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Background: Distinguishing ARDS phenotypes is of great importance for its

precise treatment. In the study, we attempted to ascertain its phenotypes based

on metabolic and autophagy-related genes and infiltrated immune cells.

Methods: Transcription datasets of ARDS patients were obtained from Gene

expression omnibus (GEO), autophagy and metabolic-related genes were from

the Human Autophagy Database and the GeneCards Database, respectively.

Autophagy and metabolism-related differentially expressed genes (AMRDEGs)

were further identified by machine learning and processed for constructing the

nomogram and the risk prediction model. Functional enrichment analyses of

differentially expressed genes were performed between high- and low-risk

groups. According to the protein-protein interaction network, these hub genes

closely linked to increased risk of ARDS were identified with CytoHubba. ssGSEA

and CIBERSORT was applied to analyze the infiltration pattern of immune cells in

ARDS. Afterwards, immunologically characterized and molecular phenotypes

were constructed according to infiltrated immune cells and hub genes.

Results: A total of 26 AMRDEGs were obtained, and CTSB and EEF2 were

identified as crucial AMRDEGs. The predictive capability of the risk score,

calculated based on the expression levels of CTSB and EEF2, was robust for

ARDS in both the discovery cohort (AUC = 1) and the validation cohort (AUC =

0.826). The mean risk score was determined to be 2.231332, and based on this

score, patients were classified into high-risk and low-risk groups. 371 differential

genes in high- and low-risk groups were analyzed. ITGAM, TYROBP, ITGB2, SPI1,

PLEK, FGR, MPO, S100A12, HCK, andMYCwere identified as hub genes. A total of

12 infiltrated immune cells were differentially expressed and have correlations

with hub genes. According to hub genes and implanted immune cells, ARDS

patients were divided into two different molecular phenotypes (Group 1: n = 38;
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Group 2: n = 19) and two immune phenotypes (Cluster1: n = 22; Cluster2: n =

35), respectively.

Conclusion: This study picked up hub genes of ARDS related to autophagy and

metabolism and clustered ARDS patients into different molecular phenotypes

and immunophenotypes, providing insights into the precision medicine of

treating patients with ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is a profound

pulmonary inflammatory reaction resulting from multiple

potential causes associated with extremely high morbidity and

mortality (1–3). ARDS is a global health problem, accounting for

10.4% of the admissions to ICU, and its mortality rate was about

30% to 60% (1). There is no specific treatment proved to be effective

in decreasing the mortality or morbidity of ARDS (4) because

ARDS is a heterogeneous syndrome rather than an explicit

pathological disease.

Heterogeneity in ARDS is increasingly recognized as a principal

barrier to developing efficacious targeted therapies. Phenotyping

schemas are considered effective approaches in identifying a

homogenous population within heterogeneous patients based on

a multitude of data. In recent years they have been used in patients

with ARDS to thoroughly understand the patients’ conditions and

identify potential treatments (5). Further, a recent study has

demonstrated that the ability to detect heterogeneity in ARDS

diminished when phenotyping schema relied on only clinical data

(6). Nevertheless, plenty of excellent types of research (7–10) have

leveraged multivariate clinical data to phenotype patients of ARDS.

On the other hand, trigging of ARDS depends on immune cells,

such as neutrophils, monocytes, and macrophages, which propagate

uncontrolled inflammation and tissue injury by secreting cytokines

(11). Subsequently, adaptive immune responses are involved in

the immunopathology of ARDS (12). Hence, recognizing

different biological phenotypes (molecular phenotype and

immunophenotype) has important implications for the precision

medicine of patients with ARDS.

Autophagy is an evolutionarily conserved, lysosomal

degradation pathway that is associated with cellular recycling,

homeostasis, and elimination of intracellular pathogens (13).

Autophagy controls inflammation through regulatory interactions

with innate and adaptive immune signaling pathways, eliminating

endogenous inflammasome agonists and immune mediators (14,

15). Recently, researchers have indicated that autophagy is essential

in regulating the outcome of ARDS (16, 17). The fundamental

essence of autophagy lies in its capacity to adapt to metabolic

demands (18). Meanwhile, the metabolism data generated from
02
clinical and experimental studies (19, 20) demonstrate a disturbance

in energy and oxidative stress metabolism, which is consistent with

the pathology of ARDS. The pathological alterations observed in

ARDS may arise from a combination of genetic predisposition and

immune response, leading to subsequent modifications in the

downstream metabolites implicated in the development of ARDS.

Therefore, host-derived metabolites are essential to connect to the

pathogenesis of ARDS. Above all, we speculate that the phenotype

classification of ARDS based on the characteristics of autophagy

and metabolism is of great significance for its precision treatment.

In this study, we aimed to untangle the heterogeneity of ARDS

based on autophagy and metabolism by using molecular and

immune data in an algorithm of computation to determine

homogenous phenotypes, with the aim to provide evidence in

support of the concept of precision medicine of treating ARDS.
Materials and methods

Downloading and processing of data

Data containing three transcription profiles (GSE89953 (21),

GSE32707 (22), and GSE76293 (23)) of acute respiratory distress

syndrome (ARDS) and their corresponding clinical data were

downloaded from the NCBI GEO database (24) (https://

www.ncbi.nlm.nih.gov/geo/) from version 2.62.2 of ‘GEOquery’

package (25) in R software. The GSE89953 dataset, GSE32707

dataset, and GSE76293 dataset were based on GPL6883, GPL10558,

and GPL570 platforms, respectively. The GSE89953 dataset

comprised 26 acute respiratory distress syndrome (ARDS) patients.

A total of 144 patients were included in dataset GSE32707, including

31 ARDS patients, 34 healthy controls, and 79 other patients, in

which ARDS patients and normal patients were selected for this

analysis. A total of 12 ARDS patients and 12 healthy controls of the

dataset GSE76293 were included for analysis in the present study.

The datasets GSE89953 and GSE32707 were set as the discovery

cohort and GSE76293 as the validation cohort (Table 1). The datasets

GSE89953 and GSE32707 were subjected to batch effect correction

using the ‘sva’ (26) package in R. The Combined Datasets

encompassed a total of 57 ARDS patients and 34 healthy controls.
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TABLE 1 Acute respiratory distress syndrome data set information list.

GSE89953 GSE32707 GSE76293

Platform GPL6883 GPL10558 GPL570

Species Homo sapiens Homo sapiens Homo sapiens

Tissue alveolar macrophage whole blood Neutrophils

Samples in ARDS group 26 31 12

Samples in Normal group 0 34 12

Gender

Male 15

Female 11

Age (years)

Mean 41.8

Median 46.5

Reference PMID: 28708019 PMID: 22461369 PMID:27064380

GEO, Gene Expression Omnibus; ARDS, Acute Respiratory Distress Syndrome.

Xia et al. 10.3389/fimmu.2023.1209959
HADb (Human Autophagy Database, http://www.autophagy.lu/

index.html) is a public human autophagy-specific database.

Autophagy-related genes (ARGs) were downloaded by HADb, and

222 ARGs were obtained (Supplementary Table S1). Metabolic-

Related Genes (MRGs) were downloaded from the GeneCards

(https://www.genecards.org/) database (27), with “metabolic” as the

search keyword, after retaining MRGs with “Protein Coding” and

correlation scores greater than 1, 7036 MRGs were obtained

(Supplementary Table S2). A total of 159 autophagy and

metabolism-related genes (AMRGs) were obtained after merging

and deduplication (Supplementary Table S3).
Identification of autophagy and
metabolism-related differentially
expressed genes

According to the grouping of the integrated GEO dataset

(Combined Datasets), the patients were divided into the ARDS

group and the normal group. The differential analysis of genes in

the ARDS and normal groups was performed using the ‘limma’

package in R (28). Set |logFC| > 0.5 and adj. p< 0.01 as threshold for

differential genes. Genes with logFC > 0.5 and adj. p< 0.01 are up-

regulated differentially expressed genes, and logFC< -0.5 and adj. p<

0.01 are down-regulated differentially expressed genes. In order to

obtain the AMRDEGs associated with ARDS, all |logFC| > 0.5 and

adj. p< 0.01 differentially expressed genes (DEGs) in Combined

Datasets and AMRGs take the intersection. The results of the

differential analyses were displayed as a volcano map by the

‘ggplot2’ package, a heat map by the ‘pheatmap’ package, and a

chromosome map by the ‘RCircos’ package (29) in R.

In order to explore the correlation between AMRDEGs, the

Spearman algorithm was used. The TOP 3 positively and negatively

correlated AMRDEGs are displayed by correlation scatter plots with

the ‘ggplot2’ package in R. The ‘PROC’ package in R was used to
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plot the receiver operating characteristic (ROC) curve (30) of

AMDEGs in the Combined Datasets to distinguish whether the

patient is ARDS.
Screening crucial AMRDEGs

To further screen the crucial AMRDEGs and candidate

signatures, three machine learning [least absolute shrinkage and

selection operator (LASSO) (31) logistic regression, support vector

machine (SVM) (32), and random forest (RF) (33) algorithms were

adopted. Based on AMRDEGs in the Combined Datasets, the

LASSO logistic regression model with parameters seed = 3, family

= “binomial” was run by the ‘glmnet’ package (34) in R and run

1000 cycles to prevent overfitting combined. SVM, a supervised

machine learning technique, was executed with parameters seed = 3,

method = “svmLinner” by the ‘caret’ package. AMRDEGs were

screened with parameters seed = 3, ntree = 150 of a random forest

model by ‘randomForest’ package. Finally, the genes at the

intersection of those screened by LASSO, SVM, and random

forest were used to diagnose ARDS.
Constructing the nomogram and the risk
prediction model

In order to analyze the diagnostic efficacy of crucial AMRDEGs

for ARDS, we performed logistic regression analysis on crucial

AMRDEGs in the Combined Datasets and constructed a logistic

regression model. Based on the logistic regression analysis results,

the ‘rms’ package was used to construct a nomogram (35). The

calibration curve was used to assess the nomogram’s performance,

and decision curve analysis (DCA) (36) was performed to evaluate

the accuracy and resolution of the logistic regression model by the

‘rmda’ package.
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To evaluate the predictive power of crucial AMRDEGs for

ARDS, LASSO regression analysis was used to establish the

prediction model. The Combined Datasets were used as the

discovery cohort and the GSE76293 as the validation cohort. Risk

scores were calculated from the expression of crucial AMRDEGs

and LASSO regression coefficients.

riskScore   =  oiCoefficient   (genei)*mRNA   Expression   (genei)

According to the calculated mean risk score, patients were

divided into high-risk and low-risk groups. The ROC curve was

drawn to analyze the accuracy of the risk score in predicting

whether the patient was ARDS by the ‘pROC’ package. The

‘ggplot2’ package was used to draw a risk scatter diagram to show

the distribution of high and low-risk groups and the occurrence of

ARDS. The expression of autophagy and metabolic phenotype-

related crucial AMRDEGs in high and low-risk groups was shown

in a hot map by the ‘pheatmap’ package. Taking the expression

profile data of GSE76293 as the verification set, the risk scores were

calculated by the above formulas. Grouping was based on the mean

risk score, then the ROC curve, scatter plot and heat map

were drawn.
Screening differentially expressed genes
and functional enrichment analysis

To identify genes associated with autophagy and metabolic

phenotypes, according to the grouping of the high- and low-risk

groups in the Combined Datasets, the ‘limma’ package of R was

used to perform differential analysis. Set adjPvalue<0.01 and |logFC|

>1 as the threshold to screen the genes, among which the genes with

logFC>1 and adjPvalue<0.01 are the differentially expressed genes

(DEGs) with up-regulated expression, and the genes with logFC<-1

and adjPvalue<0.01 are the genes with down-regulated expression.

The results of the different analyses are displayed by drawing

volcano maps and heat maps with the ‘ggplot2’ and the

‘pheatmap’ package.

Gene Ontology (GO) analysis (37) is a standard method for

large-scale functional enrichment analysis, including biological

process (BP), molecular function (MF), and cellular component

(CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

(38) is a widely used database that stores information about

genomes, biological pathways, diseases, and drugs. The

‘clusterProfiler’ package (39) was used to perform GO annotation

analysis and KEGG pathway enrichment analysis on the

differentially expressed genes of the high- and low-risk groups in

the Combined Datasets. The false discovery rate (FDR)< 0.05 was

considered statistically significant, and the screening standard was

adjPvalue< 0.05 and q value< 0.05. The P value correction method is

the Benjamini-Hochberg (BH).

In order to study the differences in biological processes between

high and low-risk groups, we downloaded the “h.all.v7.5.1.symbols”

gene set from the MSigDB database (40) and performed Gene set

enrichment analysis (GSEA) (41). Adjusted P values less than 0.05

were considered statistically significant.
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To further investigate the differences in biological processes

between the high- and low-risk groups, the “h.all.v7.5.1.symbols”

Gene Set was downloaded from the MSigDB database (40) to

perform Gene Set Variation Analysis (GSVA) on the Combined

Datasets (42). Adjusted P values of less than 0.05 were considered

statistically significant.
Identification of hub genes and
construction of the related
regulatory network

The protein interaction network is significant for understanding

the functional connections between proteins (43). The STRING

database (43) (https://string-db.org/) searches for proteins and

predicts protein interactions. The database contains 67.59 million

proteins and 20052.39 million protein-protein interactions. We

used the STRING database to construct a protein-protein

interaction (PPI) network for the differentially expressed genes of

the high-risk group vs. the low-risk group in the Combined

Datasets, and the coefficient was set to 0.4. The PPI results were

exported from the STRING database and visualized by Cytoscape

(44), and the hub genes in the PPI network were analyzed by

CytoHubba (45).

miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/

miRTarBase_2022/php/index.php) database (46) is a collection of

microRNA-target interactions (MTI) database supported by

experimental evidence. To study the regulatory relationship

between hub genes and miRNAs, information about miRNA-

mRNA interactions was downloaded from the miRTarBase

database. Based on the hub genes obtained from the PPI analysis,

the miRTarBase database was used to predict possible regulated

miRNAs and construct a miRNA-mRNA regulatory network.

Cytoscape software was used to visualize the miRNA-mRNA

regulatory network.

Transcription factor (TF) controls gene expression by

interacting with target genes at the post-transcriptional stage.

TRRUST (Transcriptional Regulatory Relationships Unraveled by

Sentence-based Text mining) (https://www.grnpedia.org/trrust/) is

a human-annotated transcriptional regulation network database

(47). Transcription factors that bind to hub genes were searched

in the TRRUST database. The hub-TF network was subsequently

visualized by Cytoscape.
Immune infiltration analysis and
construction of immunologically
characterized phenotypes

Immune-related genes were downloaded from literature

PMID:28052254 (48). The gene set contains 782 genes and 28 cell

types. The degree of infiltration of immune cells was analyzed using

the single-sample GSEA (ssGSEA) algorithm on the Combined

Datasets by the ‘GSVA’ package (42). CIBERSORT (49)

deconvolutes the transcriptome expression matrix based on the
frontiersin.org
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principle of linear support vector regression to estimate the

composition and abundance of immune cells in mixed cells. The

Combined Datasets were computed to derive the immune cell

infiltration matrix by CIBERSORT. Boxplots were drawn to show

the differences in the infiltration levels of 22 immune cells between

the ARDS group and the Normal group in the Combined Datasets

by the ‘ggplot’ package. For the immune cells with significant

differences (P<0.05), the lollipop plot was used to show the

correlation between immune cells and hub genes.

Consensus Clustering (50) could divide patients into several

phenotypes according to different omics data sets to discover new

disease phenotypes or conduct a comparative analysis. Cluster

analysis was used by the ‘ConsensusClusterPlus’ package (51).

According to the results obtained by ssGSEA, ARDS patients

were divided into different groups according to the infiltration

level of immune cells to construct immunologically characterized

phenotypes. In this process, clusters were set between 2 and 8, and

80% of the total samples were extracted with 1000 repetitions, with

clusterAlg = “km” and distance= “euclidean”.
Construction of molecular phenotypes
and correlation analysis with immune
infiltrating cells

Molecular phenotypes of ARDS were identified using consensus

clustering analysis based on ten hub genes using the

‘ConsensusClusterPlus’ package in R. According to the analysis

results of ssGSEA. The ‘ggplot’ package was used to analyze the

difference in the degree of immune cell infiltration among different
Frontiers in Immunology 05
phenotypes and the correlation between hub genes and immune

cells in different molecular phenotypes.
Statistical analysis

All data processing and analysis involved in this study were

performed using R software (Version 4.1.1, https://www.r-

project.org/). For comparisons of continuous variables between

the two groups, the statistical significance of normally distributed

variables was estimated utilizing an independent Student’s t-test,

and differences between non-normally distributed variables were

analyzed through the Mann-Whitney U test (i.e., the Wilcoxon

rank-sum test). LASSO analysis was based on the glmnet package of

R (34). All statistical P values are two-sided, and a P value of less

than 0.05 was considered statistically significant.
Results

Identification of AMRDEGs between ARDS
and control

A flow chart of the study is shown in Figure 1. GSE89953 and

GSE32707, two sets of ARDS datasets, were combined to obtain the

integrated GEO dataset after removing the batch effect. The batch

effect of samples within the integrated GEO dataset was effectively

alleviated following the batch removal procedure (Figures 2A, C).

The efficacy of batch effect removal was further confirmed through

Principal Component Analysis (PCA), which demonstrated the
FIGURE 1

Flow chart of the study. GEO, Gene Expression Omnibus; ARDS, Acute Respiratory Distress Syndrome; ROC, Receiver Operating Characteristic; AMRDEGs,
Autophagy And Metabolic-Related Differentially Expressed Genes; LASSO, Least absolute shrinkage and selection operator; SVM, Support Vector Machine;
DCA, Decision curve analysis; DEGs, Differentially Expressed Genes; PPI, Protein-Protein Interaction Networks; TF, Transcription Factor; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, Gene Set Variation Analysis; GSEA, Gene set enrichment analysis.
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substantial elimination of batch effects among samples from diverse

sources within the integrated GEO dataset (Figures 2B, D).

26 AMRDEGs were obtained by the intersection of AMRGs and

differentially expressed genes (Figures 3A–C). The location of

AMRDEGs on human chromosomes was shown on the

chromosomal map (Figure 3D). All AMRDEGs were significantly

different between the two groups (P< 0.001) (Figure 3E). Further

analysis for AMRDEGs in ARDS showed multiple correlations

between the genes (Figure 4A). The degree of correlation was

indicated by the r value. The synergistic effect was observed as the

strongest between HSP90AB1 and HSPA8 (R = 0.901, P< 2.2e-16,

Figure 4B), followed by STK11 and PINK1 (R = 0.897, P< 2.2e-16,

Figure 4C), SIRT1 and MYC (R = 0.854, P< 2.2e-16, Figure 4D). In

contrast, the competitive effect was found as the strongest between

CTSB and BIRC5 (R = -0.802, P< 2.2e-16, Figure 4E), followed by

CFLAR and BIRC5 (R = -0.786, P< 2.2e-16, Figure 4F), STK11 and

BIRC5 (R = -0.762, P< 2.2e-16, Figure 4G). The ROC curve analysis

revealed that 17 of the 26 AMRDEGs (Figures 4H–N) had high

predictive accuracy, with a ROC curve above 0.9.
Selection of crucial AMRDEGs via LASSO,
SVM, and RF

To further optimize the screening of the crucial AMRDEGs, we

applied three machine learning algorithms (LASSO regression, SVM-

RFE, and RF). A total of 4 genes were screened by LASSO regression

(Figures 5A, B). The accuracy of the SVM method reached its peak
Frontiers in Immunology 06
when the number of variables was 7 (Figure 5C). RF was used to

select the top 10 genes ranked by variable importance (Figures 5D, E).

By overlapping the three algorithms, two diagnostic signatures (CTSB

and EEF2) were identified as crucial AMRDEGs (Figure 5F).
Diagnostic efficacy and predictive power of
crucial AMRDEGs in predicting ARDS

Expressions of CTSB and EEF2 were similar in the Combined

Databases (Figure 6A). In addition, a predictive tool for ARDS

development, a nomogram, was constructed by including these two

signature genes related to autophagy and metabolism. In the

nomogram, the value of each significant variable is associated with

a score point, and the scores of all characteristic variables are summed

to obtain the total score, which represents the risk of ARDS onset

(Figure 6B). Calibration curves confirmed the accuracy of the

nomogram in the diagnosis of ARDS (Figure 6C). DCA revealed

that the application of the nomogram brought benefits to patients

with ARDS (Figure 6D). Taken together, it can be concluded that the

signature genes related to autophagy and metabolism show better

diagnostic efficacy in predicting ARDS progression.

In order to evaluate the predictive power of critical AMRDEGs

in predicting ARDS, we integrated the expression of two diagnostic

genes to construct a risk-scoring model. The analysis revealed that

the risk score exhibited robust predictive capability for ARDS in

both the discovery cohort (AUC = 1) (Figure 7A) and the validation

cohort (AUC = 0.826) (Figure 7B). Then, the mean risk score
B

C D

A

FIGURE 2

Merging and correction of databases. (A) The boxplot of the ARDS datasets before removing the batch effect. (B) Principal component analysis of the
ARDS datasets before removing the batch effect. (C) The boxplot of the ARDS datasets after removing the batch effect. (D) Principal component
analysis of the ARDS datasets after removing the batch effect. The blue represents the sample in the GSE32707; the orange represents the sample in
the GSE89953. ARDS, Acute Respiratory Distress Syndrome.
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(2.231332) was used to divide the patients in the discovery cohort

into high- and low-risk groups. It was found that patients in the

high-risk group were more inclined to be ARDS, CTSB was highly

expressed in the high-risk group, and EEF2 was highly expressed in

the low-risk group (Figure 7C). Finally, the patients in the

validation cohort were divided into high- and low-risk groups

using the mean value of the risk score (-25.53986), and the results

showed the same finding (Figure 7D).
Frontiers in Immunology 07
Identification of differentially expressed
genes of high and low-risk groups

The patients were divided into high- and low-risk groups to

analyze the influence of the risk model on the occurrence and

development of ARDS. A total of 371 differentially expressed genes

were obtained, of which 214 genes were significantly up-regulated,

and 154 genes were significantly down-regulated (Figures 7E, F).
B

C D

E

A

FIGURE 3

Analysis of differentially expressed genes related to ARDS. (A) Volcano of differential expression genes in ARDS group vs. normal group. A Differential
expression volcano map of ARDS group vs. normal group. (B) Venn diagram of intersection of differentially expressed genes and AMRGS in ARDS vs.
normal group. (C) Heat map of AMRDEGs expression in ARDS group vs. normal group. (D) Chromosomal map of AMRDEGs; (E) Boxplot of
differential expression of AMRDEGs in ARDS group vs. normal group. **** represents p<0.0001. ARDS, Acute Respiratory Distress Syndrome; AMRGs,
Autophagy And Metabolic-Related Genes; AMRDEGs, Autophagy And Metabolic-Related Differentially Expressed Genes.
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Based on differentially expressed genes, GO, and KEGG

analyses were performed. The results showed that the

differentially expressed genes were mainly correlated with

neutrophil activation (BP), secretory granule lumen (MF), peptide

transmembrane transporter activity (CC), and NF-kappa signal

pathway (KEGG) (Figures 8A–D; Supplementary Tables S4-5).

The gene expression in high- and low-risk patients were further

processed for functional enrichment with GSEA and GSVA. GSEA

showed that pathways such as allograft rejection (Figure 8E) and

inflammatory response (Figure 8F) were significantly enriched in

high-risk patients, and E2F targets (Figure 8G) were significantly

enriched in low-risk patients (Supplementary Table S6). GSVA
Frontiers in Immunology 08
showed that the low-risk group was significantly enriched in E2F

targets and MYC targets V2, while the high-risk group was

significantly enriched in complement, IL6 JAK STAT3 Signaling

and allograft rejection (Figures 8H, I).
Selecting hub genes and construction of
the related regulatory network

PPI of 371 differential genes in high- and low-risk groups was

analyzed using the STRING database and visualized as a network

with the Cytoscape (Figure 9A). With CytoHubba, ten candidate
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FIGURE 4

Correlation and ROC analysis of AMRDEGs in ARDS. (A) Correlation heatmap of 26 AMRDEGs in the Combined Datasets. (B–D) Scatter plot of
correlation between TOP3 positively correlated genes. (E–G) Scatter plot of correlation between TOP3 negatively correlated genes. (H–N) ROC
curves of 26 AMRDEGs in the Combined Datasets. ** represents p<0.01; *** represents p<0.001. AMRDEGs, Autophagy and Metabolic-Related
Differentially Expressed Genes; ROC, Receiver Operating Characteristic.
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FIGURE 5

Machine learning algorithm for crucial AMRDEGs. (A) LASSO plot showed the variations in the size of coefficients for parameters shrank as the value
of the k penalty increased. (B) Penalty plot of the LASSO model with error bars denoting standard errors. (C) Variable screening plot of SVM model.
(D) The error rate confidence intervals for the random forest model. (E) The importance of genes in random forest model. (F) The interaction of the
LASSO, SVM, and RF algorithms. AMRDEGs, Autophagy And Metabolic-Related Differentially Expressed Genes; LASSO, Least absolute shrinkage and
selection operator; SVM, Support Vector Machine; RM, random forest; IncNodePurity, Increase in Node Purity.
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FIGURE 6

Validation of the diagnostic efficacy of crucial AMRDEGs. (A) forest plot of crucial AMRDEGs. (B) Nomogram showing the predicted risk for ARDS
based on crucial AMRDEGs. (C) Calibration curve showing predicted performance of the nomogram. (D) DCA showing the clinical benefits of the
nomogram. DCA, Decision Curve Analysis.
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hub genes were identified from the PPI network, including ITGAM,

TYROBP, ITGB2, SPI1, PLEK, FGR, MPO, S100A12, HCK, and

MYC (Figure 9B). Friends analysis found that the HCK gene played

an essential role in the hub genes (Figure 9C). Further analysis

showed that MYC, SPI1, and PLEK genes played significant

regulatory roles in the miRNA-mRNA regulatory network

(Figure 9D). For the TF-mRNA regulatory network, MYC, SPI1,

and ITGB2 play essential roles in the regulation (Figure 9E).
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Analysis of hub genes and infiltrated
immune cells

For ARDS patients in Combined Datasets, levels of infiltration

of immune cells were shown in Supplementary Table S7. Moreover,

12 of 22 infiltrated immune cells were differentially expressed

between the ARDS group and the normal group in the Combined

Datasets (Supplementary Table S8; Figure 10A). Most of the
frontiersin.o
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FIGURE 7

Predictive power of the risk model based on critical AMRDEGs and screening differential expression genes in the high-risk group of ARDS. (A) ROC
curve of the risk score in the Combined Datasets. (B) ROC curve of the risk score in the validation set. (C) Distribution of risk scores, distribution of
ARDS patients, and heat map of crucial AMRDEG expression in the integrated GEO dataset. (D) Distribution of risk scores, distribution of ARDS
patients, and heat map of crucial AMRDEG expression in the validation set. (E) Volcano showed expression of differential expression genes between
the high-risk and low-risk groups. (F) Heat map of differential expression genes expression in the high-risk and low-risk groups. ROC, Receiver
Operating Characteristic; ARDS, Acute Respiratory Distress Syndrome.
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different immune cells were negatively correlated, among which the

highest positive correlation was between T cells CD4 naive and T

cells CD8 (r = 0.518), and the highest negative correlation was

observed between dendritic cells activated and monocytes (r =

-0.639) (Figure 10B). These correlations between different

immune cells and hub genes are shown in Figures 10C–N.
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Construction of immunologically
characterized phenotypes

According to the analysis results of ssGSEA, ARDS patients in

the Combined Datasets were divided into two different immune

phenotypes (Cluster1: n = 22; Cluster2: n = 35) by unsupervised
B
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FIGURE 8

Functional enrichment analysis of genes in high and low-risk groups. (A-C) The functional enrichment in BP, CC, and MF analysis, respectively. (D) The KEGG
analysis of differential expression genes. (H, I) GSVA-based analysis of biological function enrichment of hallmark gene set by heat map (H) and bar plot (I).
(E–G): Allograft Rejection (E), Inflammatory Response (F), and E2F Targets (G) show three pathways related to high and low-risk groups. The abscissa is the
gene, sorted according to the logFC value in the differential gene list, logFC greater than 0 indicates up-regulated genes are marked in red, logFC less than 0
indicates down-regulated genes are marked in blue, the upper ordinate is the enrichment score, and the lower ordinate is the logFC value. BP, Biological
Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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consensus clustering (Figures 11A, B; Supplementary Table S9).

Next, we compared the differences in hub genes (Figure 11C) and

immune cells (Figure 11D) in immune signature phenotypes, and

analysis correlations of differential immune cells (Figure 11E). The

results showed that there were six hub genes with significant

expression differences (Figure 11C) and 20 kinds of immune cells

with significant infiltration differences (Figure 11D) in immune

signature phenotypes (Figure 11C). The heat map of correlations

between differential immune cells shows that there is a positive

correlation between immune cells, among which Plasmacytoid

dendritic cell and Monocyte have the highest positive correlation

(r=0.780, P=8.900e-13). Differential hub genes and immune cells

have correlations (Figures 11F–K).
Construction of molecular phenotypes and
correlation analysis with immune
infiltrating cells

According to the ten hub genes, ARDS patients in the

Combined Datasets were divided into two different molecular
Frontiers in Immunology
 12
phenotypes (Group 1: n = 38; Group 2: n = 19) by unsupervised

consensus clustering when the number of clusters is 2

(Figures 12A–C; Supplementary Table S10). The result of the

principal component analysis shows that the two groups of ARDS

patients could be well distinguished (Figure 12D).

Most of the hub genes were highly expressed in Group 1 and

under-expressed in Group 2 (Figure 13A). There were significant

differences in most hub genes between the two subgroups, and the

expression value in Group 1 was significantly higher than in Group

2 (Figure 13B). In both the Combined Datasets (Figure 13C) and

GSE76293 datasets (Figure 13D), the expression values of most

genes in the ARDS group were significantly higher than those in the

normal group. Further analysis revealed that more than 70% of

immune cells significantly differed between the two groups

(Figure 13E). Both in Group1 (Figure 13F) and Group2

(Figure 13G), most of the differential immune cells were

positively correlated.

Most hub genes positively correlated with immune cells in

groups 1 (Figure 14A) and 2 (Figure 14B). The top ten

correlations of genes and immune cells in Group 1 and Group 2

were shown in Figures 14C–L and Figures 14M–V, respectively.
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FIGURE 9

Construction of PPI network and interconnected regulatory network. (A) protein-protein interaction network constructed by differential expression
genes. (B) Network of the top ten hub genes. (C) Cloud and rain map of hub gene importance. (D, E) miRNA-mRNA (D) and TF-mRNA (E) regulatory
network constructed by hub genes. PPI, protein-protein interaction; TF, Transcription Factor.
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Discussion

The discrimination of ARDS phenotypes holds clinical

significance in the context of devising tailored therapeutic

interventions. However, the identification of phenotypes is

currently mainly based on clinical indicators. In this study, we

delved into the critical insights gained from analyzing autophagy

and metabolism-related genes to identify and differentiate

phenotypes of ARDS. We stratified patients into two groups,

high-risk and low-risk for ARDS development, which represents a

crucial step toward better patient management. Through in-depth

bioinformatics analysis, we identified a set of ten candidate hub
Frontiers in Immunology 13
genes, namely ITGAM, TYROBP, ITGB2, SPI1, PLEK, FGR, MPO,

S100A12, HCK, and MYC, with significantly altered expression.

Additionally, we revealed two distinct phenotypes within the ARDS

patient population, enhancing our understanding of the intrinsic

heterogeneity of this syndrome.

In this study, we employed bioinformatics analysis to identify a

panel of 10 hub genes, assessed the infiltration of immune cells

using ssGSEA and CIBERSORT algorithms, and performed

consensus clustering analysis to classify ARDS subtypes based on

the identified hub genes and infiltrating immune cells. The crucial

AMRDEGs associated with ARDS were identified by LASSO, SVM,

and RF analysis, including CTSB and EEF 2. The application of
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FIGURE 10

The immune cell infiltration and association with hub genes. (A) The immune cell infiltration in the ARDS and the Normal group. (B) Correlations of
differently infiltrated Immune cells. (C–N) The association between hub genes and differently infiltrated Immune cells. * represents p<0.05; **
represents p<0.01; *** represents p<0.001; **** represents p<0.0001. ARDS, Acute Respiratory Distress Syndrome; ns, no significance.
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three machine learning methods further ensured the reliability of

screened genes. We then analyzed the diagnostic efficacy of crucial

AMEDEGs for ARDS by constructing a nomogram. After that, a

risk prediction model was established to evaluate the predictive

power of ARDS according to the risk score calculated by the crucial

AMERGs and was further verified in the validation cohort.

Subsequently, we screened DEGs between the high- and the low-

group and explored the function enrichment analysis based on GO,

KEGG, GSEA, and GSVA. The hub genes associated with ARDS

were selected by PPI analysis and explored the correlation with

infiltrated immune cells. Finally, consensus clustering was applied

to construct genomic and immune phenotypes, and the correlations
Frontiers in Immunology 14
between hub genes and immune cells were further analyzed in

different phenotypes. Our findings underscore the pivotal

involvement of autophagy, metabolism, and immunity in the

underlying pathophysiological mechanisms of ARDS.

As a result of our study, we selected ten autophagy and

metabolism-related hub genes. A total of 6 genes, ITGAM, SPI1,

PLEK, S100A12, HCK, and MYC, were expressed differently between

different phenotypes. ITGAM has been identified to encode integrin

aM (CD11b). It’s a surface marker of monocytes and mediates various

cell functions, including chemotaxis, adhesion, and transendothelial

migration (52, 53). CD11b expressions were found enhanced in ARDS

alveolar polymorphonuclear neutrophils (23), which is consistent with
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FIGURE 11

Construction and correlation analysis of immune signature phenotypes. (A) Consensus clustering matrix when k = 2. (B) Consensus CDF curves
when k = 2 to 8. (C) Boxplot of hub genes in different immune phenotypes. (D) Boxplot of immune cells in different immune phenotypes.
(E) Correlations of differential immune cells. (F–K): Correlation between differential hub genes and differential immune cells. * represents
p<0.05; ** represents p<0.01; *** represents p<0.001; **** represents p<0.0001. CDF, Cumulative Distribution Function; ns, no significance.
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our study, that ITGAMwas highly expressed in ARDS patients in both

the Combined Datasets and the validation set. SPI1 encoding

transcription factor PU.1 regulates the innate immune function of

alveolar macrophages (54) and functions to initiate inflammatory

cascade through activating alveolar macrophages (55, 56). The

transcribed protein of PLEK has been identified in platelets and is

involved in platelet biology (57, 58). There is currently a lack of data on

the relationship between SPI1 and PLEKwith ARDS. In our study SPI1

was highly expressed in ARDS patients, while PLEK was not

consistently expressed in the two datasets. S100A12, known as a

RAGE ligand, elicits a proinflammatory response in leukocytes and

endothelial cells. High concentrations have been found in lung tissue

and bronchoalveolar lavage fluid in acute lung injury (59), consistent

with our study. HCK is a member of the Src family expressed in

myelomonocytic cell lineages, ultimately affecting cellular proliferation,

differentiation, and migration (60), and has played an essential role in

ARDS (61–63). The MYC-encoded protein forms a heterodimer with

the transcription factor and has different expressions in ARDS patients

and controls (64). Our study showed that the expression of HCK and

MYC was controversial in different datasets but was consistent in
Frontiers in Immunology 15
phenotype. These differences may be related to the heterogeneity of

ARDS, which further illustrates the necessity of phenotypic

classification of ARDS patients.

Differentially expressed genes in high- and low-risk groups have

been identified. The high-risk group was significantly enriched in

regulating immune inflammation, including neutrophil activation,

inflammatory response, and complement. The related pathways in

the high-risk group mainly focused on IL6-JAK-STAT3 signaling,

NF-kappa signal pathway, and E2F targets were increased

considerably in low-risk patients. The result revealed that immune

inflammation may play a crucial role in the development of ARDS in

high- and low-risk groups. This result is consistent with previous

phenotypic classifications of ARDS (7, 9, 65). However, the previous

phenotype classification based on inflammatory factors was limited to

clinical markers, so it is necessary to classify phenotypes based on

molecular mechanisms to achieve precise treatment of ARDS.

We subsequently evaluated the roles of hub genes in immune

cell infiltration and constructed the immunophenotypes. After we

had selected the ten autophagy and metabolism-related hub genes,

it was found that they could be used to cluster patients with ARDS.
B
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FIGURE 12

Construction of molecular phenotypes of ARDS. (A) Consensus clustering matrix when k = 2. (B) Consensus CDF curves when k = 2 to 8. (C) Relative
alterations in CDF delta area curves. (D) Principal component analysis performed to distinguish Group 1 and Group 2. (CDF) Cumulative Distribution Function.
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Our research found that most of the hub genes and immune cells

were highly expressed in cluster 2 and group 1. It means that cluster

2 and group 1 are mainly immune activations. It is consistent with

the current classification of ARDS on the high and low-

inflammation types (8, 9). Further research is needed to integrate

the molecular, immune, and clinical features of ARDS to classify

subtypes and guide the precise treatment of ARDS. Patients in the

different clusters and groups had differently infiltrated immune
Frontiers in Immunology 16
cells, suggesting that autophagy and metabolism in patients with

ARDS might regulate immune status, which might lead to a

different prognosis.

Our study has limitations. First, all analyses were based on data

obtained from public databases. GEO dataset is restricted in terms

of species representation, sequencing platforms, molecular types,

sample grouping, and sample quality. However, the availability of

suitable datasets for our analysis was limited to the dataset used in
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FIGURE 13

Hub genes and immune cell infiltration of molecular signature phenotypes. (A) Heatmap of hub genes expression in Group 1 and Group 2. (B) Boxplot of
hub genes in Group 1 and Group 2. (C, D) Boxplot of hub genes between ARDS and Normal group in the Combined (C) and the GSE76293 dataset (D).
(E) Immune cell infiltration between Group 1 and Group 2. (F, G) The correlation of the immune cells in Group 1 (F) and Group 2 (G). * represents p<0.05;
** represents p<0.01; *** represents p<0.001; **** represents p<0.0001. ARDS, Acute Respiratory Distress Syndrome; ns, no significance.
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this study. Although we have set the validated cohort, further

validation would be best done in prospective studies. We have

also emphasized our commitment to accumulating samples from

our institution for sequencing, aiming to supplement the

shortcomings of this study in our subsequent research.

Additionally, we acknowledge the limitations of different sample

types can lead to variations in gene expression profiles and

potentially introduce noise if the biological relevance of sample

types is not appropriately considered. Secondly, the results do not

provide a comprehensive view of the role of autophagy in ARDS

because the RNA sequence findings do not distinguish between

phosphorylation and dephosphorylation of autophagy-related

proteins. Proteomics analysis is required before translational

application. Thirdly, it is imperative to conduct experimental

investigations to delve deeper into the molecular mechanisms

involving the interplay between autophagy, metabolism-related

genes, and immune cells. Additionally, thorough experimental
Frontiers in Immunology 17
validation is warranted to ascertain the prognostic implications

for patients exhibiting distinct ARDS phenotypes.

Our study identified ten candidate hub genes and classified

ARDS patients into two distinct phenotypes. These findings hold

direct clinical significance, paving the way for more precise

diagnosis and personalized treatment strategies. Moreover, our

research establishes a foundation for future experimental and

clinical investigations, providing valuable directions for further

exploration of ARDS and its therapeutic approaches. In future

studies, the expression of the hub genes in ARDS patients can be

explored in relation to clinical parameters such as disease severity

and treatment response. Furthermore, we can delve deeper into the

investigation of immune cells associated with the hub genes to

better understand their roles in the pathogenesis of ARDS.

Specifically, we can explore the distribution and functions of these

immune cells in different phenotypes of ARDS. This may aid

physicians in better guiding the treatment of ARDS patients.
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FIGURE 14

Correlation of hub genes and infiltrating immune cells. (A, B) Correlation between hub genes and immune cells in Group 1 (A) and Group 2 (B). (C-V)
Scatter plot of top 10 correlations between hub genes and immune cells in Group1 (C-L) in Group2 (M-V).
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Conclusion

In conclusion, the present study picked up ten hub genes of

ARDS related to autophagy and metabolism, namely ITGAM,

TYROBP, ITGB2, SPI1, PLEK, FGR, MPO, S100A12, HCK, and

MYC, which could cluster ARDS patients into different molecular

phenotypes. Besides, we also explored the infiltrated immune cells

of ARDS and clustered ARDS patients into different

immunophenotypes. We further analyzed their correlations with

hub genes, providing a new perspective on the role of immunity,

autophagy, and metabolism in ARDS.
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