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Background: The optimal diagnosis and treatment of tuberculosis (TB) are

challenging due to underdiagnosis and inadequate treatment monitoring.

Lipid-related genes are crucial components of the host immune response in

TB. However, their dynamic expression and potential usefulness for monitoring

response to anti-TB treatment are unclear.

Methodology: In the present study, we used a targeted, knowledge-based

approach to investigate the expression of lipid-related genes during anti-TB

treatment and their potential use as biomarkers of treatment response.

Results and discussion: The expression levels of 10 genes (ARPC5, ACSL4, PLD4,

LIPA, CHMP2B, RAB5A, GABARAPL2, PLA2G4A, MBOAT2, and MBOAT1) were

significantly altered during standard anti-TB treatment. We evaluated the

potential usefulness of this 10-lipid-gene signature for TB diagnosis and

treatment monitoring in various clinical scenarios across multiple populations.

We also compared this signature with other transcriptomic signatures. The 10-

lipid-gene signature could distinguish patients with TB from those with latent

tuberculosis infection and non-TB controls (area under the receiver operating

characteristic curve > 0.7 for most cases); it could also be useful for monitoring

response to anti-TB treatment. Although the performance of the new signature

was not better than that of previous signatures (i.e., RISK6, Sambarey10, Long10),

our results suggest the usefulness of metabolism-centric biomarkers
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Conclusions: Lipid-related genes play significant roles in TB pathophysiology and

host immune responses. Furthermore, transcriptomic signatures related to the

immune response and lipid-related gene may be useful for TB diagnosis and

treatment monitoring.
KEYWORDS

tuberculosis, lipid-related gene, transcriptomic biomarker, treatment monitoring,
differential diagnosis
1 Introduction

Tuberculosis (TB) is a severe infectious disease that remains a

global public health emergency. According to the World Health

Organization (WHO), approximately 1.4 million people lost their

lives due to TB in 2022 (1). Despite attempts to reduce the duration

of TB treatment, the 6-month regimen is still widely used for drug-

susceptible TB (2, 3). This prolonged duration can lead to poor

treatment adherence (4, 5) and consequently lead to negative

outcomes such as treatment failure, relapse, antibiotic resistance,

and disease spread (6, 7). Furthermore, conventional TB diagnosis

and treatment monitoring rely on sputum-based tests, which have

low sensitivity and modest specificity. Additionally, the collection of

sputum samples for assays is difficult (8, 9). Underdiagnosis and

insufficient treatment monitoring hinder the timely and accurate

treatment of TB, leading to poor outcomes. Over the past two

decades, significant efforts have been made to develop novel non–

sputum-based biomarkers that can be used to rapidly and

accurately identify active TB infection and monitor the treatment

response (10). Among these biomarkers, blood transcriptomic

biosignatures, which reflect host immune responses during anti-

TB treatment, are promising candidates (11).

Although multiple transcriptomic signatures for the diagnosis of

TB have been proposed (12, 13), the dynamic responses of these

biomarkers to TB treatment have not been the main focus in prior

works. Only a few transcriptomic signatures have been evaluated for

use in the monitoring of anti-TB treatment (9, 10, 14). These

signatures have also been found to be useful for TB diagnosis,

treatment monitoring, and risk prediction (9). A multi-national

study validated the use of the six-gene RISK6 signature (TRMT2A,

SDR39U1, TUBGCP6, SERPING1, GBP2, and FCGR1B) for TB

diagnosis and treatment monitoring. This signature had a high

performance for the differentiation of untreated patients with those

who completed the intensive phase of treatment, at the end of

treatment, and those who had completed treatment two months

previously. Additionally, the RISK6 signature fulfills the WHO target

product profile criteria for screening/triage tests for the diagnosis of

TB (15). We previously developed the Long10 signature comprising

10 genes (CD274, KIF1B, IL15, TLR1, TLR5, FCGR1A, GBP1, NOD2,

GBP2, EGF) that were consistently downregulated during TB

treatment. The signature displayed comparable performance to

other signatures for TB diagnosis, treatment monitoring, and risk

assessment (16). The satisfactory performance of the RISK6 and
02
Long10 signatures suggests that a combination of transcriptomic

biosignatures can be useful for multiple aspects of TB management.

Although the Sambarey10 signature (FCGR1A, HK3, RAB13, RBBP8,

IFI44L, TIMM10, BCL6, SMARCD3, CYP4F3, SLPI) showed

promising performance in TB diagnosis, it has not been evaluated

for the monitoring of treatment responses (12, 13, 17). Furthermore,

in an individual participant data meta-analysis, only the Sambarey10

and Sweeney3 signatures fulfilled the WHO target product profile

criteria for TB triage tests, which requires 90% sensitivity and 70%

specificity at the minimum (13, 18).

Despite significant advancements in recent decades, further

efforts are needed to develop transcriptional biomarkers for use in

TB management. In a prospective cohort study, none of the

evaluated transcriptome-based biosignatures fulfilled the WHO

target product profile criteria for blood-based confirmatory tests

(9). The significant variations in host responses to TB among

individuals, cohorts, and comorbidities make the development of

a universal biosignature challenging (11). Additionally, the multi-

step experimental process, statistical analysis pipelines for data with

thousands of genes, and the nature of array- or next-generation

sequencing-based technologies can lead to high false-positive rates

(19–23). Thus, the reproducibility and robustness of biosignatures

need to be improved.

Lipid signaling and immune responses are complex, interlinked

processes. Lipoproteins, free fatty acids (FFAs), lipokines,

interleukins, and other biological components modulate the

complex interactions between these systems (24). In TB,

proinflammatory lipid signaling cascades are associated with

tricarboxylic acid cycle remodeling, increased interleukin-1b
expression, and decreased granulocyte-macrophage colony-

stimulating factor expression (25). Our previous study showed

significant perturbations related to metabolism and immune

response of the host signaling based on the alteration in plasma

lipid profiles between TB patients and non-TB controls.

Subsequently, dysregulated metabolic and signaling pathways

were identified using gene enrichment analysis. Among the genes

involved in these pathways, 162 non-overlapped lipid-related genes

potentially associated with the pathophysiology of TB were

extracted and validated in three datasets (26). Our other study of

the plasma lipidome of patients with TB during the 6-month

treatment regimen showed changes in pathways related to lipid

metabolism and the host immune response (27). These findings

suggest an association between systemic lipid alterations and TB
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disease status. Thus, changes in lipid-related genes may serve as

indicators of the response to TB treatment.

In the present study, we used a targeted, knowledge-based

approach to select the most significant TB biomarker candidates

from the 162 lipid-related genes previously found. The study

workflow is described in Figure 1. We evaluated the potential

usefulness of these genes for pulmonary TB diagnosis and

treatment monitoring in multiple cohorts. Additionally, we

conducted a benchmark analysis to compare the performance of

the candidate biomarkers with that of publicly available signatures.

We found that the performance of the lipid-related genes was not

better than that of certain other biosignatures. Our results

demonstrate that lipid metabolism is involved in the host

immune response during TB treatment. Importantly, we provide

more evidence that lipid metabolism and signaling researches can

contribute to improve the management of TB.
2 Materials and methods

2.1 Published transcriptomics data
acquisition

Transcriptomic datasets of pulmonary TB were collected from

the Gene Expression Omnibus (GEO) and ArrayExpress databases.

The search term was built as previously described and restricted to

Homo sapiens species (16). For longitudinal datasets, drug

susceptibility (DS)-TB cases with no known severe comorbidities

were selected. Additionally, patients with known failure treatment

outcomes were excluded. Three representative datasets [GSE31348
Frontiers in Immunology 03
(28), GSE89403 (29), and GSE181143 (30)] were included for

subsequent analyses to demonstrate the dynamic response of

lipid-related genes during the TB treatment time course. These

three longitudinal TB datasets were obtained from patients who

underwent the standard six-month anti-TB treatment. GSE31348

was used as the identification cohort, while GSE89403 and

GSE181143 were utilized for validation. Additional datasets were

collected to demonstrate the potential of lipid-related genes in TB

diagnosis. They covered different medical conditions with or

without human immunodeficiency virus (HIV), including TB,

latent TB infection (LTBI), non-TB, and other diseases (OD). Of

note, the OD groups from the GSE37250 dataset consist of patients

with multiple diseases that are common in the African population

(e.g., pneumonia (PNA)/lower respiratory tract infection/

Pneumocystis jirovecii pneumonia; malignancy and other

neoplasia other than Kaposi’s sarcoma; pelvic inflammatory

disease/urinary tract infection; bacterial, viral meningitis, or

meningitis of uncertain origin; and hepatobiliary disease).

Detailed information is available in the original study of the

dataset (31). The collected datasets were also comprised of

healthy control, active sarcoidosis (SARC), non-active SARC, lung

cancer, and pneumonia individuals. Eight chosen datasets were E-

MTAB-8290 (non-TB-non-HIV, non-TB-HIV, TB, TB-HIV) (32),

GSE37250 (OD, OD-HIV, LTBI, LTBI-HIV, TB, and TB-HIV) (31),

GSE107991 (healthy control, TB, LTBI) (33), GSE107994 (healthy

control, TB, LTBI) (33), GSE101705 (TB, LTBI) (34), and a

combined dataset from GSE42825, GSE42826, and GSE42830

(healthy control, active SARC, non-active SARC, lung cancer,

PNA) (35). The information of all datasets included in this study

is summarized in Supplementary Table 1.
A

B

C

FIGURE 1

The workflow of the study. (A) Publicly available data collection. (B) Identification of biomarkers and foundation of biosignature. (C) Validation of the
ability of the biosignature for TB diagnosis and treatment monitoring. TB, tuberculosis.
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2.2 Targeted lipid-related genes list and
other available signatures

A list of 162 lipid-related genes associated with the biological

pathways underlying TB pathophysiology was retrieved from our

previous study (Supplementary Table 2) (26). This list was extracted

from significantly enriched pathways of our reported lipid

biomarkers for TB and non-TB control differentiation. Of note,

all of these 162 genes are host genes and not derived from

Mycobacterium tuberculosis (Mtb).

For comparison purposes, three other signatures were created

by directly extracting the component genes of publicly available

signatures, i.e., RISK6 (36), Sambarey10 (17), and Long10 (16).
2.3 Data processing and normalization

Microarray data were normalized using affy (version 1.74.0,

Affymetrix) (37) and lumi (version 2.48.0, Illumina) (38) packages,

respectively. The batch effects of microarray datasets with multi-site

cohorts was corrected by the Combat method (39) using sva package

(version 3.44.0) (40) after being examined with the BatchQC package

(version 1.24.0) (41). Regarding RNA-seq data, the batch effect of

datasets was inspected by BatchQC and corrected using Combat-seq

(42). RNA-seq data were normalized using the median of ratio method

combined with regularized logarithmic transformation. The pipeline

was conducted by the DESeq2 package (version 1.36.0) (43).
2.4 Single-sample scoring of gene
signature

Gene set variation analysis (GSVA) was carried out using GSVA

package (version 1.44.5) (44) to evaluate the treatment monitoring

and diagnosis characteristics of gene signatures. GSVA transforms

the transcriptome profile of an individual sample into a signature

enrichment profile. The GSVA score of a signature characterizes the

coordination in the regulation (either up or down) of its component

genes and indicates its activity level.
2.5 Statistical analysis

The molecular profiles of the lipid-related genes of patients

during TB treatment were examined using principal component

analysis (PCA) and t-distributed stochastic neighbor embedding (t-

SNE). The profiles were visualized using three-dimensional PCA

and t-SNE score plots drawn by plotly package (version 4.10.1).

ComplexHeatmap package (version 2.15.1) (45) was used to create

heatmap visualization of GSVA score for obtained biosignature. A

polynomial regression targeted to 162 lipid-relate genes was

implemented by maSigPro package (version 1.68.0) (46) to

identify differentially expressed genes (DEGs) during the TB
Frontiers in Immunology 04
treatment time course. In short, the algorithm built a profile

model for time-course gene expression:

yi=b0+b1Ti+ b1T
2
i +…+ bdT

d
i +h1Zi1+…hpZip+ϵi,

where yi is the expression level for a gene and ϵi is the error

term. The model consists of two parts: (1) polynomial of degree d in

the time variable and (2) the linear regression explained by p

explanatory variables. This is assumed to be the full model, but

due to model complexity, the package considers a reduced model,

which uses fewer variables than the full model but still has enough

predictive power. The selection procedure is either forward or

backward step-wise selection where each variable is sequentially

tested if the addition or elimination of the variable improves the

model. In our case, we did not include any explanatory variable and

set the polynomial degree as 2. For testing the overall significance of

the regression model, F-test was performed for each gene. Lipid-

related genes with a false discovery rate (FDR) < 0.05 were selected

as DEGs. The R2 value was set to ≥ 0.3 for selecting the genes as

biomarker candidates.

The Kruskal-Wallis test and the post hoc two-sided unpaired

Wilcoxon rank sum test were performed for testing unpaired data.

With paired data, the Friedman test followed by the post hoc paired

Wilcoxon signed rank test was applied. For a single statistical

testing, a raw P-value < 0.05 was considered statistically

significant. For multiple comparisons, the FDR of 0.05 was

established as the significant threshold. Statistical tests were

conducted using rstatix package (version 0.7.1).
2.6 Gene signature performance evaluation

The potential of the signature to characterize different TB

treatment states was evaluated by applying k-means clustering. In

detail, the expression profile of each gene was considered a variable,

and the sample at a specific time point was treated as an

observation. The number of clusters was predetermined. As a

result, the algorithm identified clusters of samples that exhibited

similar expression profiles of the signature, regardless of their actual

sampling time point. The data was Pareto scaled prior to the

analysis. MetaboAnalyst 5.0 (47) was employed to conduct the

classification model.

For TB diagnosis, the classification model was built using a

logistic regression. Model validation was performed with a 10-fold

nested cross-validation procedure where the outer loop is for

splitting training and test data and the inner for searching the

best tuning parameters. The caret package (version 6.0-93) (48) was

used for model building and validation. Model performance was

assessed by the area under the curve (AUC) value of the receiver

operating characteristic (ROC) curve. All statistical analyses and

presentations were implemented in R version 4.2.1. Besides the base

R graphics, the ggplot2 (version 3.4.0) and its extension ggpubr

(version 0.5.0) were used for visualization unless stated otherwise.
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3 Results

3.1 The association of 162 lipid-related
genes with different TB treatment states
and various disease conditions

PCA was performed to investigate the dynamic responses of the

expression profiles of 162 lipid-related genes during TB treatment.

The PCA scores plots showed clear separations between the

transcriptomes at baseline and at treatment completion, but not

after one, two, four, or eight weeks of treatment, in all datasets

except the Brazilian population subset of GSE181143 (no clear

separation was observed for this subset) (Figure 2A). Interestingly,

t-SNE displayed three clusters of lipid-related gene transcriptomes

(i.e., baseline, mid-time points, and treatment completion) as

observed with PCA, except GSE181143 cohort (Supplementary

Figure 1). The lipid-related gene expression profiles generally

formed three clusters corresponding to baseline, treatment

completion, and other time points.
Frontiers in Immunology 05
To further explore the associations between alterations in the

gene expression of lipid-related genes and TB treatment states, we

performed GSVA. The GSVA score declined significantly from

baseline to treatment completion, reflecting that the lipid-related

genes were less activated at the end of the treatment course

(Figure 2B). Moreover, the Friedman test demonstrated significant

differences in GSVA scores across various time points in GSE31348,

GSE89403, and GSE181143 (Supplementary Table 3). Pairwise

comparison showed that the GSVA score for the 162 lipid-related

genes differed significantly between baseline, mid-treatment, and

treatment completion, with no significant difference among mid-

treatment time points. In GSE181143, no significant difference was

observed between the mid-treatment (after eight weeks) time point

and treatment completion. These findings were in line with the

PCA results.

We also performed GSVA to investigate the association between

the lipid-related genes and different disease conditions. The GSVA

score was significantly higher for patients with TB than for those with

other conditions (i.e., non-TB-non-HIV, LTBI, LTBI-HIV, healthy
B

C

A

FIGURE 2

The potential of 162 lipid-related genes in TB treatment monitoring and diagnosis. (A) 3D principal component analysis scores plots represent the
transcriptome profiles for 162 lipid-related genes during the TB treatment. (B) The GSVA score of 162 lipid-related genes across the TB treatment
time course. The orange point represents the median GSVA score of the subject group and the box plot represent the correspondent interquartile
range. (C) The GSVA score of 162 lipid-related genes in TB and its counterparts. GSVA, gene set variation analysis; 1, after one week; 2, after two
weeks; 4, after four weeks; 8, after eight weeks; EoRx, treatment completion; TB, tuberculosis; LTBI, latent TB infection; OD, other diseases; HIV,
human immunodeficiency virus; SARC, sarcoidosis; Cancer, lung cancer; PNA, pneumonia; #, subset from India of GSE181143 dataset; ¶, subset
from Brazil of GSE181143 dataset; ns, not significant; *,<0.05; **,<0.01; ***,<0.001, ****,<0.0001; two-sided paired Wilcoxon signed rank test (B) and
two-sided Wilcoxon rank sum test (C).
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control, non-active SARC) (Figure 2C) and differed significantly

across patient groups. However, no significant differences were

found between the TB group with OD, active SARC, lung cancer,

and PNA groups (Figure 2C, Supplementary Table 4). Additionally,

the GSVA score of the LTBI group differed significantly from those of

other groups (GSE37250 and GSE107994). Notably, the GSVA score

did not differ significantly between patients with and without HIV

infection in the non-TB (E-MTAB-8290), OD, LTBI, or TB groups

(GSE37250). Taken collectively, these results indicated the association

between 162 lipid-related genes and TB treatment states. This

suggested further investigation into the ability of 162 lipid-related

genes for TB treatment monitoring and diagnosis.
3.2 The foundation of 10-lipid-gene
transcriptional signature

To develop a clinically applicable biosignature, 162 genes were

screened to identify the most promising candidate biomarkers. A

time-course regression analysis targeted to 162 lipid-related genes

was conducted on 135 samples with 5 different time points

(GSE31348) to identify DEGs throughout TB treatment. The

analysis identified 80 lipid-related genes that are differentially

expressed during TB treatment, with most changes in the
Frontiers in Immunology 06
expression levels of these genes were subtle. Ten DEGs with R2 >

0.3 were identified as the most potential biomarker candidates

(Table 1). The ten lipid-related genes together formed the so-

called “10-lipid-gene” signature.

GSVA was performed on the discovery dataset (i.e., GSE31348)

to demonstrate the dynamic response of the 10-lipid-gene

signature. Overall, the GSVA scores for the signature showed

similar changes during treatment as did those for the 162 lipid-

related genes (Figures 2B, 3A, Supplementary Table 5). GSVA

scores for all 27 patients of the discovery dataset were visualized

using heatmaps to examine the interindividual response variability

in the 10-lipid-gene signature. Although some patients showed

unusual patterns of change during the initial four weeks of

treatment, most cases showed a significant reduction in the

GSVA score at treatment completion (Figure 3B). The changes in

individual gene expression of all 27 patients in the GSE31348

dataset were analyzed to determine the gene-specific variability.

Twomain trends were observed during TB treatment: chronological

down-regulation and up-regulation (Figure 3C). In particular, the

expression of nine genes (ARPC5, ACSL4, LIPA, CHMP2B, RAB5A,

GABARAPL2, PLA2G4A, MBOAT2, and MBOAT1) was altered

only slightly during the initial four weeks of treatment, but was

down-regulated significantly at treatment completion. In contrast,

the expression of PLD4 increased during treatment.
TABLE 1 List of the most potential lipid-related gene candidates.

EntrezID
Gene
Symbol Gene Name FDR*

R-
squared*

Main Biological Function of
Encoded Protein

Reference

10092 ARPC5
actin-related protein 2/3 complex
subunit 5

5.23E-
11 0.335

Regulate fatty acid synthesis.
Involve in cup formation during phagocytosis
Regulate the homeostasis of T cells

(49–51)

2182 ACSL4
acyl-coenzyme A synthetase long-
chain family member 4

1.74E-
11 0.349

Promote fatty acid oxidation and lipid
biosynthesis
Regulate ferroptosis

(52, 53)

122618 PLD4 phospholipase D family member 4
5.52E-

13 0.396
Involve in macrophage activation and
phagocytosis

(54, 55)

3988 LIPA lipase A, lysosomal acid type
1.74E-

11 0.348

Generate free fatty acids and free cholesterol
Involves in the maturation and function of
immune cells

(56)

25978 CHMP2B
charged multivesicular body protein
2B

5.45E-
10 0.307

Participate in membrane remodeling and repair
Involves in fatty acid trafficking to maintain
lipid and energy homeostasis

(57, 58)

5868 RAB5A
RAB5A, member RAS oncogene
family

1.74E-
11 0.349

Encode a small GTPase that regulates
endocytosis

(59, 60)

11345 GABARAPL2
gamma-aminobutyric acid receptor-
associated protein-like 2

3.32E-
10 0.315

Regulate lipid droplet biogenesis
Facilitate autophagosome formation

(61, 62)

5321 PLA2G4A phospholipase A2 group IVA
6.05E-

10 0.305

Regulate lipid droplet biogenesis
Participate in initial step of the arachidonic acid
pathway

(63, 64)

129642 MBOAT2
membrane-bound O-acyltransferase
domain containing 2

1.23E-
11 0.360

Regulate the free arachidonic acid level through
arachidonate recycling process

(65)

154141 MBOAT1
membrane-bound O-acyltransferase
domain containing 1

4.68E-
10 0.310

Regulate the free arachidonic acid level through
arachidonate recycling process

(65)
FDR, False Discovery Rate.
*FDR and R-squared values were obtained from time series analysis using GSE31348.
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3.3 The ability of 10-lipid-gene
transcriptional biosignature to reflect
different TB treatment states

External validation was performed to evaluate the dynamic

response of the 10-lipid-gene biosignature during TB treatment

(Figure 4A). To enhance the reliability of the assessment, we also

compared it with other priory-established signatures (i.e., Long10,

RISK6, and Sambarey10). In the two subsets of GSE181143, the 10-

lipid-gene signature was down-regulated from baseline to after eight

weeks and remained stable until treatment completion

(Supplementary Table 6). However, the GSVA scores for the

other three signatures decreased consistently during the treatment

course; this reduction was subtle for the RISK6 signature and

significant at all-time points for the Long10 and Sambarey10

signatures (Figure 4A, Supplementary Table 6). In the Catalysis

treatment response cohort (CTRC) (i.e., GSE89403), the GSVA

scores for the 10-lipid-gene and RISK6 signatures decreased from

baseline to after one week, remained stable after four weeks, and

thereafter continued to decrease until treatment completion.

Figure 4A shows the significant reduction of the GSVA scores for

the Long10 and Sambarey10 signatures during treatment in the

CTRC cohort. Notably, only the score for the Sambarey10 signature

differed significantly between after one week and after four weeks

of treatment.
Frontiers in Immunology 07
We evaluated the ability of the 10-lipid-gene signature to

differentiate among TB treatment states using k-means clustering.

Three clusters were pre-determined to correspond to the distinct

states of TB treatment (baseline, mid-time points, and treatment

completion) that were previously observed. Overall, the three

clusters showed a high degree of overlap in all datasets. In the

subset from India of GSE181143, the 10-lipid-gene signature

exhibited weak performance, with a cluster corresponding to the

baseline but none corresponding to the other time points; the

performance of 10-lipid-gene signature was not superior to other

signatures (Figure 4B). In the cohort from Brazil of GSE181143, the

grouping based on 10-lipid-gene signature was not in concordance

with TB treatment states (Figure 4C). The RISK6 signature could

cluster the samples at treatment completion and the Sambarey10

signature could cluster samples at baseline, although the tendency is

unclear. Remarkably, the Long10 signature exhibited good

concordance with the original labels in clustering the samples at

baseline and at the end of treatment. In the CTRC cohort, the

clusters based on the 10-lipid-gene signature and the treatment

states were not concordant (Figure 4D). The other three signatures

surpassed the 10-lipid-gene signature in clustering the samples into

different TB treatment states, illustrated by better concordance

between the original labels and pre-determined clusters. These

findings are in line with the observation of subtle changes in the

10-lipid-gene signature during TB treatment. Collectively, the 10-
B

C

A

FIGURE 3

The characteristics of 10-lipid-gene biosignature. (A) The GSVA score of 10-lipid-gene signature during TB treatment (N = 27). The orange point
represents the median GSVA score of the subject group and the box plot represent the correspondent interquartile range. (B) Heatmap represents
the signature enrichment profiles of individual patients for 10-lipid-gene signature during TB treatment (N = 27). (C) The expression level of
individual gene component of the signature across the TB treatment time course (N = 27). The dark mauve line indicates the median gene
expression level. GSVA, gene set variation analysis; 1, after one week; 2, after two weeks; 4, after four weeks; EoRx, treatment completion; ns, not
significant; *,<0.05; **,<0.01; ****,<0.0001; two-sided paired Wilcoxon signed rank test.
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lipid-gene biosignature exhibited weak clustering ability and only

partially reflected the TB treatment states.
3.4 The ability of 10-lipid-gene
transcriptional biosignature for TB
diagnosis and TB differential diagnosis

We investigated the relationships between the 10-lipid-gene

signature and multiple subject groups in various clinical situations.

Notably, GSVA scores for this signature were higher for patients
Frontiers in Immunology 08
with TB than for most other groups, irrespective of the HIV status,

except in the GSE37250 and the combined GSE42825/GSE42826/

GSE42830 dataset (Figures 5A–F, Supplementary Table 7). The

GSVA score differed significantly across subject groups. In

particular, the GSVA score for the 10-lipid-gene signature differed

significantly between the TB groups and the other groups

(excluding the OD groups in GSE37250 as well as cancer and

PNA in GSE42825, GSE42826, and GSE42830) (Figures 5A–F).

These findings are in line with those observed for the 162 lipid-

related genes (Figures 2B, C). Interestingly, the simplified signature

showed a better ability than the 162-gene set to differentiate
B

C

D

A

FIGURE 4

The potential 10-lipid-gene biosignature in TB treatment monitoring. (A) The GSVA score of 10-lipid-gene, Long10, RISK6, and Samberey10
biosignatures during the TB treatment time course. The orange point represents the median GSVA score of the subject group and the box plot
represent the correspondent interquartile range (B) Classification of different TB treatment states based on the 10-lipid-gene signature for subset
from India of the GSE181143 dataset. (C) Classification of different TB treatment states based on the 10-lipid-gene signature for subset from Brazil of
the GSE181143 dataset. (D) Classification of different TB treatment states based on the 10-lipid-gene signature for the GSE89403 dataset. GSVA,
gene set variation analysis; 1, after one week; 2, after two weeks; 4, after four weeks; 8, after eight weeks; EoRx, treatment completion; #, the subset
of Indian samples from GSE181143 dataset; ¶, the subset of Brazilian samples from GSE181143 dataset. ns, not significant; *,<0.05; **,<0.01; ***,
<0.001; ****,<0.0001; two-sided paired Wilcoxon signed rank test.
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between TB and non-TB-HIV, TB and active SARC, and TB-HIV

and non-TB-HIV groups based on the GSVA score (Figures 2B, C,

5A, F). The GSVA score patterns for three other signatures were

similar to that for the 10-lipid-gene signature in most datasets,

except in the GSE37250 and the combined GSE42825/GSE42826/

GSE42830 dataset. However, based on the GSVA scores, the other

signatures showed comparable or better distinction among subject

groups than the 10-lipid-gene signature. None of the tested
Frontiers in Immunology 09
signatures had a GSVA score that differed significantly between

the TB and TB-HIV groups.

The differential diagnosis performance of the 10-lipid-signature

was evaluated in multiple clinical cohorts (Figure 6, Table 2). A

logistic regression classifier based on the 10-lipid-gene signature

exhibited good performance when distinguishing TB-only patients

from non-TB controls without HIV (AUC of ROC curve and

standard deviation from the 10-fold nested cross-validation =
B C

D E F

A

FIGURE 5

The GSVA score of 10-lipid-gene, Long10, RISK6, and Samberey10 biosignatures in TB and its counterparts. (A) E-MTAB-8290. The box plot
represents the median and the interquartile range of the GSVA score for each subject group (B) GSE37250. (C) GSE107991. (D) GSE107994. (E)
GSE101705. (F) GSE4285, GSE42826, GSE42830. GSVA, gene set variation analysis; TB, tuberculosis; LTBI, latent TB infection; OD, other diseases;
HIV, human immunodeficiency virus; SARC, sarcoidosis; Cancer, lung cancer; PNA, pneumonia; ns: not significant; *,<0.05; **,<0.01; ***,<0.001;
****,<0.0001; two-sided Wilcoxon rank sum test.
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0.766 ± 0.046) (Figure 6A). When differentiating between the TB-

only group and non-TB controls with HIV, the classifier was not

robustly against a random guess (the ROC crossed the diagonal

line) (Figure 6B). The model showed an acceptable ability to

differentiate the TB-only group from the OD (AUC = 0.679 ±

0.069) and OD-HIV (AUC = 0.690 ± 0.061) (Figures 6C, D).

Additionally, the 10-lipid-gene signature showed excellent and

good results in differentiating patients with TB from those with

LTBI in GSE37250 (AUC = 0.832 ± 0.042) and in GSE107994 (AUC
Frontiers in Immunology 10
= 0.792 ± 0.067), respectively (Figure 6E, Table 2). Similarly, the 10-

lipid-gene classifier distinguished the TB and LTBI-HIV groups

with excellent performance (AUC = 0.871 ± 0.039) (Figure 6F). In

the combined GSE42825/GSE42826/GSE42830 dataset, the 10-

lipid-gene signature exhibited its best performance when

distinguishing between patients with TB and healthy controls

(AUC = 0.961 ± 0.027) (Figure 6G). Also, in this dataset, the 10-

lipid-gene signature showed acceptable performance in

distinguishing between TB and active SARC (AUC = 0.680 ±
B C D E

F G H I

J K L M N

O P Q R

A

FIGURE 6

Receiver operating characteristic curves of the 10-lipid-gene signatures in TB diagnosis. (A) E-MTAB-8290, TB versus non-TB-non-HIV. (B) E-MTAB-
8290, TB versus non-TB-HIV. (C) GSE37250, TB versus OD. (D) GSE37250, TB versus OD-HIV. (E) GSE37250, TB versus LTBI. (F) GSE37250, TB
versus LTBI-HIV. (G) GSE42825; GSE42826; GSE42830, TB versus healthy control. (H) GSE42825; GSE42826; GSE42830, TB versus active SARC. (I)
GSE42825; GSE42826; GSE42830; TB versus non-active SARC. (J) GSE42825; GSE42826; GSE42830, TB versus Cancer. (K) GSE42825; GSE42826;
GSE42830, TB versus PNA, (L) E-MTAB-8290, TB-HIV versus non-TB-non-HIV. (M) E-MTAB-8290, TB-HIV versus non-TB-HIV. (N) GSE37250, TB-
HIV versus OD. (O) GSE37250, TB-HIV versus OD-HIV. (P), GSE37250, TB-HIV versus LTBI. (Q) GSE37250, TB-HIV versus LTBI-HIV. (R) GSE37250,
TB-HIV versus TB. TB, tuberculosis; LTBI, latent TB infection; OD, other diseases; HIV, human immunodeficiency virus; SARC, sarcoidosis; Cancer,
lung cancer; PNA, pneumonia.
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TABLE 2 The performance of 10-lipid-gene signature for TB diagnosis in comparison with Long10, RISK6, and Sambarey10 signatures.

Dataset Country
Comparison
(number of
patients)

AUC ± SD FDR (Wilcoxon Rank Sum Test)

10-lipid-
gene

Long10 RISK6 Sambarey10
Long10
versus 10-
lipid-gene

RISK6
versus 10-
lipid-gene

Sambarey10
versus 10-
lipid-gene

E-MTAB-
8290

South
Africa

TB (37)/non-
TB-non-HIV
(100)

0.766 ± 0.046 0.851 ± 0.077 0.860 ± 0.068 0.877 ± 0.062 0.028 0.016 0.005

TB (37)/non-
TB-HIV (27)

0.742 ± 0.091 0.673 ± 0.072 0.748 ± 0.136 0.684 ± 0.16 0.148 1.000 0.590

TB-HIV (17)/
non-TB-non-
HIV (100)

0.830 ± 0.111 0.949 ± 0.061 0.906 ± 0.083 0.925 ± 0.052 0.028 0.251 0.093

TB-HIV (17)/
non-TB-HIV
(27)

0.762 ± 0.121

The SD was
not

sufficiently
estimated

0.872 ± 0.115 0.790 ± 0.112 NA 0.157 0.622

TB (37)/TB-
HIV (17)

0.667 ± 0.142 0.591 ± 0.091 0.716 ± 0.130 0.596 ± 0.095 0.172 0.479 0.480

GSE37250*
Malawi,
South
Africa

TB (97)/OD
(83)

0.679 ± 0.069 0.836 ± 0.045 0.798 ± 0.043 0.845 ± 0.055 4.90E-04 0.002 7.02E-04

TB (97)/OD-
HIV (92)

0.690 ± 0.061 0.812 ± 0.066 0.762 ± 0.052 0.907 ± 0.038 0.001 0.020 3.65E-04

TB (97)/LTBI
(83)

0.832 ± 0.042 0.955 ± 0.023 0.969 ± 0.018 0.942 ± 0.022 4.90E-04 6.39E-04 3.65E-04

TB (97)/LTBI-
HIV (84)

0.871 ± 0.039 0.939 ± 0.026 0.932 ± 0.033 0.954 ± 0.022 0.002 0.010 5.74E-04

TB-HIV (98)/
OD (83)

0.776 ± 0.062 0.912 ± 0.029 0.855 ± 0.048 0.917 ± 0.047 4.90E-04 0.002 6.80E-04

TB-HIV (98)/
OD-HIV (92)

0.601 ± 0.045 0.778 ± 0.044 0.861 ± 0.050 0.867 ± 0.036 4.90E-04 6.39E-04 3.65E-04

TB-HIV (98)/
LTBI (83)

0.833 ± 0.054 0.977 ± 0.010 0.975 ± 0.012 0.973 ± 0.011 4.90E-04 6.39E-04 3.65E-04

TB-HIV (98)/
LTBI-HIV
(84)

0.813 ± 0.037 0.891 ± 0.036 0.866 ± 0.037 0.901 ± 0.066 0.001 0.006 0.008

TB (97)/TB-
HIV (98)

0.650 ± 0.057 0.780 ± 0.061 0.749 ± 0.041 0.837 ± 0.032 4.90E-04 0.002 3.65E-04

LTBI (83)/OD
(83)

0.814 ± 0.054 0.871 ± 0.054 0.869 ± 0.058 0.878 ± 0.039 0.025 0.048 0.008

LTBI (83)/
OD-HIV (92)

0.842 ± 0.050 0.924 ± 0.032 0.921 ± 0.024 0.947 ± 0.022 0.001 0.002 3.65E-04

LTBI-HIV
(84)/OD (83)

0.861 ± 0.060 0.913 ± 0.045 0.877 ± 0.057 0.905 ± 0.038 0.031 0.700 0.140

LTBI-HIV
(84)/OD-HIV
(92)

0.868 ± 0.048 0.774 ± 0.039 0.875 ± 0.050 0.894 ± 0.034 0.001 0.791 0.257

LTBI-HIV
(84)/LTBI
(83)

0.589 ± 0.072 0.873 ± 0.032 0.872 ± 0.039 0.873 ± 0.036 4.90E-04 6.39E-04 3.65E-04

GSE107991
United
Kingdom

TB (21)/
Control (12)

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

NA NA NA

TB/LTBI (21)
The SD was
not

The SD was
not

0.850 ± 0.106
The SD was
not

NA NA NA

(Continued)
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0.079) and excellent performance in distinguishing between TB and

non-active SARC (AUC = 0.877 ± 0.064) (Figures 6H, I). Other

comparisons yielded acceptable accuracy (TB versus Cancer, AUC =

0.693 ± 0.076) or insignificant classification with a high variability

(TB versus PNA, AUC = 0.760 ± 0.139) (Figures 6J, K).

The results from the comparison between TB-HIV and non-TB–

non-HIV groups did not show strong evidence against a random

guess (the ROC crossed the diagonal line) (Figure 6L). In contrast, the

logistic regression classifier differentiated TB-HIV from non-TB-HIV

with good accuracy (AUC = 0.762 ± 0.121) (Figure 6M). The
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performance of classifier in comparing the TB-HIV group with the

OD (AUC = 0.776 ± 0.062), OD-HIV (AUC = 0.601 ± 0.045), LTBI

(AUC = 0.833 ± 0.054), and LTBI-HIV (AUC = 0.813 ± 0.037) was

comparable to that for the comparison of the TB-only group with

these groups (Figures 6N–Q). Noticeably, the model could

distinguish between TB and TB-HIV in GSE37250 with acceptable

performance (AUC = 0.650 ± 0.057) (Figure 6R). Nevertheless, the

results from the same comparison in E-MTAB-8290 were

insignificant with a high variability (AUC = 0.667 ± 0.142)

(Table 2). Additionally, the 10-lipid-gene signature exhibited an
TABLE 2 Continued

Dataset Country
Comparison
(number of
patients)

AUC ± SD FDR (Wilcoxon Rank Sum Test)

10-lipid-
gene

Long10 RISK6 Sambarey10
Long10
versus 10-
lipid-gene

RISK6
versus 10-
lipid-gene

Sambarey10
versus 10-
lipid-gene

sufficiently
estimated

sufficiently
estimated

sufficiently
estimated

LTBI (21)/
Control (12)

The SD was
not
sufficiently
estimated

0.678 ± 0.128 0.756 ± 0.160 0.717 ± 0.149 NA NA NA

GSE107994
United
Kingdom

TB (43)/
Control (10)

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

NA NA NA

TB (43)/LTBI
(45)

0.792 ± 0.067 0.904 ± 0.066 0.910 ± 0.066 0.912 ± 0.053 0.006 0.006 0.004

LTBI (45)/
Control (10)

0.579 ± 0.091 0.697 ± 0.107 0.615 ± 0.088 0.636 ± 0.117 0.021 0.519 0.288

GSE101705 India
TB (28)/LTBI
(16)

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

NA NA NA

GSE42825,
GSE42826,
GSE42830*¶#

United
Kingdom,
France

TB (35)/
Control (113)

0.961 ± 0.027

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

The SD was
not
sufficiently
estimated

NA NA NA

TB (35)/
Active SARC
(39)

0.680 ± 0.079 0.803 ± 0.068 0.785 ± 0.076 0.859 ± 0.074 0.004 0.014 9.95E-04

TB (35)/Non-
active SARC
(22)

0.877 ± 0.064

The SD was
not
sufficiently
estimated

0.975 ± 0.024

The SD was
not
sufficiently
estimated

NA 0.001 NA

TB (35)/
Cancer (16)

0.693 ± 0.076

The SD was
not
sufficiently
estimated

0.887 ± 0.144

The SD was
not
sufficiently
estimated

NA 0.018 NA

TB (35)/PNA
(14)

0.760 ± 0.139

The SD was
not
sufficiently
estimated

0.930 ± 0.057

The SD was
not
sufficiently
estimated

NA 0.013 NA
AUC, Area under the receiver operating characteristic curve; SD, standard deviation calculated from the 10-fold nested cross-validation; FDR, False Discovery Rate; TB, Tuberculosis (without
HIV); HIV, Human Immunodeficiency Virus; TB-HIV, Tuberculosis with HIV; LTBI, Latent tuberculosis infection (without HIV); LTBI-HIV, Latent tuberculosis infection with HIV; OD, Other
diseases (without HIV); OD-HIV, Other diseases with HIV; SARC, Sarcoidosis (without HIV); Cancer, Lung cancer (without HIV); PNA, Pneumonia (without HIV).
Italic value: raw P-value was used instead of FDR.
*The Long10 signature could not be fully retrieved from this dataset.
¶The 10-lipid-gene signature could not be fully retrieved from this dataset.
# The RISK6 signature could not be fully retrieved from this dataset.
NA, Not available.
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excellent ability to differentiate LTBI with OD (AUC = 0.814 ± 0.054)

and OD-HIV (AUC = 0.842 ± 0.050) in the GSE37250 cohort

(Table 2). Similar results were observed for the comparisons of

LTBI-HIV with OD (AUC = 0.861 ± 0.060) and OD-HIV (AUC =

0.868 ± 0.048) (Table 2). The classifications between LTBI and

healthy control (AUC = 0.579 ± 0.091) as well as LTBI-HIV and

LTBI (AUC = 0.589 ± 0.072) were insignificant due to their

high variability.

Where applicable, the diagnostic performance of the 10-lipid-

gene signature was compared with that of other signatures

(Table 2). In brief, the performance of the 10-lipid-gene signature

was significantly poorer than that of the other signatures in most

datasets. Nevertheless, the performance of the 10-lipid-gene

signature was comparable to that of the RISK6 and Sambery10

signatures for certain comparisons in E-MTAB-8290, GSE37250,

and GSE107994. They were TB with or without HIV versus non-

TB-HIV in E-MTAB-8290, LTBI-HIV versus OD with or without

HIV in GSE37250, and LTBI versus healthy control in GSE107994.

Taken together, our results demonstrate the potential usefulness of

the 10-lipid-gene signature for TB diagnosis in certain scenarios.
4 Discussion

The implementation of the WHO End TB strategy requires

concerted efforts from the global scientific community to end the

TB epidemic. A key focus area is the development of new tools for

TB diagnosis, treatment monitoring, vaccine development, and

therapeutic discovery. In recent years, host-based transcriptomic

biosignature for TB diagnosis and treatment monitoring has been

endorsed by scientific communities (13, 32, 36, 66–68). TB entails a

spectrum of pathophysiological processes from the infection to the

treatment completion stage (36), including inflammatory,

interferon, immune, and T- and B-cell pathways (28, 69, 70).

These pathophysiological events and molecular abnormalities can

be evaluated by transcriptomics (70). Furthermore, although the

interindividual variability of host responses is high, transcriptome-

based signatures may display stable patterns during TB treatment,

making them potential for treatment monitoring (71). Focusing on

genes with clear patterns of changes during anti-TB treatment

would help to discover relevant biomarkers, which together may

form a robust predictive signature (72). In the present study, we

evaluated lipid-related genes because previous studies have

demonstrated the host immunological responses and lipidome

alterations in TB and during anti-TB treatment (26, 27).

Additionally, a knowledge-based and targeted approach derived

from functional interpretation and mechanistic understanding may

overcome the challenges of an entirely data-driven approach (16).

These challenges include limited sample sizes, differences in the

design of available data sets, the high-dimensional nature of

transcriptomics data, and the lack of validation of particular

signatures (9).

We employed a workflow that combined data-driven and

knowledge-based approaches to investigate the expression of

lipid-related genes during anti-TB treatment and its potential
Frontiers in Immunology 13
application for TB diagnosis in diverse clinical settings. A 10-

lipid-gene signature showing clear changes during anti-TB

treatment was established using time-course regression analysis.

The potential usefulness of this signature for treatment monitoring

was compared with that of three other signatures (i.e., RISK6,

Sambarey10, and our previously reported Long10 signature) in

three cohorts using GSVA. GSVA provides a direct way for a

head-to-head comparison between different signatures. Wang et al.

found that scores for signatures obtained with gene set enrichment

methods could differentiate between active TB and other clinical

conditions with equivalent or better accuracy than could

conventional methods (73). The GSVA scores for all four

signatures differed significantly in investigated cohorts, perhaps

because of the inclusion of genes playing a critical role in TB

immune-signaling pathways. The 10-lipid-gene signature generally

showed poor results when classifying different TB treatment states.

However, its performance was not far behind RISK6 and

Sambarey10 signatures. Only the Long10 signature exhibited

acceptable performance in all investigated datasets. It is worth

noting that, among all longitudinal validating datasets, the

shortest time point was after one week of treatment (GSE89403),

and the minimum sample size was 29 TB patients with samples

collected from three time points for each patient (GSE181143 –

subset from Brazil). Among 10-lipid-gene signature, some genes are

found on immune cells, such as monocytes (e.g., ARPC5),

neutrophils (e.g., MBOAT1, MBOAT2), lymphocytes (e.g.,

ARPC5), dendritic cells (e.g., PLD4) (65, 74–77). The expression

level of these genes on immune cells as well as the frequency of cell

source population could lead to difference of performance between

the investigated datasets. Overall, the benchmark analysis results

highlighted the role of lipid-related genes in TB pathophysiology.

Nevertheless, the 10-lipid-gene signature has certain limitations and

may not be the optimal choice for accurate monitoring of the anti-

TB treatment response. Our results reinforced the usefulness of

gene signatures related to the immune response for anti-TB

treatment monitoring.

The usefulness of the 10-lipid-gene signature for the

differentiation of active TB and non-TB counterparts was

investigated in multiple clinical cohorts. In multiple comparisons,

GSVA scores for the 10-lipid-gene signature were higher in the TB

group than in other groups, with a remarkable ability to differentiate

the TB and LTBI groups in all tested cohorts. These also indicated

the association between the activation of lipid-related genes with TB

disease. However, the performance of the 10-lipid-gene signature

was generally not as excellent as other signatures because the

expression of lipid-related genes changed only subtly. The caution

should also be made since the OD group consisted of multiple

respiratory diseases, which might introduce bias into the analysis

(31). Consistent with the GSVA scores, the logistic regression

classifier based on the 10-lipid-gene signature performed well in

differentiating patients with TB from non-TB controls and those

with LTBI (with or without HIV), and non-active SARC. The 10-

lipid-gene signature had the best results for distinguishing TB from

healthy controls. Noticeably, the good performance of the 10-lipid-

gene signature in differentiating between TB and non-TB controls,
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healthy controls, LTBI, non-active SARC but not between TB and

OD, active SARC, lung cancer, PNA indicates its limited capacity

for TB differential diagnosis. The results are consistent with our

previous investigations of lipid and lipid-related genes to diagnose

active TB disease (26). Host lipids play a vital role in the immune

response to TB infection. Our findings further confirm the role of

lipid-related genes in the dysregulated host metabolism and

immune signaling during TB activation relative to LTBI. Of note,

the TB and TB-HIV groups could not be classified significantly

across all cohorts, possibly due to heterogeneity among cohorts and

relatively small sample sizes in the tested datasets. For instance, the

status of antiretroviral therapy, which can alter the transcriptome of

HIV patients (78), differs across cohorts and may partially

contribute to variations in the performance of the signatures.

Besides, similar shortcomings associated with small sample sizes

for biomarker validation have been reported in other biomarker

studies, such as RISK4 and RISK6 (36, 79). The 10-lipid-gene

signature displayed unsatisfactory performance in differentiating

patients with LTBI from healthy controls, concordant with the fact

that metabolomes and lipidomes are similar between these groups

(80). Overall, the 10-lipid-gene signature exhibited the potential to

be used for further optimization of TB diagnosis.

At the current setup of biosignature, metabolism-centric

biomarkers may not outperform other leading signatures.

However, individual biomarkers reported in our work could be

strong candidates to be considered when establishing a

biosignature that takes into account the metabolic alterations

during TB treatment. We provided proof-of-concept results

regarding the potential of lipid biomarkers (27). These findings

collectively demonstrate that metabolism-centric biomarkers

could be a significant aspect to be explored further in addition

to approaches targeting immunological processes.

The biological relevance of derived biosignature must be

examined thoroughly due to its significance. The products

encoded by the 10 candidate genes are involved in multiple

immune processes (Table 1). For instance, subunit 5 of actin-

related protein 2/3 complex, encoded by ARPC5, involves in the

entry of Mtb into lung epithelial cells (81) as well as lymphocyte

activation, adhesion, and migration, which are hallmarks of the TB

pathophysiology (82–84). ACSL4 regulates ferroptosis by

modulating the cellular lipidome (52). Furthermore, ACSL4 was

found to be overexpressed in anti-TB drug-induced liver injury,

indicating ferroptosis induction during anti-TB treatment (85).

PLD4 is differentially expressed in patients with TB (27).

Phospholipase D activation is associated closely with Mtb

phagocytosis by macrophages (86). During the early stages of TB

infection, Mtb inhibits phagosome maturation and acidification by

various bacterial factors (87, 88). As the treatment progression with

Mtb elimination, this inhibition is reduced. Additionally, the

increase in the interferon-g level during anti-TB treatment

induces phagosome maturation in macrophages (89). The rise of

phagocytosis could be associated with the elevation of PLD4 gene

expression during the TB treatment time course. Lysosomal acid

lipase, encoded by LIPA, is involved in the maturation and function
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of immune cells via the regulation of FC and FFA levels (56).

Interestingly, the rs1051338 and rs7922269 single-nucleotide

polymorphisms of LIPA are associated with individual

susceptibility to pulmonary TB (90). The CHMP2B protein is a

subunit of the endosomal sorting complex required for transport III

(ESCRT-III) (57). ESCRT-III is recruited and engaged with Mtb

phagosomes, preventing Mtb release into the cytosol (91). RAB5A

encodes a crucial small GTPase that regulates the fusion between

bacteria-containing phagosomes (including Mtb) and cytoplasmic

organelles (59), thereby influencing the ability of neutrophils to

restrict pathogen spread (59, 60). Moreover, RAB5A is tightly

involved in TB immune infiltration (92). The GABARAPL2

protein participates in the autophagy pathway an essential

biological process that defends against intracellular microbes,

including Mtb (61, 93). Mtb-dependent macrophage apoptosis

requires phospholipase A2 group IVA, encoded by PLA2G4A

(94). Phospholipase A2 group IVA is also responsible for the

initial step in the arachidonic acid (AA) pathway, which involves

the cleavage of AA from the sn-2 position of phospholipids in cell

membranes (63). AA promotes the formation of eicosanoids,

crucial inflammatory mediators (95). Interestingly, the two last

components of our signature, MBOAT1 and MBOAT2, also

regulate the free AA level through the arachidonate recycling

process and relate to eicosanoids production (65, 95). AA-derived

eicosanoids, including prostaglandins, leukotrienes, and lipoxins,

can modulate the host response to Mtb infection (96, 97). Previous

studies demonstrated the altered levels of eicosanoids in TB, TB

with comorbid diabetes, and after TB treatment (98, 99). In general,

the ten genes can be roughly categorized into three groups based on

their associated immunological pathways. They are genes involved

in apoptosis/phagocytosis/autophagy pathways (CHMP2B, RAB5A,

GABARAPL2, PLA2G4A, PLD4), genes involved in AA/FFAs

pathways (PLA2G4A, MBOAT1, MBOAT2, LIPA, ACSL4), and

gene involves in lymphocyte migration (ARPC5). These findings

suggest the existence of associations between lipid signaling and

immune pathways.

This study has several limitations which should be assessed.

Firstly, the biosignature was derived from a time-series analysis on a

single cohort, which may limit the generalizability of the

biosignature on diverse populations with heterogeneous

backgrounds. We addressed the limitation by validating our

signature in a cross-platform, multi-ethnic, multi-cohort scenario

to demonstrate its applicability across diverse populations and

settings. We further expanded the scope of our investigation

beyond TB treatment monitoring to also include TB diagnostics,

showcasing the flexibility of our signature. Furthermore, we

conducted a head-to-head benchmarking analysis with other

publicly available signatures to demonstrate the capacity of our

signature. The second shortcoming is that we did not account for

confounding factors during the time series analysis, which could

potentially lead to false-positive signals. However, we mitigated this

issue by adopting a targeted approach based on prior knowledge to

minimize the number of false-positive findings. Thirdly, focusing on

lipid-related genes, which exhibited subtle alteration between TB
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and its counterparts (26), might limit the robustness of the

signature. However, finding a signature with excellent

performance is an aim but not the primary goal of this study.

Our study was conducted to demonstrate the potential of lipid-

related gene markers in TB management and suggest the direction

for subsequent studies. Moreover, the identification of certain genes

as potential candidates might be attributed to their high correlation

with the “true” markers. Indeed, the partial overlap between

signatures is frequently observed. The 10-lipid-gene biosignature

also intersects one gene (MBOAT2) with the 558-gene signature

representing the TB treatment response of Bloom et al. (35).

However, to the best of our knowledge, the remaining nine genes

were reported for the first time in our study. This finding implicates

that there is still ample room for further research in discovering

metabolism-centric biomarkers, particularly lipid-related genes.

Last but not least, exploring the integration of lipid-related genes

with other signatures to enhance their performance should be

pursued in future investigations.

In the present study, we developed a biosignature based on key

lipid-related genes that can be used to assist the management of TB.

Our findings emphasize the crucial role of lipid metabolism in TB

pathophysiology and treatment response. Additionally, the lipid-

related genes have been implicated in the host immune response,

highlighting the significant association between lipid metabolism

and the immune system in TB. This association presents a

promising target for the development of novel TB diagnostic and

treatment monitoring strategies. It should be explored further to

enhance our understanding and improve TB management.
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