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The cell surface enzyme CD73 is increasingly appreciated as a pivotal non-

redundant immune checkpoint (IC) in addition to PD-1/PD-L1 and CTLA-4. CD73

produces extracellular adenosine (eADO), which not only inhibits antitumor T cell

activity via the adenosine receptor (AR) A2AR, but also enhances the immune

inhibitory function of cancer-associated fibroblasts and myeloid cells via A2BR.

Preclinical studies show that inhibition of the CD73-adenosinergic pathway in

experimental models of many solid tumors either as a monotherapy or, more

effectively, in combination with PD-1/PD-L1 or CTLA-4 IC blockades, improves

antitumor immunity and tumor control. Consequently, approximately 50

ongoing phase I/II clinical trials targeting the CD73-adenosinergic IC are

currently listed on https://clinicaltrials.gov. Most of the listed trials employ

CD73 inhibitors or anti-CD73 antibodies alone, in combination with A2AR

antagonists, and/or with PD-1/PD-L1 blockade. Recent evidence suggests that

the distribution of CD73, A2AR and A2BR in tumor microenvironments (TME) is

heterogeneous, and this distribution affects CD73-adenosinergic IC function.

The new insights have implications for the optimally effective, carefully tailored

approaches to therapeutic targeting of this essential IC. In the mini-review, we

briefly discuss the cellular and molecular mechanisms of CD73/eADO-mediated

immunosuppression during tumor progression and therapy in the spatial context

of the TME. We include preclinical data regarding therapeutic CD73-eADO

blockade in tumor models as well as available clinical data from completed

trials that targeted CD73-adenosinergic IC with or without PD-1/PD-L1 inhibitors

and discuss factors that are potentially important for optimal therapeutic

outcomes in cancer patients.
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1 Introduction

CD73 is a type I transmembrane glycoprotein widely expressed

on cell surfaces of smooth muscle, epithelium, endothelium,

fibroblasts, neurons, and the immune system (1–3). Functionally,

CD73 is a rate-limiting ecto-5’-nucleotidase (NT5E), which

together with other cell surface ectonucleoside triphosphate

diphosphohydrolases , such as CD39 (ENTPDase 1) ,

dephosphorylate ATP released from stressed/damaged cells and

produce extracellular adenosine (eADO) (1–3). CD73 plays a

critical role in tissue homeostasis under physiological and

pathological conditions, including epithelial and endothelial

barrier function, neuronal function, as well as immunity and

inflammation (4–6). The roles of CD73 in modulating

tumorigenesis, angiogenesis, and metastasis are increasingly

appreciated (7–9) such that it is now recognized as a critical

cancer immune checkpoint (IC) non-redundant to PD-1/PD-L1

and CTLA-4 (10–14). Preclinical studies and early clinical trials

reveal important breakthroughs as well as challenges. Here, we
Frontiers in Immunology 02
briefly describe the cellular and molecular events associated with the

CD73-adenosinergic pathway, discuss the current status of

therapeutic interventions that target the CD73-ADO axis, and

propose potential ways to enhance cancer treatment outcomes.
2 The CD73-adenosinergic pathway in
the tumor microenvironment

Hypoxia is a hallmark of the TME (15–17). Hypoxia and

therapy-induced cell death potentiate ATP release into the

extracellular space, which is rapidly metabolized by the CD39/

CD73 enzyme-pair to ADO (Figure 1A). ADO acts on specific

adenosine receptors (AR), A1R, A2AR, A2BR, and A3R. Stimulatory

A1R and A3R are coupled with Gi or Go proteins, whose activation

suppresses cAMP with downstream immune-stimulatory effects. In

contrast, A2AR and A2BR are coupled with Gs and/or Golf or Gq

proteins, which promote cAMP signaling and thus inhibit anti-

tumor immune responses (Figure 1B) (4, 18, 19).
A

B

FIGURE 1

Schematic illustration of the CD73-adenosinergic pathway activity in the TME during tumor progression and treatment. (A) The CD39/CD73 enzyme
pair converts ATP released by dying or stressed cells to immunosuppressive ADO, which inhibits antitumor immunity primarily by engaging A2AR and
A2BR on various TME cells. (B) Schematic illustration of major AR signals activated by ADO. All four AR activate MAPK (p38, ERK1/2 and JNK or JUN)
phosphorylation. Stimulatory A1R and A3R share several signaling events, including: A1R or A3R stimulation decreases adenylate cyclase activity and
cAMP, inhibits protein kinase A (PKA), activates phospholipase C (PLCb), and closes Ca++ channels. Stimulation of A2AR or A2BR produces opposite
effects on adenylate cyclase, cAMP, and PKA (i.e. stimulates them) (4, 18, 19). Key functional impact of A2AR activity in TME effector T and NK cells
are inhibition of activation, IL-2 production, and proliferation. The impact of ADO on A2BR-expressing myeloid and non-immune TME cells causes
skewed pro-tumor phenotypes and activities that affect the TME and T/NK effector functions (4, 18, 19).
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Preclinical and clinical studies show that in the TME, ADO

mainly mediates immunosuppression via A2AR and A2BR due to

hypoxia, inflammation and typically high ADO levels (4, 10, 13, 20).

In particular, A2AR is highly expressed on T and NK cells and when

activated, suppresses cell proliferation and effector function (13, 21–

26). High A2BR levels on other TME cells potentiate immune

suppressors including regulatory dendritic cells (DC), myeloid-

derived suppressor cells (MDSC), tumor-associated macrophages

(TAM) (13, 27–31), and cancer associated fibroblasts (CAF) (32).

Moreover, A2BR augments CD73 expression on CAF via a CD73-

A2BR-CD73 positive feedback loop, further exacerbating

immunosuppression (13, 27–32).
3 CD73-adenosinergic pathway as
a critical IC

3.1 Preclinical models

Preclinical studies targeting CD73 via genetic inactivation,

neutralization, or small molecule inhibitors in numerous tumor

models were reviewed extensively elsewhere (8–10, 13, 33). These

studies reveal that the efficacy of anti-CD73 alone has limitations, in

part because ADO can be generated by additional, though less

prominent, pathways besides CD39/CD73. Similarly, clinical trials

show that CD73 monotherapy is well-tolerated with moderate

benefit in subsets of patients (9, 13, 34, 35). Treatment efficacy

can be enhanced when CD73 targeting is combined with strategies

to inhibit down-stream ADO signaling, among other methods.

Here, we mainly focus on how these treatments impact specific

AR-mediated cellular and molecular events that modulate the TME

immune landscape.

3.1.1 A2AR activity on T and NK cells
The critical inhibitory role of A2AR in T cell activation and

antitumor immunity was first revealed by Ohta et al. in 2006 (22).

This seminal study demonstrated that genetic inactivation of A2AR

enhanced CD8 T cell-dependent antitumor immunity leading to the

rejection of immunogenic tumors in ~60% of hosts without

affecting the progression of non-immunogenic tumors (22).

Subsequent studies revealed that ADO-induced A2AR signaling

suppressed TCR-induced T cell activation including decreased

production of IL-2, IFN-g and TNF-a, which subsequently

disrupted T cell proliferation and CD4 differentiation to Th1 and

Th17 effectors (24, 36). Instead, A2AR activation promoted the

generation of FoxP3+ and Lag-3+ regulatory T cells (Treg) and

persistent T cell unresponsiveness to subsequent stimuli (24). A2AR

signaling in CD8 T cells also interfered with Notch-1 upregulation

and granzyme B production following TCR stimuli (23).

Early studies suggested that NK cell-dependent cytotoxicity was

inhibited by CD73+ tumors leading to enhanced tumor metastasis

(37, 38). Subsequent research revealed that CD73-A2AR activity

suppressed NK cell maturation (39) and inhibited IL-15-induced

NK cytotoxicity (40). Moreover, CD73+ NK cells within large

tumors possessed immune-regulatory function via STAT3-
Frontiers in Immunology 03
induced IL-10, which suppressed CD4 T cell proliferation and

IFN-g production (41).

The immunosuppressive role of A2AR in T and NK cells was

validated in preclinical murine tumor models. Genetic inactivation

as well as A2aR antagonists alleviated T and NK cell

unresponsiveness and enhanced antitumor immunity (37, 39, 42–

45). A recent study employed the CRISPR/Cas9-mediated A2AR

knockout in engineered human chimeric antigen receptor (CAR)-T

cells, which made them resistant to ADO (46) and enhanced

effector function and antitumor immunity in vivo in a preclinical

model (46). These exciting results warrant clinical application of

targeted A2AR inhibition/inactivation in T and NK cells to improve

antitumor immunity and treatment outcomes.

3.1.2 A2BR activity
Less is known about A2BR expression and function in various

cell subsets and its relationship to CD73 in the TME. Unlike A2AR,

A2BR has low affinity for ADO and is only activated by high ADO

concentrations found under pathological conditions, which in the

TME include hypoxia and therapy-induced cell stress or death (4, 5,

10, 47, 48). Notably, the expression of A2BR is markedly upregulated

in response to hypoxia or inflammation (4, 20, 49). In the TME,

A2BR is expressed in immune and non-immune cells, including

myeloid cells, CAF, endothelium, and tumor cells (4, 18, 20, 32, 47).

High levels of A2BR on some tumor cell types apparently promotes

tumor proliferation, angiogenesis and metastasis (12, 47, 50, 51),

which may be independent of immune regulation. In a glioblastoma

model, a CD73-A2BR-CD73 positive feedback loop enhanced tumor

chemoresistance (52).

So far, only myeloid cells, CAF and endothelium have been

shown to exert ADO-A2BR-mediated immunosuppression.

Moreover, a hypoxia-induced CD73-A2BR-CD73 positive

feedback loop augmented CD73 and A2BR expression on

endothelial cells (49). Much of this knowledge comes from in

vitro studies and investigations of tissue damage in the absence of

cancer (28, 48, 53), partly validated in the TME (27, 29, 47, 54).

Act ivated A2BR in myeloid precursors promotes the

immunosuppressive function of MDSC, differentiation of

macrophages towards M2 phenotype, and induction of regulatory

DC (27, 48, 54–57). These myeloid cells in turn inhibit antitumor T

cell activity and promote angiogenesis and tumor metastasis

potentially by reducing production of TNF-a and IL-12 while

increasing IL-10, IL-6 and VEGF secretion (27, 58, 59).

Overa l l , these observat ions suggest an important

immunosuppressive role for TME-associated A2BR and suggest

that the CD73-A2BR-CD73 amplification loop may be a plausible

therapeutic target.

3.1.3 Combinatory targeting of A2AR and/or A2BR
together with other IC

Preclinical evidence showed that while targeting individual

A2AR- or A2BR-axis each positively impacted antitumor immunity

and generally delayed tumor progression (60–62), we found that

combined anti-CD73, A2AR- and A2BR-axis blockade markedly

improved anti-tumor immunity with tumor regression (32). The
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specific reasons for the observed additive/synergistic effects are

incompletely understood. Evidence does suggest that the

effectiveness of anti-IC strategies depends upon the tumor type

and TME conditions (13, 32). Furthermore, combinatory regimens

that inhibit various CD73-AR axes and PD-1/PD-L1 are more

effective, substantiating the non-redundant roles of CD73-AR IC

and the advantage of targeting multiple IC (32, 61, 63).
3.2 Clinical observations

A large body of clinical evidence supports the negative impact of

TME CD73 on cancer patient outcomes. Markedly elevated CD73

levels found in numerous tumors, including colorectal cancer

(CRC), triple negative breast cancer (TNBC), head and neck

cancer (HNC) and ovarian cancer (OC), have been linked to poor

patient survival (64–70). Moreover, cancer therapies, including PD-

1 ICB (71, 72), upregulated CD73-expression and ADO-AR

signaling in the TME, potentially amplifying the role of this IC in

patient outcomes (70, 73–76).

Several clinical studies have suggested that high blood levels of

soluble (s)CD73, potentially generated by shedding, MMP-

mediated clipping, or exome secretion, may prognosticate poor

clinical outcome (77–79). However, a positive correlation between

sCD73 and CD73 levels in the TME has not been established (77).

While sCD73 has enzymatic activity in circulation, its’ impact on T

cell-mediated antitumor immunity in the TME might be limited

due to the spatial impact (addressed in the discussion). A

mechanistic insight concerning sCD73 production and

distribution in the TME is needed in order to fully understand its

impact on antitumor immunity.

The specific roles of A2AR or A2BR and their relationship to

CD73 expression in patient outcomes are less clear and possibly

depend upon specific-tumor type, immunogenicity, and the TME

landscape. On one hand, recent reports suggest that in non-small

cell lung cancer (NSCLC), high A2AR expression in the TME

independently predicted better patient overall survival (OS), while

high CD73 levels were associated with poor OS (69). Similarly, high

A2AR expression on CD8 T cells within OC nests correlated with

durable clinical benefit/response (CBR) during a clinical trial of PD-

1 ICB and an epigenetic modifier (80). On the other hand, the

negative impact of A2AR on anti-tumor immunity was shown in a

combined trial of PD-L1 and A2AR inhibitors in renal cell

carcinoma (RCC), demonstrating better clinical responses to

A2AR inhibitors when tumors exhibited high adenosine signature

profiles (81). Additional studies are necessary to dissect the

relationships of various CD73-AR axes and application

to treatments.
4 Clinical trials targeting the CD73-
adenosinergic pathway

So far, approximately 50 active phase I/II cancer

immunotherapy trials targeting the CD73-AR IC are listed on

https://clinicaltrials.gov. Among these, more than 60% were
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designed to target CD73 by monoclonal antibodies or small

molecule inhibitors, some of which were combined with PD-1/

PD-L1 ICB regimens. The other 30-40% have employed small

molecule inhibitors targeting A2AR alone or together with anti-

CD73 and/or A2BR inhibitors (8, 61, 83–86). In addition to the

safety (severity of adverse event, AE) and pharmacokinetic

assessment of the therapeutic agents, a secondary objective was to

collect data on clinical benefit rate (CBR), consisting of complete

response (CR), partial response (PR) and stable disease (SD). Also,

progression-free survival (PFS), objective response (OR), overall

response rates (ORR) and overall survival (OS) were assessed based

on standardized Response Evaluation Criteria in Solid Tumors

version 1.1 (82) (for details, see legend to Table 1).
4.1 Clinical trials targeting CD73

4.1.1 Anti-CD73 antibodies
In approximately 20 trials in a variety of solid tumors, anti-CD73

monoclonal antibodies have been employed alone or more often, in

combination with anti-PD-L1 or anti-PD-1. These antibodies are listed

as Oleclumab, MEDI9447, AK119, HLX23, IPH5301, Sym042, CPI-

0006, IBI325, PT199, JAB-BX102, TJ004309, NZV930, INCA00186

and BMS-986179. Most of the trials were/are phase I/Ib for safety

assessment with limited preliminary reports of clinical outcomes in

publications, abstracts, or oral presentations at international

conferences, briefly described below.

In general, anti-CD73 caused low-grade AE classified as

manageable or acceptable tolerability (NCT02503774, NCT03381274,

NCT03616886, NCT03611556 and NCT03334617). Early reported

outcomes have been mixed, as some showed promising signs of

disease control, while others lacked solid evidence of clinical benefits.

For instance, the NCT02503774 phase I trial of anti-CD73 with or

without anti-PD-L1 enrolled 77 patients with CRC, 73 with pancreatic

adenocarcinoma (PDAC) and 42 with NSCLC positive for EGFR

mutation (EGFRm). Among those with evaluable outcomes, one

CRC, two PDAC and four EGFRm NSCLC patients had OR, while

nine CRC, eight PDAC and nine EGFRm NSCLC patients had SD.

Overall, the antitumor activity was promising in EGFRm NSCLC

patients receiving anti-CD73/anti-PD-L1 therapy, whereas the

effectiveness in CRC and PDAC is yet to be verified (34).

The NCT03381274 phase Ib/II study evaluated the effects of

anti-CD73 combined with third-generation tyrosine kinase

inhibitors (TKI) in advanced EGFRm NSCLC in previously

treated patients and reported acceptable tolerability. Clinical

observations up to July 2021 were published in 2023 for patients

with T790M-negative EGFRm NSCLC and showed CBR of 75%

and OR of 25% in five patients receiving 1500 mg anti-CD73

antibody; CBR of 82.4% and OR of 11.8% were noted in 21

patients administered 3000 mg anti-CD73 antibody (35). For

patients on the higher dose of anti-CD73, the median PFS was

7.4 months as compared with PFS of 2.8 months without anti-

CD73 (35).

Similar studies include NCT03616886 phase I/II trial testing

anti-CD73, anti-PD-L1 and chemotherapy in subjects with

advanced TNBC (87), NCT03611556 phase Ib/II trial testing anti-
frontiersin.org
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TABLE 1 List of registered clinical trials that target various aspects of CD73-adenosinergic axis.

anti-CD73 (mAb or small molecule inhibitor) +1- che-
motherapy (w/anti-A2AR yellow)

anti-CD73 + anti-PDI/PDLI ICB +1- CTLA4 +1- A2aR inhibitor +/-
chemotherapy (w/A2aR inhibitor – yeIlow)

NCT03381274
Oleclumab (MED19447); AZD4635,
Osimertinib

NCT02503774 Oleclumab MED19447 - MED14736

NCT03954704** Dalutrafusp alfa; mFOLFOX6 Regimen NCT02740985
Oleclumab, AZD4635; Durvalumab, Abiraterone Acetate;
Enzalutamide; Docetaxel

NCT04797468 HLX23 NCT02754141 BMS-986179 - Nivolumab- rHuPH20

NCT05001347 TJ004309 NCT03267589 Oleclumab (MED19447); Durvalumab; Tremelilumab- MEDI 0562

NCT05143970 IPH5301; Trastuzumab NCT03334617 Oleclumab (MED19447); Durvalumab

NCT05173792 AK119 NCT03454451 CPI-006; CPI-444; pembrolizumab

NCT05227144 ORIC-533 NCT03549000 NZV930 PDR00I- NIR178

A2AR antagonist NCT03611556 Oleclumab (MED19d47); Durvalumab; Gemcitabine; Nab-paclitaxel

NCT02403193*** PBF-509; PDR00I NCT03616886 Oleclumab (MED19447); MED14736; Paciitaxel; Carboplatin

NCT03207867*** NIR178, PDR00I NCT03835949 TJ004309, Atezolizumab

NCT04895748***
MRI 78, PDR00I; DFF332;
RADOOI

NCT03875573
Oleclumab (MED19447); Durvalumab; Radiatiom Stereotactic Body
Radiotherapy

NCT05501054$ Ciforadenant; Nivolumab; Ipilimumab, NCT04104672 AB680; Zimberelimab; Nab-paclitaxel; Gemcitabine

A2BR antagonist NCT04148937 LY3475070 (CD73 inhibitor); Pembrolizumab

NCT03274479 PBF-1129 NCT04262388 Oleclumab MED19447; Durvalumab

NCT05234307**** PBF-1129; Nivolumab NCT04381832*
Quemliclustat (AB680); Etrumadenant (AB928); Zimberelimab;
Enzalutamide; Docetaxel; SG

NCT05272709 TT-702 NCT04572152 AK119; AK104

A2AR and A2BR antagonist NCT04660812*
AB680; etrumadenant; zimberelimab, mFOLFOX-6 regimen;
bevacizumab; regorafenib

NCT05024097***
Etrumadenant (AB928); Zimberelimab (AB122);
Radiation therapy; FOLFOX

NCT04668300 Oleclumab (MED19447); Durvalumab

NCT05177770 Etrumadenant (AB928); Zimberelimab- SRF617 NCT04672434 Sym024; Sym021

NCT05198349 M1069 NCT04869501 TJ004309 Atezolizumab

A3R antagonist NCT04989387 INCA00186; Retifanlimab; INCB106385

NCT00790218 CF-102 (CI-IB-MECA) NCT05119998 IB1325; sintilimab

*w/A2AR/A2BR inhibitor;
**dual anti-CD73/anti-TGF-beta;
***w/anti-PD1;
****w/anti-CD39/anti-PD1;
$w/anti-PD1/anti-CTLA4.

NCT05174585 JAB-BX102; mbrolizumab

NCT05246995 IB1325; sintilimab

NCT05329766
Quemliclustat; Zimberelimab; Domvanalimab; Fluorouracil;
Leucovorin; Oxaliplatin

NCT05431270 PT199; Q3W

NCT05559541 AK119; AK104

NCT05632328** AGEN1423; Balstilimab; Gemcitabine; Nabpaclitaxel
F
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Not listed in the table are >20 trials using non-selective inhibitors of multiple AR. Clinical trials record a variety of outcomes, according to standardized Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1. Complete response (CR) = disappearance of all target lesions; partial response (PR) = at least a 30% decrease in the sum of diameters of target lesions; progressive
disease (PD) = at least a 20% increase in the sum of diameters of target lesions, taking as reference the smallest sum on study; stable disease (SD) = neither sufficient shrinkage to qualify for PR nor
sufficient increase to qualify for PD; objective response rates (OR) = overall response rates (ORR) = percentage of patients with partial or complete response; progression-free survival (PFS) = the
length of survival without disease progression; overall survival (OS) = the length of survival time from either the date of diagnosis or the start of treatment. Adverse events (AE) are graded 1-5:
Grade 1 - mild; asymptomatic or mild symptoms; Grade 2 - moderate; minimal, local or noninvasive intervention indicated; Grade 3 - severe or medically significant but not immediately life-
threatening; Grade 4 - life-threatening consequences; urgent intervention indicated. Grade 5 - death related to AE.
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CD73 alone or combination with gemcitabine chemotherapy and

anti-PD-L1 in 212 patients with metastatic PDAC, and

NCT03334617 HUDSON Platform multi-arm phase II trial for

NSCLC pat ients who prev ious ly fa i l ed ant i -PD(L)1

immunotherapy. These trials have yet to report the results

(NCT03611556), or else had limited patient numbers (87)

(NCT03616886) or short treatment duration (NCT03334617) (88)

insufficient to assess clinical benefits.

The NCT03954704 phase I trial initiated in 2019 differs from

others by testing a bi-functional antibody against CD73 and TGFb
(known as GS-1423 and AGEN1423) in patients with advanced

solid tumors (89). Because TGF-b is an immunosuppressive

cytokine that enhances ADO-mediated CD73 upregulation (76,

90–92), it is expected to improve treatment efficacy. Early

assessment in 21 patients showed AE ranging from mild to

severe, including death (89). In patients administered a high dose

(20-45 mg/Kg), the circulating bi-functional antibody was durable

and effectively bound to B cell CD73. Among the 17 patients who

reached the first response assessment, 4.8% had a PR, 33.3% had SD,

and 42.9% showed progressive disease (PD) (89).

4.1.2 CD73 small molecule inhibitors
Besides anti-CD73 antibody, small molecule inhibitors specific

for CD73, AB680, ORIC-533 and LY3475070, have been employed.

The NCT04104672 phase I/Ib trial was designed to evaluate safety

and tolerability of AB680 with chemotherapy (paclitaxel and

gemcitabine) and anti-PD-1 for treatment-naive patients with

metastatic mPDAC (93). Preliminary observations in 13 patients

receiving various doses of AB680 showed a manageable safety

profile with AE up to grades 3-4. Early clinical responses among

nine evaluable patients included three PR and five SD (93).
4.2 Trials targeting A2AR or A2BR

The A2AR antagonists AZD4635, NIR178 and Ciforadenant

(CPI-444) were developed to block the A2AR-mediated inhibition of

T and NK activity. The A2BR antagonists PBF-1129 and TT-702 as

well as the dual A2AR/A2BR antagonists Etrumadenant (AB928) and

M1069 were developed to target the myeloid, stromal and potential

tumor cell-mediated immunosuppression for additive/synergistic

effects of dual CD73-AR axes blockade.

Fong et al. reported the results of A2AR inhibitor CPI-444 phase

I trial NCT03454451 in 68 patients with RCC (81), 33 of which

received CPI-444 alone and 35 received both CPI-444 and anti-PD-

L1. In both groups, the regimens were safe and improved overall

survival with durable clinical benefit associated with increased

CD8+ T cell recruitment into the tumors and broadened

circulating T-cell repertoires (81). Remarkably, better clinical

response was associated with enriched adenosine-related gene-

expression profile in pre-treatment RCC specimens (81),

supporting the hypothesis that elevated CD73-AR signaling is a

targetable non-redundant IC, and its blockade may enhance

antitumor immunity. Moreover, adenosine-regulated gene

signature may be a useful marker to predict clinical prognosis

(69, 80).
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Early results of the NCT02740985 phase Ia/b trials using A2AR

inhibitor AZD4635 alone or in combination with anti-PD-L1

antibody in 250 PD-1/PD-L1 inhibitor-naive patients with

advanced solid tumors, including metastatic castration-resistant

prostate cancer (mCRPC), CRC or NSCLC were reported recently

(94). Both monotherapy and combination therapy were well

tolerated with an overall <20% above grade 3 AE. ORR was

observed in ~5% of the 39 mCRPC patients on AZD4635

monotherapy and ~16.2% of 37 patients on combination therapy

(94). This trial also revealed a positive correlation between high

adenosine signature in the blood and better clinical response, as 24-

week PFS was noted in 48.9% of high adenosine-signature patients

versus 20.8% of low adenosine-signature patients (94).

Clinical trials that target the A2BR are limited. The

NCT04381832 phase Ib/II trial to evaluate the A2AR/A2BR dual

antagonist AB928 with or without anti-PD-1 and chemotherapy in

patients with mCRPC reported a manageable safety profile in 17

enrolled patients (95). Among 16 patients that continued with

AB928 treatment, the composite ORR was 43% (95).
5 Discussion and future perspectives

5.1 Combinatory regimens of CD73-ICB
with other therapies

The early clinical observations of CD73-AR ICB trials have

demonstrated feasibility, manageable toxicity and promising

potential for tumor control. The benefits of anti-CD73

monotherapy appear modest, but markedly improved when

combined with PD-1/PD-L1 ICB and/or other cancer therapies.

As CD73-IC is continuously activated and exacerbated by hypoxia

and therapy-induced cell death (32, 80, 81, 94), targeting multiple

CD73-AR axes in the context of conventional or advanced therapies

will improve therapeutic benefits. In particular, CD73-ICB before

and during cell death induced by therapy will promote eATP-

mediated antitumor immunity (96, 97). While current CD73-AR

ICB trials include chemotherapy-treated patients, future trials

designed to target CD73-IC aspects specific to the patient and the

TME may significantly improve outcomes.
5.2 Targeting strategies based on spatial
context of CD73-AR axes

Productive antitumor immunity relies on direct interactions

between effector and tumor cells. Recent studies have illustrated

that close effector-target cell proximity in the TME directly affects

clinical outcomes (98, 99). As eADO stability and diffusion are

limited, the expression levels, distribution and proximity of CD73,

A2AR and A2BR in the TME will determine the activity of specific

CD73-AR axes and the mechanisms of ADO-mediated

immunosuppression. For example, in the TME with few T and

NK cells, CD73-A2AR axis might be insignificant despite high

prevalence of CD73. Yet, in the absence of the spatial distribution

mapping, it is unclear which aspects of ADO-mediated
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immunosuppression, and at what stage of treatment, would be most

relevant. We propose that spatial distribution maps of these

receptors, combined with the knowledge of relevant cellular

compartments, could be important tools to identify key pathways

of ADO-mediated immunosuppression operating in various TME

over time and inform the design of CD73-IC targeting strategies.

In conclusion, tremendous advances have occurred in the area

of CD73-AR ICB in the past decade. Combined ICB strategies

targeting CD73-AR and PD-1/PD-L1 with conventional or

advanced therapies remain a promising and exciting area of

research. Further advances will be made possible through better

understanding of the tumor-specific and treatment-specific TME,

including the spatial distribution of CD73, A2AR and A2BR.
Author contributions

ZK, GG and YC reviewed the literature and wrote the

manuscript. HS, RB, MG, and KB participated in the discussion

and revision. All authors contributed to the article and approved the

submitted version.
Frontiers in Immunology 07
Funding

This work was supported in part by 1R21DE028716 from the

NIH/NIDCR and funds from AU-Georgia Cancer Center, Augusta

University to YC.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Alcedo KP, Bowser JL, Snider NT. The elegant complexity of mammalian ecto-5’-
nucleotidase (CD73). Trends Cell Biol (2021) 31(10):829–42. doi: 10.1016/j.tcb.2021.05.008

2. Borea PA, Gessi S, Merighi S, Varani K. Adenosine as a multi-signalling guardian
angel in human diseases: when, where and how does it exert its protective effects?
Trends Pharmacol Sci (2016) 37(6):419–34. doi: 10.1016/j.tips.2016.02.006

3. Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological roles for ecto-5’-
nucleotidase (CD73). Purinergic Signal (2006) 2(2):351–60. doi: 10.1007/s11302-005-
5302-5

4. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol
(2016) 16(3):177–92. doi: 10.1038/nri.2016.4

5. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and
P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer (2018) 18
(10):601–18. doi: 10.1038/s41568-018-0037-0

6. Yuan X, Ferrari D, Mills T, Wang Y, Czopik A, Doursout MF, et al. Editorial:
purinergic signaling and inflammation. Front Immunol (2021) 12:699069. doi: 10.3389/
fimmu.2021.699069

7. Boison D, Yegutkin GG. Adenosine metabolism: emerging concepts for cancer
therapy. Cancer Cell (2019) 36(6):582–96. doi: 10.1016/j.ccell.2019.10.007

8. Antonioli L, Novitskiy SV, Sachsenmeier KF, Fornai M, Blandizzi C, Hasko G.
Switching off CD73: a way to boost the activity of conventional and targeted
antineoplastic therapies. Drug Discovery Today (2017) 22(11):1686–96. doi: 10.1016/
j.drudis.2017.06.005

9. Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, et al. CD73: an
emerging checkpoint for cancer immunotherapy. Immunotherapy (2019) 11(11):983–
97. doi: 10.2217/imt-2018-0200

10. Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-
oncology. Nat Rev Clin Oncol (2020) 17(10):611–29. doi: 10.1038/s41571-020-0382-2

11. Chiarella AM, Ryu YK, Manji GA, Rustgi AK. Extracellular ATP and adenosine
in cancer pathogenesis and treatment. Trends Cancer (2021) 7(8):731–50. doi: 10.1016/
j.trecan.2021.04.008

12. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug
Discovery (2006) 5(3):247–64. doi: 10.1038/nrd1983

13. Thompson EA, Powell JD. Inhibition of the adenosine pathway to potentiate
cancer immunotherapy: potential for combinatorial approaches. Annu Rev Med (2021)
72(1):331–48. doi: 10.1146/annurev-med-060619-023155

14. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive
adenosine in cancer. Nat Rev Cancer (2017) 17(12):765–. doi: 10.1038/
nrc.2017.110

15. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery (2022) 12
(1):31–46. doi: 10.1158/2159-8290.CD-21-1059
16. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell (2000) 100(1):57–70.
doi: 10.1016/S0092-8674(00)81683-9

17. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the
tumour microenvironment. Nat Rev Immunol (2015) 15(11):669–82. doi: 10.1038/nri3902

18. Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and
cancer: a leading role for adenosine. Nat Rev Cancer (2013) 13(12):842–57. doi:
10.1038/nrc3613

19. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine
receptors: the state of the art. Physiol Rev (2018) 98(3):1591–625. doi: 10.1152/
physrev.00049.2017

20. Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the
inflammatory response. Annu Rev Immunol (2019) 37:325–47. doi: 10.1146/annurev-
immunol-051116-052406

21. Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells
in the tumor microenvironment. Cancer Res (2014) 74(24):7239–49. doi: 10.1158/0008-
5472.CAN-13-3581

22. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A
adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A
(2006) 103(35):13132–7. doi: 10.1073/pnas.0605251103

23. Sorrentino C, Hossain F, Rodriguez PC, Sierra RA, Pannuti A, Osborne BA, et al.
Adenosine A2A receptor stimulation inhibits TCR-induced Notch1 activation in CD8
+T-cells. Front Immunol (2019) 10:162. doi: 10.3389/fimmu.2019.00162

24. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. A2A
receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the
generation of adaptive regulatory T cells. Blood (2008) 111(1):251–9. doi: 10.1182/
blood-2007-03-081646

25. Cekic C, Day YJ, Sag D, Linden J. Myeloid expression of adenosine A2A receptor
suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res
(2014) 74(24):7250–9. doi: 10.1158/0008-5472.CAN-13-3583

26. Chambers AM, Matosevic S. Immunometabolic dysfunction of natural killer
cells mediated by the hypoxia-CD73 axis in solid tumors. Front Mol Biosci (2019) 6:60.
doi: 10.3389/fmolb.2019.00060

27. Chen S, Akdemir I, Fan J, Linden J, Zhang B, Cekic C. The expression of adenosine
A2B receptor on antigen-presenting cells suppresses CD8+ T-cell responses and promotes
tumor growth. Cancer Immunol Res (2020) 8(8):1064–74. doi: 10.1158/2326-6066.CIR-19-
0833
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