendrimer

Polyamidoamine (PAMAM) dendrimers are hyperbranched polymers with low cytotoxicity. It can not only deliver small molecules to specific sites, but also effectively transfuse biological macromolecules such as oligonucleotides and plasmid DNA into cells (52). In addition, these dendrimers can be localized in Chlamydia inclusion bodies in Chlamydia-infected cells (53), indicating that PAMAM can directly transform exogenous DNA into RBs in infected monolayers (19, 52).

In 2012, Mishra et al. used PAMAM to transfer an antisense oligonucleotide into C. trachomatis and efficiently and specifically knockdown the transcription level of the target gene (19). Then in 2013, Kannan successfully used PAMAM to transfer a plasmid (pMW82: pL2-01-pL2-01P-GFP) into C. trachomatis and successfully detected green fluorescence in the initial transformed culture (20, 48). Despite plasmid replication and GFP expression being detected within the first infection cycle which indicating a high transformation efficiency, the dendrimer-based transformation method of Chlamydia has not been broadly adopted.




5 CaCl2 transformation

Since the first utilization of CaCl2 transformation method to stably transform the shuttle plasmid pBR325::L2 into C. trachomatis EBs by Wang et al. in 2011 (54). In the protocol, EBs were firstly incubated with plasmid DNA in CaCl2 buffer for 30 min at room temperature and then host cells resuspended in CaCl2 buffer were added, followed by an additional incubation for 20 min at room temperature. Due to its advantages of simple, rapid, cheap and repeatable operation, the CaCl2 transformation method is widely used as a general transformation method for Chlamydia. For the CaCl2 transformation, crude preparations of Chlamydia from host cell lysates exhibit more efficient than gradient purified EB preparations (54–56). Based on this method, group II intron-based targeted gene knockout (21–30), fluorescence-reported allelic exchange mutagenesis (FRAEM) (31–38), CRISPR interference (CRISPRi) (39–43) and transposon insertion mutagenesis (44–46) have been realized in C. trachomatis.



5.1 Group II intron-based targeted gene knockout

Group II introns are a class of self-splicing ribozymes capable of high-frequency movement between genes through a retrohoming (TargeTron system) with the help of intron-encoded protein (IEP, with RAN maturase, endonuclease, and reverse transcriptase activities) (21, 57). Based on this principle, the first targeted disruption of a gene on Chlamydia chromosome was performed by Johnson and Fisher in 2013 (21). In the study, a plasmid containing the coding sequence of β-lactamase was transformed successfully and site-specifically, insertionally inactivated incA of C. trachomatis L2 strain, confirming the requirement of this protein for homotypic fusion of Chlamydial inclusion (21, 25, 58).

Right now, group II intron integration technology has been used in commercial systems such as Sigma’s TargeTron gene knockout system, and it has been successfully used for gene knockout of other intracellular parasitic bacteria including Ehrlichia and Rickettsia (21, 59). However, this method requires bioinformatics analysis to determine the intron insertion site, so it is necessary to design several insertion sites at the same time to ensure the probability of gene knockout (21, 57, 60, 61), and it is also less effective if a cassette over 2.0-kb is prepared to be inserted. Another major limitation of this system is that intron insertions may have polar effects on the expression of neighboring genes if the knocked-out chlamydial genes exist within polycistronic operons.




5.2 FRAEM

In 2013, Wickstrum et al. developed an inducible gene expression system (shuttle plasmid pASK-GFP-L2) for Chlamydia, in which gene expression was controlled by Tet, developing a strategy for gene expression and/or complementation (62). Song et al. reported that pgp6 on the native pL2 plasmid of C. trachomatis is necessary for this plasmid maintenance (63). Then in 2016, Mueller et al. constructed a suicide plasmid pUS6 based on the inducible expression of pgp6 and permit rapid reverse genetics by FRAEM (31). This system can replace the chromosome coding gene of C. trachomatis with a 2.2-kb cassette encoding both GFP and β-lactamase, thus realizing the targeted knockout of C. trachomatis gene and permitting the monitoring of mutagenesis by fluorescence microscopy. They successfully constructed the trpA-deficient strain of C. trachomatis and found that the deficient strain was unable to grow in indole-containing medium (31). Later, they adapted FRAEM technology by leveraging a step-wise Cre-lox approach to excise selection marker genes from a deleted gene locus to eliminate the possibility of polar effects mediated by the inserted cassette (33).

Recently, Kenneth et al. present functional evidence that the region between C. trachomatis pgp6 and pgp7, containing four 22-bp tandem repeats in the endogenous plasmids, represents the chlamydial native plasmid origin of replication (32, 64). They constructed plasmid pKW-L2ori by mobilization of the entire region between these two genes from chlamydial native plasmid pL2 into a pUC19-based plasmid and proved that it could be maintained by C. trachomatis serovar D which contains a native chlamydial plasmid. Subsequently they proved that pKW can be utilized as a conditionally replicating plasmid sufficient for the generation of deletion mutants via allelic exchange (32).

Although FRAEM can specifically knockout gene of C. trachomatis, this strategy requires a low-frequency double-crossover event. Further optimized methods including using some heterologous site-specific recombinases [which have been reconstructed and applied to Coxiella burnetii (65)] could be applied to assist gene recombination in C. trachomatis.




5.3 CRISPRi

Since its release in 2012, the CRISPR/Cas9 system has been widely used due to its simple operation, low cost, and high efficiency (66). To repurpose the CRISPR system for transcription regulation, Matthew et al. have described an RNA-based method, CRISPR interference (CRISPRi), and they have shown that CRISPRi can efficiently silence a target gene with up to 99.9% in Escherichia coli (67). Until now, CRISPRi has been used for targeted silencing of transcription in intracellular bacteria including Mycobacterium tuberculosis (68), C. burnetii (69, 70).

In 2018, Ouellette successfully knocked down incA gene of C. trachomatis by using CRISPRi based on the catalytically inactive Cas9 variant (dCas9) of Staphylococcus aureus, proving that the system can be used to reversibly inhibit incA expression, in addition that they found the plasmid encoding the dCas9 from Staphylococcus pyogenes was not possible to successfully transform C. trachomatis with it (42). And in 2021, Ouellette et al. optimized and improved the missing expression of anhydrotetracycline (aTc) - inducible dCas9 orthologous genes and plasmid instability in the original system, and developed a second CRISPRi system based on the dCas12 system to expand the number of potential chromosomal targets (41). These two CRISPRi systems will allow for broad targeting of the C. trachomatis genome and for analysis of essential gene functions in C. trachomatis in a straightforward manner.

However, Wurihan et al. successfully transformed two plasmid encoding staphylococcal (S. aureus and S. pyogenes) dCas9 to C. trachomatis and found that conditional expression of the staphylococcal dCas9 strongly inhibits chlamydial growth in the absence of any specific guide RNA (gRNA) (40), suggesting that the staphylococcal dCas9 proteins in their current forms have limited utility for chlamydial research and strategies to overcome this problem should be developed.




5.4 Transposon mutagenesis

Transposon mutagenesis is an effective method for discovering specific genetic components associated with a given phenotype. The basic principle is that when a transposase drives an exogenous transposon integrating into the promoter region or coding region of an unknown gene randomly, the gene will be inactivated and a new mutant phenotype will be produced. Transposon mutagenesis has been applied to C. burnetii (71, 72), Rickettsia felis (73), Rickettsia prowazekii (74) and Ehrlichia chaffeensis (75) for the identification of virulence proteins.

In 2019, LaBrie et al. constructed a non-replicating plasmid termed pCMA to encode the widely utilized C9 Himar1 transposase (44). The pCMA plasmid was used in a C. trachomatis transformation procedure with β-lactams for selection and then a pool of 105 transposon mutant clones from 23 transformations was generated. Further experiments proved that a FAD-dependent monooxygenase (ct148) and a deubiquitinase (ct868) were important for infection, and identified CT339 as a ComEC (the DNA-uptake protein) homolog important for DNA uptake and lateral gene transfer (44). O’Neill et al. then describe the first application of a Transposon Directed Insertion Site sequencing (TraDIS) - based approach to C. trachomatis, offering a novel approach for saturation mutagenesis and thus identifying gene essentiality/functionality (45, 46). Later, transposon mutagenesis of Chlamydia muridarum was also development and 33 transposon mutants were generated from a total of 10 independent transformation experiments (76).

The development of transposon mutagenesis in C. trachomatis provides additional avenues for discovering the molecular mechanism underlying the pathogenesis of C. trachomatis and for a more thorough understanding of this important pathogen (44). A limitation of transposon mutagenesis is the raising possibility of polar effects mediated by the inserted transposon due to polycistronic operons existing within the chlamydial genes.





6 Summary and prospectives

The genetic intractability of C. trachomatis has severely limited molecular dissection of virulence factors associated with intracellular parasitism and pathogenic mechanisms that promote trachoma, venereal lymphogranuloma or infertility, because there was no methods for C. trachomatis virulence determinants inactivation and/or complementation. Great progress has been made in the development of genetic manipulation of Chlamydia in the past decade, and the application of the tools of genetic manipulation has significantly impeded progress in understanding the genetic basis of the pathogen’s unique lifestyle and virulence. Moreover, the increasing genetic tractability of C. trachomatis will enable the development of new pathogen countermeasures, such as rationally designed attenuated or subunit vaccines. But some problems still remain:

	(1) Low transformation efficiencies remain an obstacle to further development of genetic tools. Reasons including suboptimal electroporation conditions/buffers, purity of host cell-derived organisms could be account for the poor efficiency.

	(2) At present, the developed tools of genetic manipulation are mostly suitable for C. trachomatis and incapable for the commonly infecting humans pathogens include C. pneumoniae and C. psittaci.



Additional advances in genetic manipulation will be necessary to render Chlamydia significantly more genetically tractable. Ideally, a cell-free medium like C. burnetii (77, 78) for Chlamydia cultivation would address some issues. Omsland et al. developed a stage-specific metabolic and transcriptional activity of C. trachomatis in an axenic medium in 2012 (79), and host-free cultivation of Chlamydia may be achievable in the future. Improved electroporation conditions may be another avenue if the decreased chlamydial viability could be addressed. Overall, more rapid and definitive progress can be expected for this important and interesting intracellular parasite.
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