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The prevalence of brain cancer has been increasing in recent decades, posing

significant healthcare challenges. The introduction of immunotherapies has

brought forth notable diagnostic imaging challenges for brain tumors. The

tumor microenvironment undergoes substantial changes in induced

immunosuppression and immune responses following the development of

primary brain tumor and brain metastasis, affecting the progression and

metastasis of brain tumors. Consequently, effective and accurate

neuroimaging techniques are necessary for clinical practice and monitoring.

However, patients with brain tumors might experience radiation-induced

necrosis or other neuroinflammation. Currently, positron emission tomography

and various magnetic resonance imaging techniques play a crucial role in

diagnosing and evaluating brain tumors. Nevertheless, differentiating between

brain tumors and necrotic lesions or inflamed tissues remains a significant

challenge in the clinical diagnosis of the advancements in immunotherapeutics

and precision oncology have underscored the importance of clinically applicable

imaging measures for diagnosing and monitoring neuroinflammation. This

review summarizes recent advances in neuroimaging methods aimed at

enhancing the specificity of brain tumor diagnosis and evaluating

inflamed lesions.

KEYWORDS
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1 Introduction

The most prevalent brain tumors comprise meningiomas, gliomas—particularly

glioblastomas (GBMs)—and intracranial metastases originating from various cancers (1).

The treatment approach for intracranial metastases involves a combination of

chemoradiotherapy and neurosurgery (2). Meningiomas are predominantly benign and

are typically managed by surgical resection (3). GBM represents the primary malignancy in

the central nervous system (CNS) and is known for its aggressive nature, with limited

benefits derived from advanced therapeutic strategies (4). Therefore, early diagnosis and
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accurate monitoring through neuroimaging are crucial for

managing brain tumors. Neuroimaging is an indispensable aspect

of clinical practice, offering valuable insights into brain tumors.

The advancement of computed tomography (CT) and magnetic

resonance imaging (MRI) has enabled more precise diagnoses,

improved clinical monitoring, and enhanced accuracy in

prognostic prediction (1). In particular, neuroimaging has played

a crucial role in diagnosing and treating brain tumors. By

combining molecular pathology and histopathology, significant

progress has been made in classifying various types of brain

tumors. Precision neuro-oncology integrates tumor-specific

neuroinflammation and distinct protein alterations (5). However,

the translation of the precision oncology paradigm to neuro-

oncology faces several significant challenges, including the criteria

for assessing therapeutic effects and the need for accurate

monitoring approaches. Advanced neuroimaging techniques

currently offer potential solutions to overcome these challenges.

The interact ions between brain tumors and immune

responses are critical focal points (6, 7). Consequently, current

immunotherapeutic strategies have been developed to target specific

immune cells or inflammatory mediators within the tumor

microenvironment (TME) (8). Neuroinflammation plays a crucial

role in the progression of brain tumors. GBM, in particular, is

characterized by tissue necrosis accompanied by heightened

neuroinflammation. Addit ional ly , immunosuppressive

neuroinflammation and induced necrosis also contribute to

treatment resistance and poor prognosis (5, 9). However,

immunotherapies a l so affect imaging phenotypes in

clinical practice. Therefore, it is essential to gain a better

understanding of the inflammatory factors and their associated

neuroimaging characteristics.

In this review, the key aspects of neuroimaging in diagnosing

and distinguishing brain tumors from inflammatory-associated

lesions were emphasized. This information is immensely valuable

for gaining a better understanding of imaging characteristics and

common patterns that aid in diagnosis. Furthermore, a

comprehensive understanding of the inflammatory mechanisms

within the TME and their corresponding imaging features

facilitates the development of noninvasive prognostic and

predictive imaging strategies in clinical practice.
2 Current limitations in neuroimaging
in the context of brain malignancy

The clinical diagnosis, evaluation, and monitoring of

therapeutic effects in patients with brain malignancies heavily rely

on neuroimaging techniques. There is a wide range of neuroimaging

options available for clinical use. Structural MRI is a useful choice

for identifying and classifying tumors and guiding surgical

strategies. Additionally, PET imaging is predominantly used to

assess tissue metabolism, providing valuable information about

cancer cell proliferation and early-stage tumor detection (10).

PET is a type of molecular imaging technique that is suitable for

detecting specific molecules, such as choline, fluorodeoxyglucose,
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methionine, and phenylalanine (11, 12). Thus, the critical

mechanism of PET-based neuroimaging involves defining and

tracing the targeting molecules that are specific or sensitive to

immune cells, including microglia and macrophages.

The efficiency of current neuroimaging techniques is widely

acknowledged; however, there are still several limitations requiring

further improvement. For instance, distinguishing relapsed brain

tumors, brain metastasis, or inflammatory and necrotic lesions

poses a significant challenge in clinical treatment, as both tumors

and metastatic sites exhibit similar intratumoral textures on MRI

(13, 14). The application of PET techniques also faces various

challenges. The low permeability of biotracers across the blood-

brain barrier (BBB) and systemic plasma binding affect the imaging

results. Additionally, inherent characteristics of the neuroimaging

technique itself impose certain limitations. The most commonly

used PET probe for neuroimaging, 2-deoxy-2-18F-fluoro-D-

glucose, is based on glucose metabolism (15). Glucose

transporters are highly expressed not only in tumor cells but also

the inflamed areas (16). Importantly, glucose metabolism plays a

crucial role in inflammatory responses, leading to false-positive

results in tumor diagnosis. Therefore, in this review, the recent

advances in neuroimaging approaches aimed at improving the

evaluation of brain tumors and brain metastases combined with

neuroinflammatory response information have been discussed.

The first radiotracer used for neuroinflammation is based on an

18-kDa protein named translator protein (TSPO), a peripheral

benzodiazepine receptor (17). TSPO is a mitochondrial

transmembrane protein predominantly located in macrophages

and microglia (18). Accumulative evidence indicated that

TSPO up-regulation can be observed in pro-inflammatory

and immunosuppressive conditions. Previous studies have

shown that TSPO expression can be up-regulated in response to

neuroinflammation and tumor malignancy (19). Additionally,

TSPO can also be found in neoplastic glioma cells. Consequently,

over 13 unique TSPO radiotracers have been developed for use in

malignant brain pathologies, enhancing tumor-to-background

brain signals (20). Furthermore, TSPO-based PET imaging shows

promise in delineating clinically important neuroinflammatory

tumor features (21). Therefore, the establishment of novel

neuroimage techniques is urgently required for patients with

brain tumors.
3 Brain tumors as neuroinflammatory
diseases: tumor immune
microenvironment

Neuroinflammation plays a crucial role in brain TME, resulting

in carcinogenesis and tumor progression. In particular, primary

brain malignancies, such as GBMs, are characterized by significant

immunosuppressive neuroinflammation and necrosis, resulting in

resistance to chemotherapy and poor clinical outcomes (22). Tumor

cells produce and secrete various immunomodulatory substances,

including interleukin (IL)-10, IL-1b, galectin-1, and transforming

growth factor-b, which regulate the behavior of infiltrating immune
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cells and establish a pro-tumoral microenvironment (23, 24).

Among the components of the pro-tumoral microenvironment,

tumor-associated macrophages (TAMs) are particularly prominent

(6, 25). Neuroinflammation induces immunosuppressive changes

and further enhances the proliferation, migration, and therapeutic

resistance of tumor cells (26).
3.1 Immune component of the TME in CNS
malignancies

Under normal conditions, the CNS is protected by the

BBB, which renders it immune-privileged and shields it from

the influence of systemic inflammation. However, immune

surveillance and inflammatory regulation in the CNS are

mediated by resident immune cells and infiltrating peripheral

cells. The microenvironment within brain tumors comprises a

diverse array of cellular and immune components, which

significantly affect the growth, drug resistance, and recurrence of

primary and metastatic brain tumors (27, 28).

First and foremost, it has been reported that astrocytes can be

immediately infiltrated around brain tumors, exhibiting varying

morphology and cellular functions (29). Active astrocytes, notably,

have the ability to promote the invasive capacity and drug resistance

of tumor cells, thereby enhancing tumor growth and survival, while

suppressing the therapeutic efficiency in clinical treatment (30).

Conversely, several studies have also reported the anti-tumor

function of astrocytes. It has been demonstrated that specific

astrocyte-derived exosomes comprising micro-ribonucleic acid

(RNA) can significantly inhibit tumor growth (31). Additionally,

microglia, macrophages, endothelial cells, and pericytes play key

roles in tumor growth and neuroinflammation, potentially serving

as clinical imaging features (32). Accumulative evidence illustrates

the critical roles of microglia and macrophages in tumor

malignancy, accounting for more than 30% of the cell

populations (33). Microglia derived from the yolk sac precursor

cells during embryonic development are resident phagocytic

cells, while macrophages are derived from the bone marrow-

derived monocytes (BMDMs) and migrate into the brain

parenchyma. Lineage-tracing experiments in brain metastases

have demonstrated the infiltration of microglia and BMDMs in

such malignancies. Collectively, microglia and macrophages are

widely considered to be associated with tumor malignancy, referred

to as TAMs (34).

The tumor vasculature primarily comprises endothelial

cells, playing a critical role in tumor growth and facilitating

immune reactions within the TME through the release of various

neuroimmune substances, including IL-1b, IL-10, and granulocyte-

macrophage colony-stimulating factor (GM-CSF) (35, 36).

Additionally, pericytes are localized around the vascular vessels

and are responsible for tumor vascularization and maintaining BBB

integrity (37). The tumor vasculature comprises established

vasculature and neo-vasculature, with the latter being significantly

enhanced under the regulation of local hypoxia, metabolic

demands, and vascular endothelial growth factor stimulation (38).

Furthermore, the tumor vasculature exhibits abnormalities in
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integrity and function. Previous studies have shown a higher

prevalence of dysfunctional vasculature within the tumor region,

while the peritumoral vasculature resembles normal blood vessels.

Following the intravenous administration of a gadolinium-based

contrast agent (GBCA), the GBCA enters the extracellular space in

the brain parenchyma through this abnormal vasculature, resulting

in hyperintensity on T1-weighted magnetic resonance (MR) images

(39). However, tumor cells might still be present in the non-

enhancing regions around the areas of enhancement. Therefore,

the presence or absence of tumor cells is not directly associated with

the compromised BBB, increasing the difficulty of clinical diagnosis.
3.2 The interactions between the immune
responses and brain tumors

The CNS possesses a unique immune monitoring system that

involves meningeal or brain parenchymal lymphatic vessels and

immune surveillance. TAMs can be classified into pro-

inflammatory (M1) or anti-inflammatory (M2) types based on

their cellular function and morphological features, which are

associated with various processes such as the inflammatory

cascade, immune activation, angiogenesis, tissue remodeling, and

tumor survival. This classification framework allows for a better

understanding of the multifaceted roles of TAMs (40). M1 TAMs

are responsible for pathogen recognition and tumor killing. On the

contrary, M2 TAMs primarily regulate inflammatory reactions and

establish a favorable TME through the release of anti-inflammatory

cytokines, thereby promoting tumor survival and growth (41).

Furthermore, the dysregulated adaptive immune reactions

within the TME also contribute to tumor growth. The function

and prognostic predictive value of adaptive immune cells in brain

tumors have gained considerable attention. A previous clinical

study has shown a correlation between prolonged survival in

patients with GBM and the infiltration of the cluster of

differentiation CD 8+ T lymphocytes, whereas regulatory T cells

are associated with worse prognosis in patients (42, 43). The

adaptive immune responses are profoundly influenced by

immune checkpoints, which regulate the immune response to

self-antigens and contribute to tumor control. Accumulating

evidence indicates that various tumors, including CNS

malignancies and metastases, evade recognition and surveillance

by the immune system through immune checkpoint regulation (44).

Evidence has revealed that therapeutic mobilization of innate

and adaptive immune responses can be employed to induce

immune-mediated tumor cell death. As a result, a wide array of

immunotherapeutic strategies has been established, targeting the

interaction between tumor cells and immune cells. These strategies

include immune checkpoint inhibition, engineered chimeric

antigen receptor T cells, oncolytic viral therapies, and vaccines

(45, 46). The underlying mechanisms of immune checkpoint

inhibition and vaccines involve the activation of T lymphocytes

by eliminating inhibitory signals. Additionally, tumor antigens are

presented to antigen-presenting cells, such as dendritic cells (47).

These cells are then administered to patients with GBMs after being

stimulated with tumor antigens, triggering adaptive immune
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activation. Based on this approach, vaccine-based immunotherapies

use tumor-associated antigens to enhance cytotoxic effects through

the enhancement of immune reactions. Due to the critical role of

immune components within the TME, neuro-inflammation-based

imaging techniques may be a potentially effective approach in the

diagnosis of patients with brain tumors.
4 Novel neuroimaging approaches for
evaluating brain tumor recurrence

Despite the current efficiency of existing neuroimaging

techniques in brain tumor detection, there is still a huge challenge

in distinguishing recurrent brain tumors, solitary brain metastases

and inflammatory and necrotic lesions (48). It has been revealed

that conventional neuroradiological techniques struggled to

distinguish recurrent tumors and inflammatory alterations, due to

their similarly-showing imaging in MRI. Therefore, a better

understanding of novel approaches to diagnose recurrent brain

tumors may present great clinical potential in the follow-up of

patients after anti-tumor therapies. With the rapid advances in

neuroimaging, the direct labelling of critical immune cells has

emerged as a potential option for neuroinflammation imaging

with clinical relevance. Given that TAMs are considered the

predominant immune cells within the brain TME, significant

efforts have been made to label TAMs based on accumulating

evidence. Furthermore, MRI plays an essential role in clinical

assessment and monitoring, making novel approaches using MRI

for neuroinflammation imaging likely to be applicable in clinical

practice. In conventional MRI, GBCAs are commonly used to

examine contrast dynamics and identify CNS malignancies.

However, it is noteworthy that ultrasmall superparamagnetic iron

oxide (USPIO) nanoparticles possess a unique capability to detect

neuroinflammation by being taken up by immune cells (49). One

such USPIO nanoparticle is ferumoxytol, which has been

extensively studied in patients with brain tumors (49). Previous

clinical studies have indicated that ferumoxytol exhibits a

preferential accumulation in inflamed sites (50). Similarly, an

experimental study revealed that ferumoxytol is predominantly

observed in activated astrocytes, microglia, and macrophages but

not in tumor cells. This underscores the potential of ferumoxytol-

enhanced MRI for neuroinflammation imaging in patients with

brain tumors (51). Currently, ferumoxytol has received Food and

Drug Administration approval for clinical use. In cases where the

administration of GBCA is restricted due to clinical conditions such

as GBCA allergy or renal failure, ferumoxytol is considered an

alternative contrast agent (52). Additionally, ferumoxytol has

demonstrated potential advantages over GBCA in the assessment

of neuroinflammation. Its plasma half-life is approximately 14-21 h,

allowing delayed localization within TAMs or the neovascular space

(53). This prolonged intravascular signal persistence contributes to

the observed parenchymal signal during delayed imaging (54). A

prospective pilot study involving patients with gliomas revealed that

delayed ferumoxytol imaging captures TAM signals within the

TME. Furthermore, there is a positive correlation between

susceptibility and relaxation and the number of macrophages (54).
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The interpretation of T1-weighted ferumoxytol contrast-

enhanced MRI depends on clinical conditions (55). During the

diagnostic phase, similar imaging characteristics can be observed in

primary or metastatic brain tumors using either GBCA or

ferumoxytol-enhanced MRI. However, after chemoradiotherapies,

these enhancing images might differ. Specific immunotherapies can

induce neuroinflammation, leading to gadolinium enhancement

and T2 hyperintensity on MRI. Although the enhanced

signals resemble those of solid tumors, they subsequently

undergo spontaneous regression, known as pseudoprogression.

Psuedoprogression can be observed in approximately 30% of

patients with GBMs after chemotherapy or radiotherapy.

Given the underlying mechanisms of immunotherapies,

neuroinflammation induced by immunotherapies is more likely to

be detected than that induced by chemoradiotherapies. Therefore,

distinguishing pseudoprogression from actual tumor growth

becomes crucial. Additionally, iron nanoparticle imaging requires

specific attention. The prolonged clearance of iron nanoparticles

should be given careful consideration in clinical practice (56). A

previous study has revealed an increased level of methionine in

metastatic tumor tissues (57, 58). Furthermore, elevated levels of the

neuroinflammatory marker PBR-TSPO can be observed in necrotic

sites and quantified using a specific PET biotracer. Therefore, PET

biotracers based on 11Carbon (C)-methionine have been used in

patients with metastatic brain tumors to accurately diagnose tumor

recurrence (59, 60). In one clinical trial, 11C-methionine-based PET

biotracers correctly diagnosed tumor recurrence, as confirmed by

pathological examination, in seven patients. In comparison, 11C-

PBR28-based PET biotracers only identified three lesions,

highlighting the reliability of 11C-methionine-based biotracers for

tumor recurrence detection. Thus, 11C-methionine is considered a

reliable marker for tumor recurrence compared with 11C-PBR28

PET (61). PET imaging provides significant benefits in advanced

photon techniques, particularly in treatment planning and the

sparing of normal tissue for skull base meningioma using

advanced photons and protons. Additionally, incorporating
68Gallium-DOTATOC-PET information has a substantial impact

on target volumes (62). Moreover, the combination of

Multiparametric 18F-FET PET/MRI improves the therapeutic

effectiveness by distinguishing between tumor progression and

therapy-related alterations (63). According to another clinical

study, combined dynamic and static 18F-FET PET/CT parameters

can be used in differentiating radiation necrosis from recurrent

tumor after cyberknife robotic radiosurgery (64). Effective imaging

techniques are still required to be explored in future studies.
5 Neuroimaging approaches for
evaluating brain tumors and radiation-
induced necrosis

Currently, MRI (Table 1), PET, and single-photon emission CT

(SPECT) are the predominant imaging techniques for the

noninvasive assessment of neuroinflammation (87). Among them,

SPECT can detect gamma rays emitted by radioactive isotopes used
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TABLE 1 Magnetic resonance imaging (MRI)-based neuroimaging applied in brain tumors.

Imaging approach Application Image features Author Year

Proton magnetic resonance (MR)
spectroscopy

To differentiate tumor recurrence
from radiation necrosis

Increased lactate/creatine (Cr) ratio and decreased choline
(Cho)-containing compounds/Cr ratio in necrosis or all the
major metabolites were completely diminished.

Kamada et al. 1997 (65)

Two-dimensional (2D) chemical
shift imaging MR spectroscopy

To differentiate tumor recurrence
from radiation necrosis

Diagnostic spectra can be obtained in 97% of the patients.
The Cho/N-acetylaspartate (NAA) and Cho/Cr ratios are
the best numeric discriminators.

Weybright et al. 2005 (66)

T2-weighted dynamic
susceptibility-weighted contrast
material-enhanced (DSC) MRI

To differentiate tumor recurrence
from radiation necrosis

Significantly higher relative peak height (rPH) and relative
cerebral blood volume (rCBV) and lower relative percentage
signal recovery (PSR) values in patients with recurrent
glioblastomas (GBMs) than in patients with radiation
necrosis.

Barajas et al. 2009 (67)

Proton MR spectroscopy To differentiate tumor recurrence
from radiation necrosis

Increasing Cho levels in patients with radiation necrosis. Nakajima et al. 2009 (68)

MR spectroscopy and MR
perfusion

To differentiate tumor recurrence
from radiation necrosis

Cho/NAA and Cho/Cr ratios and rCBV more accurately
differentiate between necrosis and recurrent tumors.

Chuang et al. 2016 (69)

Diffusion tensor imaging (DTI)
and calculation of the apparent
diffusion coefficient (ADC)

To differentiate tumors from
radiation abscesses

Hyperintense signal changes in abscesses. The combination
of DTI and dynamic susceptibility contrast perfusion-
weighted imaging improves the differentiation between
tumors and brain infections.

Bink et al. 2005 (70)

Calculation of the ADC To differentiate tumors from
radiation abscesses

The accuracy of ADC ratios in discriminating brain
abscesses from cystic or necrotic neoplasms is high and can
be further improved with the use of T2 rim characteristics.

Fertikh et al. 2007 (71)

MR spectroscopic imaging To differentiate tumors from
radiation abscesses

Metabolite ratios and maximum Cho/Cho-n, Cho/Cr, and
Cho/NAA ratios of the contrast-enhancing rim could
differentiate abscesses from brain tumors.

Lai et al. 2008 (72)

MR spectroscopy To differentiate high-grade
gliomas from metastases

Intratumoral Cr is suggestive of a glioma. The absence of
Cr indicates metastasis.

Ishimaru et al. 2001 (73)

Phase difference enhanced
imaging (PADRE) in MRI

To differentiate high-grade
glioma from metastases

Evaluation of peritumoral areas on color PADRE helps
differentiate GBMs from metastases

Doishita et al. 2018 (74)

Computational-aided
quantitative image analysis (T2-
weighted/susceptibility-weighted/
contrast-enhanced T1-weighted
MRI)

To differentiate high-grade
gliomas from metastases

Computational-aided quantitative analysis of MRI improves
diagnostic accuracy while differentiating GBM from
metastases.

Petrujkić et al. 2019 (75)

Resonance imaging texture
analysis

To differentiate high-grade
gliomas from metastases

The peritumoral edema was higher than the edema
surrounding the metastatic tumor.

Skogen et al. 2019 (76)

Combining arterial spin labelling
perfusion (ASL)- and DTI-
derived metrics

To differentiate high-grade
gliomas from metastases

A combination of ASL- and DTI-derived metrics of the
peritumoral part helps differentiate between GBMs and
brain metastasis

Abdel et al. 2019 (77)

Multilayer perceptron (MLP)
models with non-enhancing T2
hyperintense regions

To differentiate high-grade
gliomas from metastases

A trained multi-class MLP model using parameters from
preoperative MR images could help differentiate between
GBMs, brain metastases, and central nervous system
lymphomas.

Swinburne et al. 2019 (78)

Calculation of the ADC To differentiate high-grade
gliomas from metastases

Higher homogeneity and the inverse difference moment in
GBMs compared with metastases

Zhang et al. 2019 (79)

Evaluate the rCBV gradient in
the peritumoral brain zone
(PBZ)

To differentiate high-grade
gliomas from metastases

The rCBV gradient derived from DSC MRI in the PBZ is
an efficient parameter to differentiate GBMs from brain
metastases.

She et al. 2019 (80)

Machine learning method based
on texture parameters in MRI

To differentiate high-grade
gliomas from metastases

Based on the texture parameters in MRI, the performance
of the machine learning method was superior to that of the
univariate method while differentiating GBMs from brain
metastases.

Tateishi et al. 2020 (81)

2D texture features extracted
from MRI

To differentiate high-grade
gliomas from metastases

High accuracy employing a set of 2D texture features to
discriminate between GBMs and brain metastases.

Ortiz-Ramón
et al.

2020 (82)

(Continued)
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in clinical imaging. By employing various radiotracers, SPECT

enables precise evaluation of metabolic and molecular processes,

such as glucose utilization, nucleoside and amino acid transporter

expression, and protein and deoxyribonucleic acid (DNA) synthesis

(88). SPECT has been extensively used to investigate the molecular

neurodegeneration mechanisms in drug addiction and to enhance

therapeutic strategies with minimal adverse effects. Furthermore,

SPECT plays a valuable role in neuroscience research, particularly

in neurodegeneration and neuro-oncology (89).

However, conventional neuroradiological techniques have

several limitations. The increased contrast enhancement observed

in MRI could lead to difficulty in distinguishing between radiation

necrosis and tumor recurrence, as the lesions appear similar.

Currently, radiotherapy and stereotactic radiosurgery are

commonly used for treating brain metastasis. However, the

incidence of radiation-induced necrosis poses a significant

challenge in clinically differentiating between metastasis and

radiation-induced necrosis. A previous study has demonstrated

that conventional MRI has a specificity of 75% and a sensitivity

of only 44% in distinguishing between tumors and inflamed

necrotic tissue (90, 91).

Neuroinflammation and necrosis are prominent side effects of

radiotherapies for treating brain malignancies. A previous

retrospective study reported that the rate of radiation-induced

necrosis in patients with GBM ranged from 2.5% to 30% (92, 93).

This necrotic tissue disrupts the vasculature and perivascular

parenchyma, resulting in an abundance of neuroinflammation.

The compromised BBB facilitates peripheral immune cell

infi l trat ion and brain edema, thereby amplifying the

inflammatory response initiated by activated and infiltrated

immune cells. Currently, proton MR spectroscopic imaging is

employed to assess cellular metabolism by detecting the

distribution of proton metabolites, including creatine, lactate,

lipid, and especially choline, which is particularly elevated in cell

populations exhibiting enhanced cell proliferation. This advanced

MRI technique allows for a detailed evaluation of tissue biochemical

composition and blood perfusion, providing valuable information

for distinguishing solid tumor tissues and necrotic regions. In a

previous clinical trial involving 29 consecutive patients, the

feasibility and utility of two-dimensional (2D) chemical shift

imaging MR spectroscopy were investigated, demonstrating that

increased ratios of choline content can differentiate brain tumors
Frontiers in Immunology 06
from necrotic tissues with an accuracy of up to 97% (66). The

choline/N-acetylaspartate and choline/phosphocreatine ratios are

particularly effective discriminators in necrotic lesions. However, it

is important to note that a transient increase in choline levels can be

observed in patients with radiation-induced necrosis, resulting in a

false-positive diagnosis of tumor recurrence when using proton MR

spectroscopy (68). Another study focusing on patients undergoing

high-dose radiotherapy revealed that elevated lactate/creatine ratios

and decreased metabolites are more commonly observed in patients

with radiation necrosis than in those with recurrent GBM (65).

A retrospective study revealed significant differences in the mean,

maximum and minimum relative peak height, and relative cerebral

blood volume between patients with GBM and those, as detected by

T2-weighted dynamic susceptibility-weighted contrast material-

enhanced MRI (67). Furthermore, lower recovery values were

observed in recurrent GBM compared with radiation necrosis.

Additionally, a meta-analysis of 13 studies demonstrated that the

detection of choline/N-acetylaspartate and choline/phosphocreatine

ratios, along with relative cerebral blood volume (rCBV) using MR

spectroscopy and MR perfusion, significantly improves accuracy in

diagnosing primary or metastatic brain tumors (69).

PET scan, as a widely applied noninvasive neuroimaging

approach, is useful for imaging neuroinflammation (Table 2).

According to a previous study, PET scans exhibit a specificity of

69% and a sensitivity of 92% in differentiating between tumor

recurrence and radiation necrosis, surpassing nuclear MR

spectroscopy for choline/N-acetylaspartate and choline/creatine

ratios at various thresholds (98). Another experimental study

conducted on orthotopic GBM rat models demonstrated the

excellent ability of PET with 18Fluorine (F)-fluorodeoxyglucose

and 18F-fluoroethyltyrosine to distinguish primary GBMs from

necrosis (96). Furthermore, a meta-analysis of six studies

suggested that 11C-choline PET is the most accurate diagnostic

approach for distinguishing tumor relapse from necrosis in patients

with glioma (97). Additionally, a retrospective study with long-term

follow-up revealed that 11C-choline PET/CT outperform MRI and
18F-fluorodeoxyglucose in evaluating tumor recurrence or

radiation-induced necrosis (94). Furthermore, a previous clinical

study involving 50 patients demonstrated that 11C-methionine PET

outperforms 11C-choline and 18F-fluorodeoxyglucose PET in

distinguishing primary GBMs from necrosis (95). Additionally,

the L-type amino acid transporter 1 tumor-specific PET tracer,
TABLE 1 Continued

Imaging approach Application Image features Author Year

Three-dimensional T1-weighted
(3DT1) MR images with the
machine learning classifier

To differentiate high-grade
gliomas from metastasis

The proposed diagnostic support system based on
radiomics features extracted from post-contrast 3DT1 MR
images helps differentiate solitary metastases from GBMs.

de Causans
et al.

2021 (83)

MR spectroscopy To differentiate high-grade
gliomas from metastases

No difference in the ADC values and ratios, as well as
standard deviation values and ratios between GBMs and
brain metastases.

Beig Zali et al. 2021 (84)

A deep learning-based model
based on MRI

To differentiate high-grade
gliomas from metastases

An efficient deep learning-based model was established and
validated using MR images.

Shin et al. 2021 (85)

MRI-based machine learning
decision

Identification of
medulloblastoma subgroups

MRI-based machine learning helps identify clinically
relevant molecular pediatric medulloblastoma subgroups

Zhang et al. 2022 (86)
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18F-2-fluoroethyl-L-phenylalanine, is also a superior option

compared with 18F-fluorodeoxyglucose PET in clinical

differentiation, as it exhibits low sensitivity to neuroinflammation.

However, the high rate of false-positive and false-negative results in

PET scans remains a significant limitation in clinical practice.

Therefore, there is an urgent need for improved neuroimaging

techniques based on the aforementioned methods to achieve

accurate diagnosis and clinical evaluation. Currently,

advanced approaches offer substantial benefits in evaluating

neuroinflammation through immune substance labelling,

assessing BBB integrity via contrast agent leakage, and identifying

inflammatory consequences combined with phenotypic imaging

patterns and imaging genomics.
6 Neuroinflammatory molecular-
based imaging strategies for brain
metastases

Brain metastasis is more prevalent than primary brain tumors,

mainly due to the limited therapeutic efficacy against various

primary cancer, such as breast, lung, and colorectal cancers. The

prognosis for patients with brain metastasis is significantly

compromised, underscoring the importance of early detection

and accurate diagnosis. The TME plays a crucial role in the

development of brain metastasis. Notably, the cancer stem cells
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(CSCs) are the predominant population involved in mediating

metastasis, while neuroinflammation also plays a decisive role.

Inflamed regions within the brain parenchyma facilitate the

adhesion of peripheral tumor cells to activated endothelial cells,

initiating invasion and metastasis. Tissue lesions caused by brain

metastasis contribute to the establishment of neuroinflammation,

characterized by persistent activation of astrocytes and microglia,

increased production and release of pro-inflammatory substances,

compromised BBB permeability, and infiltration of immune cells.

Consequently, a diverse array of immune cells and inflammatory

factors promote the progression of brain metastasis, exhibiting high

heterogeneity depending on the origin of the primary malignancy

and the specific brain site involved. Similar to GBMs, hypoxia-

induced stimulation triggers pro-inflammatory substance

expression in CSCs, further promoting a pro-inflammatory

phenotype in GBM. These inflammatory factors contribute to

tumor growth and metastasis in GBM (99, 100).

Distinguishing between primary brain tumors and brain

metastasis using neuroimaging remains a significant challenge in

clinical diagnosis. Both primary and metastatic brain malignancies

exhibit similar peritumoral hyperintensities and intratumoral

texture on MRI. Previous studies have shown limited differences

in apparent diffusion coefficient (ADC) measurements between

primary brain tumors and brain metastasis. However, several

studies have revealed that GBMs exhibit higher homogeneity and

inverse difference moment than brain metastasis (79). Regarding

peritumoral edema, MRI demonstrates greater heterogeneity of
TABLE 2 Positron emission tomography (PET)-based neuroimaging applied in brain tumors.

Imaging approach Application Image features Author Year

11Carbon (C)-choline PET/
computed tomography (CT)

To differentiate recurrent GBMs
from radiation necrosis

11C-choline PET/CT exhibits higher sensitivity and
specificity while differentiating recurrent brain tumors from
necrosis compared with 18Fluorine (F)-fluorodeoxyglucose
(FDG) PET/CT and MRI.

Tan et al. 2011 (94)

11C-methionine PET To differentiate recurrent GBMs
from necrosis

11C-methionine PET exhibits higher sensitivity and
specificity while differentiating recurrent brain tumors from
necrosis compared with 11C-choline or 18F-FDG PET.

Takenaka et al. 2014 (95)

18F-FDG delayed PET To differentiate GBMs from
radiation necrosis

18F-fluorodeoxyglucose delayed PET helps differentiate
GBMs from radiation necrosis

Bolcaen et al. 2015 (96)

11C-choline PET To differentiate recurrent GBMs
from radiation necrosis

11C-choline exhibits high diagnostic accuracy while
differentiating recurrent tumors from radiation-induced
necrosis in gliomas.

Gao et al. 2018 (97)

11C-methionine PET To differentiate high-grade
gliomas from metastasis

11C-methionine was a more reliable recurrent tumor marker
than 11C-peripheral benzodiazepine receptor 28.

Tran et al. 2020 (61)

68Galium-DOTATOC-PET Helps in treatment planning for
skull base meningiomas with
advanced photons and protons

The addition of 68Ga-DOTATOC-PET information during
treatment planning for skull base meningiomas significantly
affects target volumes.

Stade et al. 2018 (62)

PET scan To differentiate tumor recurrence
from radiation necrosis

PET scan had the best sensitivity and specificity, for
choline/N-acetylaspartate and choline/creatine ratios across
different thresholds.

Menoux et al. 2017 (98)

18F-FET PET/MRI To distinguish between tumor
progression and therapy-related
alterations

Multiparametric 18F-FET PET/MRI improves the
therapeutic effectiveness by distinguishing between tumor
progression and therapy-related alterations.

Brendel et al. 2022 (63)

18F-FET-PET/CT To differentiate recurrent GBMs
from radiation necrosis

Combined dynamic and static 18F-FET PET/CT parameters
can be used in differentiating radiation necrosis from
recurrent tumor after cyberknife robotic radiosurgery.

Lim et al. 2022 (64)
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peritumoral edema in GBMs compared with that in metastasis, with

high sensitivity and specificity of 80% and 90%, respectively (76).

Additionally, the use of 2D texture features extracted from MRI

images enables fast and noninvasive discrimination between GBM

and brain metastases (82). Machine learning algorithms have

gained significant attention in neuroimaging applications to

improve the accuracy of clinical diagnosis. Quantitative analysis

of MRI using machine learning and deep learning-based

models facilitates the differentiation between primary and

metastatic malignancies, emphasizing the significance of

texture feature analysis (81, 85). Furthermore, texture features

extracted from post-contrast three-dimensional T1-weighted MR

images, optimized by machine learning classifiers, have

demonstrated high diagnostic performance and generalizability in

differentiating solitary brain metastasis from GBM with high

diagnosis performance and generalizability (83). In pediatric

medulloblastoma (MB), radiogenomics combined with MRI-based

machine learning offers an opportunity for MB risk stratification.

Studies have reported the beneficial use of MRI-based machine

learning in identifying four clinically relevant molecular pediatric

MB subgroups (86).

A previous study demonstrated that extracting texture features

from post-contrast diffusion tensor imaging (DTI) MRI contributes

to distinguishing between primary and metastatic brain tumors,

offering high performance and generalizability in clinical diagnosis.

Moreover, combining arterial spin labelling perfusion and DTI has

shown significant clinical value (77). However, no differentiation in

ADC values and ratios, as well as standard deviation values and

ratios, was observed between GBMs and brain metastasis (84). In

computational-aided quantitative analysis of MRI images (T2-

weighted/susceptibility-weighted/contrast-enhanced T1-weighted

MRI), high accuracy was achieved in differentiating GBMs from

metastases, emphasizing the significance of texture features rather

than fractal-based features in clinical practice (75). Trained multi-

class multilayer perceptron models using non-enhancing T2

hyperintense regions can differentiate glioblastoma, brain

metastasis, and CNS lymphoma with modest diagnostic accuracy,

resulting in an approximately 19% increase in diagnostic yield (78).

The integration of DTI, neurite orientation dispersion,

intracellular or extracellular volume fraction, and metabolite

analysis with neuroimaging techniques have promoted accurate

clinical discrimination. Furthermore, the rCBV in the peritumoral

brain zone (PBZ) distinguishes GBMs from metastases. Moreover,

the CBV gradient or color map obtained from phase difference

enhanced imaging in the PBZ also serves as an effective approach

for distinguishing GBMs frommetastasis. Significantly higher rCBV

ratios and rCBV gradient were observed in the PBZ of GBMs

compared with brain metastasis (80). Intratumoral proton MR

spectroscopy reveals high levels of creatine in primary brain

malignancies, particularly GBMs, whereas the absence of

intratumoral creatine suggests the presence of metastatic brain

malignancies (73). Definite lipid signals indicate tumor tissue

necrosis, while the absence of lipid signals might rule out

metastasis. Currently, the evaluation of peritumoral areas using

color phase difference enhanced imaging, a novel phase-related

MRI technique, also aids in the differentiation between GBM
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tumors and metastases (74). The prognosis for patients with brain

metastasis is compromised, therefore, early detection and accurate

diagnosis of brain metastasis are critical in clinical management.
7 Neuroinflammatory molecular
imaging to distinguish CNS
malignancies from intracranial
infections

In neuroimaging, brain abscess manifests as expansile, rim-

enhancing masses surrounded by edema, which can resemble

necrotic malignant tumors, particularly GBMs (101).

Consequently, lesions caused by brain infections, particularly

brain abscesses, are often misdiagnosed as brain tumors due to

their similar MRI appearance and characteristics. However, brain

abscesses and GBMs could cause nonspecific headaches in the

absence of fever, focal neurologic deficits, and epileptic seizures

(102). Therefore, the development of rapid and accurate diagnostic

techniques is necessary to distinguish between brain abscesses and

malignancies. Pathological examination reveals that the enhancing

rim of GBMs comprises infiltrated tumor cells, whereas the

enhancing rim of pyogenic abscesses comprises inflammatory

components such as neutrophils, macrophages, and lymphocytes

(103, 104). Therefore, the choline/creatine ratio of the rim-

enhancing lesion in abscesses is expected to be lower than that in

GBMs. During MRI, the ADC and diffusion-weighted imaging

provide valuable information for clinical diagnosis. Previous

studies have reported that abscesses exhibit hyperintense signal

changes on diffusion-weighted imaging, while GBMs demonstrate

varying degrees of hyperintense to hypointense signal conversion.

Significant differences have been observed in the choline/creatine,

choline/N-acetylaspartate, and choline/choline-n ratios within the

contrast-enhancing rim, allowing for differentiation between

abscess and GBMs (71). Furthermore, combining dynamic

susceptibility contrast perfusion-weighted imaging and DTI has

shown improved efficacy in distinguishing inflammatory lesions

compared with using a single neuroimaging technique. Research

has indicated that choline levels in the ring-enhancing portion of

abscesses are significantly lower compared with that of brain

tumors (70). Moreover, a subsequent clinical study has

demonstrated the significant role of MR spectroscopic imaging in

discriminating abscesses from brain tumors. Metabolite ratios and

maximum choline/choline-n, choline/creatine, and choline/N-

acetylaspartate ratios within the contrast-enhancing rim could

effectively differentiate abscesses from brain tumors (72).
8 Conclusion

Imaging genomics has emerged as a technique for evaluating

neuroinflammation, involving the use of novel imaging biomarkers

that capture DNA and RNA patterns associated with the biology or

immune states of cancers. The imaging features are closely

associated with gene expression patterns, mutations, and protein
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modifications (105). In the context of GBMs, imaging genomics has

been employed, and several biomarkers have been established, such

as the isocitrate dehydrogenase 1 mutation status and

immunoreactivity. A radiogenomic profiling of 60 patients with

GBM demonstrated positive correlations between CD68, CSF1

receptor, CD33, CD4, and CBV (106). Thus, imaging genomics

holds the potential for bridging the gap between neuroimaging and

tumor diagnosis in clinical practice.

In the era of immunotherapy and precision oncology, focusing

solely on isolated imaging of brain tumor is not enough to establish

predictive biomarkers and define neuroinflammation. Therefore,

novel MRI and PET scans based on the tumor-associated

neuroinflammation have attracted great attention. Secondary

surgery towards recurrent brain tumors always accompanies

elevating surgical risk and high therapeutic costs, therefore, it is

important for accurate discrimination between tumor recurrence and

radiation-induced necrosis. Multi-parametric MRI presents versatile

imaging information and is considered an effective and useful

imaging approach in clinical diagnosis. Accumulative evidence

emphasized the clinical value of the apparent diffusion coefficient,

volume transfer constant, and relative cerebral blood volume in the

distinction of tumor cancer, radiation-induced necrosis, and other

brain diseases in daily neuro-oncological practice. PET scans present

a unique function in determining tumor microenvironment,

assessing drug delivery, and evaluating therapeutic effects. Although

the application of PET scans presents great advantages in clinical use,

high economic costs and restricted devices limit its generalization.

The development of neuroimaging and the combination of novel

MRI contrast agents and PET radiotracers and imaging genomic

techniques enable the evaluation of neuroinflammatory components

and the improvement of accurate diagnosis and clinical
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discrimination. Of note, there are still several limitations requiring

further improvement in neuroinflammation-based neuroimaging to

minimize the false-positive diagnosis of tumor recurrence and

misdiagnosis with necrosis or intracranial infection. In conclusion,

the efforts on such noninvasive neuroinflammation imaging towards

accurate diagnosis and personalized therapeutic efficacy monitoring

will help the establishment of precision oncology strategies for

patients with brain tumors or other malignancy.
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