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Exploring the shared molecular
mechanisms between systemic
lupus erythematosus and
primary Sjögren’s syndrome
based on integrated
bioinformatics and single-cell
RNA-seq analysis

Yanling Cui1,2†, Huina Zhang1,2†, Zhen Wang1,2†,
Bangdong Gong3, Hisham Al-Ward1,2, Yaxuan Deng1,2,
Orion Fan1,2, Junbang Wang1, Wenmin Zhu1 and Yi Eve Sun1,2*

1Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University,
Shanghai, China, 2Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East
Hospital, School of Medicine, Tongji University, Shanghai, China, 3Division of Rheumatology, Tongji
Hospital of Tongji University School of Medicine, Shanghai, China
Background: Systemic lupus erythematosus (SLE) and primary Sjögren’s

syndrome (pSS) are common systemic autoimmune diseases that share a wide

range of clinical manifestations and serological features. This study investigates

genes, signaling pathways, and transcription factors (TFs) shared between SLE

and pSS.

Methods: Gene expression profiles of SLE and pSS were obtained from the Gene

Expression Omnibus (GEO). Weighted gene co-expression network analysis

(WGCNA) and differentially expressed gene (DEG) analysis were conducted to

identify shared genes related to SLE and pSS. Overlapping genes were then

subject to Gene Ontology (GO) and protein-protein interaction (PPI) network

analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to

screen shared hub genes and predict TFs. In addition, gene set variation analysis

(GSVA) and CIBERSORTx were used to calculate the correlations between hub

genes and immune cells as well as related pathways. To confirm these results,

hub genes and TFs were verified in microarray and single-cell RNA sequencing

(scRNA-seq) datasets.

Results: FollowingWGCNA and limma analysis, 152 shared genes were identified.

These genes were involved in interferon (IFN) response and cytokine-mediated

signaling pathway. Moreover, we screened six shared genes, namely IFI44L,

ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L,

ISG15 and ITGB2 were found to be highly expressed in both microarray and

scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified

as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as

common TFs in both diseases.
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Conclusion: This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and

identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN

response and ITGB2 signaling pathway played vital roles in both diseases. Our

study revealed common pathogenetic characteristics of SLE and pSS. The

particular roles of these pivotal genes and mutually overlapping pathways may

provide a basis for further mechanistic research.
KEYWORDS

systemic lupus erythematosus, primary Sjögren’s syndrome, bioinformatics, hub genes,
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Introduction

Systemic lupus erythematosus (SLE) and primary Sjögren’s

syndrome (pSS) are among the most common systemic

autoimmune diseases and exhibit numerous shared clinical

symptoms, serological profiles and immunological characteristics

(1–3). Both SLE and pSS exhibit a predominance in females, and

cases frequently present overlapping clinical symptoms, such as

arthralgia, myalgia, and leukopenia (4). SLE and pSS preferentially

target specific organs. SLE is characterized by a variety of disease-

specific clinical manifestations, including skin rash, arthritis, lupus

nephritis and hematological symptoms (5, 6). The pSS is a chronic

inflammation condition that primarily affects the exocrine glands

(salivary and lacrimal glands), resulting in oral and ocular dryness

(7). Beyond affecting organs, peripheral blood plays an

indispensable role in manifesting the immune pathophysiology

for SLE and pSS. Peripheral blood mononuclear cells (PBMCs)

are the immune cells most responsible for initiating the

autoimmune inflammatory process against the target organs (8).

Thus, the transcriptomic profiles of PBMC could provide pertinent

insights into the molecular characteristics of the immune cells in

SLE and pSS.

The etiologies and pathogeneses of SLE and pSS remain elusive

and may be related to various factors, such as genetic

predisposition, environmental triggers and epigenetic mechanisms

(9). Genetic risk loci, including HLA class II, IL12A and BLK

(associated with adaptive immunity), IRF5 and STAT4 (associated

with innate immunity) are shared in these two diseases (10–12).

Environmental factors such as Epstein-Barr virus (EBV) infection

and alterations in gut microbial composition have been frequently

observed in individuals with SLE and pSS (13–16). Various studies

have reported that viral infections promote the development and

progression of pSS through type I interferon (IFN). It has been

demonstrated that the gene regulation by type I IFN is linked to an

escalation disease activity in both SLE and pSS (9, 17–19). In recent

studies, widespread changes in DNA methylation have been

identified in SLE and pSS by epigenome-wide association studies

(EWAS) (1, 20–22). Although these findings suggest the presence of

common pathogenetic mechanisms between SLE and pSS,

systematic cross-comparative analyses at the genetic level have yet

to be conducted.
02
The rapid development of bioinformatics approaches has

facilitated a more robust comprehension of disease pathobiology

at the genetic level (23). The identification of common

transcriptional features between SLE and pSS may provide

valuable insights into shared pathogenetic characteristics of these

two diseases. To this end, we performed comprehensive

bioinformatics analyses in microarray and single-cell RNA

sequencing (scRNA-seq) datasets to identify shared hub genes,

related pathways and transcription factors (TFs) in SLE and pSS.

We further investigated the correlation between hub gene and

immune cell as well as related pathway, and validated their

expression and location using scRNA-seq data. Finally, we

predicted and verified TFs both in microarray and scRNA-seq

datasets. Collectively, the shared hub genes, relevant pathways

and TFs identified in this study have the potential to provide new

insights to the genetic etiologies of SLE and pSS.
Materials and methods

Data source

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/) is an extensive and publicly available database that contains

numerous high-throughput sequencing and microarray datasets

related to many diseases. The keywords “systemic lupus

erythematosus” and “primary Sjögren’s syndrome” were used to

search SLE and pSS gene expression datasets. The selected datasets

for analysis strictly consisted of gene expression profiles for both cases

and controls, generated from the same sequencing platform and

exclusively from human specimens. Datasets GSE50772 (24),

GSE81622 (25) and GSE135779 (26) were selected for SLE;

GSE84844 (27), GSE48378 (28) and GSE157278 (29) were selected

for pSS. The datasets were downloaded from GEO for subsequent

analyses. For SLE, dataset GSE50772 includes 61 SLE samples and 20

healthy control samples (Platform: GPL570 Affymetrix Human

Genome U133 Plus 2.0 Array); GSE81622 contains 30 SLE samples

and 25 healthy control samples (Platform: GPL10558 Illumina

HumanHT-12 V4.0 expression bead chip); and GSE135779 consists

of 42 SLE samples and 17 control samples (Platform : GPL20301

Illumina HiSeq 4000). For pSS, dataset GSE84844 includes 30 pSS
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samples and 30 healthy control samples (Platform : GPL570);

GSE48378 contains 11 pSS samples and 16 healthy control samples

(Platform: GPL5175 Affymetrix Human Exon 1.0 ST Array); and

GSE157278 consists of 5 pSS samples and 5 control samples

(Platform: GPL24676 Illumina NovaSeq 6000). For microarray

datasets, the series matrix files provided by the contributors include

data processed by MAS5 or RMA algorithms. We read the data with

the GEOquery package and matched the probes to their gene symbols

according to the annotation documents of corresponding platforms.

Finally, the gene matrix with row names as gene symbols and column

names as sample names was obtained for subsequent analyses.
Weighted gene co-expression
network analysis

To identify gene co-expression modules associated with SLE

and pSS, we conducted weighted gene co-expression network

analysis (WGCNA) on the GSE50772 and GSE84844 datasets.

The WGCNA R package was used to conduct the analysis (30).

We selected the top 5000 genes of the median absolute deviation in

the expression matrix of the dataset for WGCNA. Prior to the

analysis, the ‘Hclust’ function was used to eliminate outlier samples.

The parameters were networkType = “signed” and TOMType =

“signed”. We then selected an optimal soft threshold ranging from 1

to 20 using the ‘pickSoftThreshold’ function to build an adjacency

matrix, which was then transformed into a topological overlap

matrix (TOM). Co-expression modules were identified through

hierarchical clustering, followed by Pearson correlation analysis to

compute the correlation between the module eigengene and clinical

feature to obtain the expression profile of each module. We then

chose the modules with high correlation coefficients with SLE and

pSS and obtained genes from these modules for further analysis.
Identification of DEGs

The differentially expressed genes (DEGs) in SLE and pSS were

determined by using the limma R package (31). First, the GSE50772

and GSE84844 datasets were converted into an expression matrix

and grouped. Next, the limma package was used to normalize and

analyze the datasets to obtain DEGs. Genes with adjusted p-value

[false discovery rate (FDR)] < 0.05 and |log2FC (fold change) | ≥ 0.5

were considered as DEGs (32). Furthermore, genes were classified

as upregulated or downregulated based on their log2FC value being

greater than 0.5 or less than -0.5, respectively. The overlapping

DEGs of SLE and pSS were identified by using an online Venn

diagram tool.
Functional enrichment analysis

Gene ontology (GO) is a comprehensive resource regarding the

functions of genes and gene products, providing annotations for

gene products related to molecular functions, biological processes,

and cellular components (33). Hallmark gene sets represent
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biological states or processes derived from the Molecular

Signatures Database (MSigDB) (34). The “clusterProfiler” R

package was used to conduct GO and Hallmark functional

annotation analyses. Significantly enriched outcomes were

recognized by p-values less than 0.05.
PPI network construction and
module analysis

STRING is an online search tool for the retrieval of interacting

genes (STRING; http://string-db.org) (35). WGCNA results and

DEGs were combined and imported into the STRING database to

construct the protein- protein interaction (PPI) network; the

interaction score used for the PPI network was set at > 0.4.

Analysis of the PPI network and visualization were carried out

using Cytoscape (http://www.cytoscape.org) (36). The molecular

complex detection technology (MCODE), a Cytoscape plug-in, was

used to conduct key functional module analysis. The employed

parameters were as follows: degree cutoff = 2, max depth = 100,

node score cutoff = 0.2 and K-core = 2.
Selection and validation of hub genes

The 96 common module genes and 91 common DEGs were

combined and subsequently imported into the STRING database to

construct a PPI network. To identify hub genes, the cytoHubba

plug-in Cytoscape was applied (37). Five algorithms (MCC

[maximal clique centrality], MNC [maximum neighborhood

component], Closeness, Radiality and EPC [edge percolated

component]) were used from cytoHubba to identify and validate

the hub genes.

In order to verify the hub genes expression, the GSE81622 and

GSE48378 datasets were downloaded. The GSE81622 dataset

includes PBMC expression data from 25 patients diagnosed with

SLE and 30 healthy controls. The GSE48378 dataset contains

expression data of 11 patients diagnosed with pSS and 16 healthy

controls. The Shapiro-Wilks test was performed in R to test for the

normality of the variables. The w-value was close to 1, and p-value

> 0.05. The comparison was then performed using the t-

test in these two datasets, separately (38); p-values < 0.05 were

considered significant.
Pathways analysis and the correlation with
hub genes

Gene Set Variation Analysis (GSVA) is a non-parametric and

unsupervised methodology that is employed to evaluate gene set

enrichment (GSE) in gene expression microarray and RNA-seq

data (39). The GSVA R package was used to find the related

pathways in SLE and pSS, by quantifying the activities of the 50

hallmark pathways. Correlations between hub gene and pathway

were evaluated by Pearson correlation coefficient. R packages

“ggplot2” and “pheatmap” were used for visualization.
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Single-cell RNA-Seq data analysis

The scRNA-seq datasets GSE135779 for SLE and GSE157278

for pSS were downloaded from GEO. Down-stream analyses were

performed using the Seurat R package (version 4.1.0) (40).

Following quality control (QC), cells with fewer than 200

expressed genes and >10% mitochondria-related genes were

excluded. After normalization, the top 3000 highly variable genes

(HVGs) in each Seurat object were selected for subsequent analysis,

including ScaleData, RunPCA, RunTSNE and RunUMAP. The cells

were then clustered using the FindNeighbors and FindClusters

functions. The generated clusters were visualized using uniform

manifold approximation and projection (UMAP) plot. Cell types

were identified using classical marker genes and the SingleR

algorithm (41). The gene list used to generate IFN-response score

comprises the following IFI27, IFI6, RSAD2, IFI44, IFI44L, IFITM1,

IFNGR1, IFIT2, MX2, OASL, GBP1, USP18, LY6E, OAS1, SIGLEC1,

ISG15, IFIT1, OAS3, HERC5, MX1, LAMP3, EPSTI1, IFIT3, OAS2,

RTP4, PLSCR1, DNAPTP6, TYK1 and CXCL10 (42–45). The

AddModuleScore function in Seurat R was used to calculate the

IFN-response score. Differential expression analysis was performed

on scRNA-seq datasets using the “FindMarkers” function in the

Seurat package with default parameters. This analysis aimed to

compare the expression profiles of different cell types between

different groups (SLE/HC and pSS/HC). Adjusted p-value < 0.05

and |log2FC| > 0.25 was used to define significant DEGs.
Estimation of immune cell fractions and
the correlation with hub genes

CIBERSORTx is a suite of machine learning tools designed for

detecting the abundance of cell types in bulk RNA-seq and

microarray data (46, 47). We used the GSE135779 and

GSE157278 scRNA-seq datasets to build scRNA-seq signature

matrices with CIBERSORTx, respectively. After following the

instruction to format and upload the single-cell reference matrix

file, we ran the “Create Signature Matrix” module to build the

scRNA-seq signature matrix (47). We used the generated signature

matrices to perform CIBERSORTx deconvolution on the GSE50772

and GSE84844 datasets, separately. p-value < 0.05 was considered

statistically significant. To visualize the proportion of each immune

cell type, boxplots were constructed, with red and blue color-coding

to indicate disease and healthy control (HC) status, respectively.

The correlation between each hub gene and immune cell type was

evaluated by Pearson correlation coefficient. R packages “ggplot2”

and “pheatmap” were used for visualization.
Cell-cell communication analysis

The CellChat package is a powerful tool that facilitates the

quantitative inference and analysis of intercellular communication

networks from scRNA-seq data. CellChat is capable of predicting

the major signaling inputs and outputs for cells, as well as how these

signals coordinate for various cellular functions. Once cell types
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have been identified, CellChat can be further used to analyze cell-

cell communication (48). In this study, we generated new CellChat

objects from the Seurat objects. The CellChatDB was set as the

reference database. The two scRNA-seq data were further divided

into two groups each based on their respective conditions (HC vs

SLE, HC vs pSS). Thereafter, the variations in ligand-receptor

interactions and signaling pathways among these states were

thoroughly examined.
Prediction and verification of
transcription factors

iRegulon is a computational method to reverse-engineer the

transcriptional regulatory network underlying a co-expressed gene

set using cis-regulatory sequence analysis. This method utilizes a

genome-wide ranking-and-recovery approach to detect enriched

transcription factor (TF) motifs and their optimal sets of direct

targets (49). In this study, we employed iRegulon to predict the TFs

of hub genes, and their expression levels were subsequently

validated in microarray datasets. Furthermore, we confirmed the

expression and localization of these TFs in scRNA-seq data. The

major parameters in iRegulon were the following: Species and gene

nomenclature = “Homo sapiens, HGNC symbols”, Motif collection

= “10K (9713 PWMs)”, Track collection = “1120 ChIP-seq tracks

(ENCODE raw signals)”, Putative regulatory region = “20kb

centered around TSS”, Enrichment score threshold = 3.0, ROC

threshold for AUC calculation = 0.03 and the rank threshold

= 5000.
Gene regulatory network

Single-cell regulatory network inference and clustering

(SCENIC) is a computational method to infer cell type-specific

gene regulatory networks (GRNs) from scRNA-seq data (50). The

input matrices were the raw unique molecular identifier (UMI)

counts for each sample obtained from Seurat. Genes present in

RcisTarget’s databases (hg19-500 bp-upstream-7species. mc9nr.

feather and hg19-tss-centered-10 kb-7species. mc9nr.feather) were

utilized. Following the SCENIC pipeline, the GENIE3 method and

GRNBoost were used to identify potential TF targets, and the

regulon-specific score (RSS) was generated. Only significantly

upregulated regulons were involved in further analysis.
Results

GEO information

The workflow of this study is illustrated in Figure 1. Four

microarray datasets, including GSE50772, GSE81622, GSE84844

and GSE48378, along with two scRNA-seq datasets, namely

GSE157278 and GSE135779, were downloaded from GEO.

Information from these datasets, including GSE number,

detection platforms, samples and source types, is provided in
frontiersin.org
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Supplementary Table 1. WGCNA, DEGs, GSVA and immune cell

analyses were performed on GSE50772 and GSE84844 datasets.

Expression levels for hub genes and TFs were validated using

GSE81622 and GSE48378. Additionally, the hub genes and TFs

expression patterns were further validated in scRNA-seq datasets,

namely GSE135779 and GSE157278.
Weighted gene co-expression network
analysis of SLE and pSS

In WGCNA, the module-trait relationship heatmap according

to the Pearson correlation coefficient showed the correlation

between each module and the clinical trait. After processing with

‘Hclust’, one SLE sample was eliminated in GSE50772 dataset, and

two pSS samples were eliminated in GSE84844 (Supplementary

Figure 1). A total of 12 modules were identified in GSE50772, and

11 modules were identified in GSE84844. Afterwards, the

correlation between each module and clinical trait was calculated.
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In GSE50772 database, the ME3, ME5 and ME6 modules had high

positive correlations with SLE (r = 0.62, 0.65 and 0.57), comprising

1120 genes. The ME10 and ME11 modules were negatively

correlated with SLE (r = -0.72 and -0.55), and comprised a total

of 453 genes (Figure 2A). In GSE84844 database, the ME1 and ME2

modules showed high positive correlation with pSS (r = 0.73 and

0.65), containing 2796 genes. The ME6 and ME7 modules had

negative correlations with pSS (r = -0.71 and -0.39), comprising a

total of 637 genes (Figure 2C).

Further, we performed GO enrichment analysis on the

positively related modules. For SLE, our results showed that the

ME3 module was mainly associated with type I IFN response and

innate immune response. The ME5 module was mainly related to

cell chemotaxis and cytokine-mediated signaling pathway.

Additionally, the ME6 module was involved in immune response

(Figure 2B). For pSS, functional enrichment analysis indicated that

the ME1 module was mainly associated with T cell activation and

differentiation, and ME2 module was related to type I IFN response

and cytokine production (Figure 2D). Therefore, type I IFN
FIGURE 1

Workflow diagram of this work.
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response and cytokine-mediated signaling pathway collectively

participated in the pathogenesis of SLE and pSS.
Enrichment analysis of common gene
from WGCNA

The common genes were screened between SLE positively

related modules (ME3, ME5 and ME6 modules) and pSS

positively related modules (ME1 and ME2 module). 96 genes

overlapped in positively related modules from SLE and pSS

(Figure 3A). Enrichment analysis results showed that the 96 genes

were mainly associated with type I IFN response and cytokine-

mediated signaling pathway (Figure 3B). There were 4 genes that

overlapped in negatively related modules from SLE and pSS

(Supplementary Figures 2A, B).
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Identification and function analyses of
common DEGs

The limma R package was utilized to perform an analysis of DEGs

on the GSE50772 and GSE84844 datasets. Volcano plots showed the

identified DEGs. For SLE dataset GSE50772, 2918 DEGs were

identified, among which 1366 genes were upregulated and 1552

genes were downregulated (Figure 4A; Supplementary File 1). 1597

DEGs were obtained from the pSS dataset GSE84844, out of which

1315 DEGs were upregulated and 282 DEGs were downregulated

(Figure 4B; Supplementary File 2). After examining the intersection for

the DEGs, 91 shared upregulated DEGs and 11 shared downregulated

DEGs were identified. The overlapping DEGs were visualized by Venn

diagrams (Figure 4C; Supplementary Figure 2C, Supplementary File

3). To further analyze the underlying biological information associated

with the common DEGs, GO analysis was performed. The results
A

B D

C

FIGURE 2

Weighted gene co-expression network analysis (WGCNA) and GO (Gene ontology) analysis of GSE50772 and GSE84844 datasets. (A) Heatmap of
module-trait relationships in SLE. Each cell contains the corresponding correlation and p-value. (B) GO biological process analyses of three positively
related modules with SLE. (C) Heatmap of module-trait relationships in pSS. Each cell contains the corresponding correlation and p-value. (D) GO
biological process analyses of two positively related modules with pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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showed that the commonly upregulated DEGs were mainly enriched

in type I IFN and cytokine stimulus response, which were consistent

with the results of WGCNA (Figure 4D). These findings strongly

indicated that type I IFN response and cytokine stimulus jointly

participated in the development and progression of these two

autoimmune diseases. We also performed the GO analysis on the
Frontiers in Immunology 07
upregulated DEGs in SLE and pSS, respectively. In addition to type I

IFN response, inflammatory, immune response and T cell activation

were also significantly enriched in SLE (Supplementary Figure 3A).

For the upregulated DEGs in pSS, response to tumor necrosis factor

(TNF), I-kappa B kinase/NF−kappa B signaling were also enriched

(Supplementary Figure 3B).
A B

FIGURE 3

Venn diagrams and enrichment analysis of common genes from WGCNA. (A) Venn diagrams showing the overlap genes in positive related modules
in SLE and pSS. (B) GO enrichment analysis of the 96 common genes. GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary
Sjögren’s syndrome.
A B

DC

FIGURE 4

Identification common DEGs and functional enrichment analysis. (A) Volcano plot of GSE50772. (B) Volcano plot of GSE84844. Red dots indicate
upregulated genes and blue dots indicate downregulated genes. (C) 91 upregulated DEGs overlapped in the two datasets. (D) GO enrichment
analysis of common upregulated DEGs. DEGs, differentially expressed genes; GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary
Sjögren’s syndrome.
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Selection and analysis of hub genes

The 91 commonly upregulated DEGs and 96 shared genes

determined by the positively correlated modules in both

autoimmune diseases were combined to yield 152 candidate genes

for the subsequent analyses. Subsequently, a PPI network of the

candidate genes was constructed, and the three clustering modules

from closely connected genes were further extracted through

MCODE analysis (Figure 5A). Cluster 1 contained 42 nodes and

789 edges. Enrichment analysis results showed that the genes in

cluster 1 were mainly associated with type I IFN and cytokine

stimulus response. Cluster 2 comprised 38 nodes and 282 edges, and

linked to cellular organismal processes. Cluster 3 contained 13

nodes and 33 edges, and involved in leukocyte activation

(Figure 5B). Thus, clusters 1 and 3 were considered as key
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modules that may play crucial roles in disease development. To

identify the top 15 genes in cluster 1, we utilized five algorithms of

the plug-in cytoHubba (MCC, MNC, EPC, Closeness and Radiality)

(Supplementary Table 2). By intersecting the Venn diagrams, we

identified 5 common genes (IFI44L, ISG15, IFIT1, USP18 and

RSAD2) in cluster 1 (Figure 5C). For cluster 3, we selected the

top three genes (PTPRC, CXCR8 and ITGB2) for subsequent

analyses (Figure 5D).
Validation of hub genes expression

The expression levels of eight genes were verified in SLE dataset

GSE81622 and pSS dataset GSE48378. The results demonstrated

that IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2 were
A

B

D

C

FIGURE 5

PPI network and Venn diagram of shared genes among SLE and pSS. (A) PPI network of combined common module genes and DEGs. The network has
140 nodes and 1610 edges. (B) GO analysis of three clusters. (C) The Venn diagram showed 5 overlapping genes screened by 5 algorithms. (D) PPI
network of cluster 3. DEGs, differentially expressed genes; GO, gene ontology; SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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significantly upregulated in SLE (Figure 6A). Additionally, the

expression levels of these genes in pSS were also higher than

those in healthy control samples (Figure 6B). The expression of

PTPRC and CXCR8 showed no significant difference in both

diseases. Consequently, IFI44L, ISG15, IFIT1, USP18, RSAD2 and

ITGB2 were identified as hub genes for subsequent analyses

(Supplementary Table 3). A t-test was conducted to compare

the two subsets in these each dataset, separately. A significance

level of p < 0.05 was applied.
Pathways involvement and correlation with
hub genes

GSVA was performed to identify the relevant pathways, and

Pearson correlation analysis was employed to evaluate the correlation

between hub gene and relevant pathway in SLE and pSS (Figure 7). A

total of 50 hallmark pathways were subjected to GSVA analysis.

Overall, the results suggested a strong and consistent correlation

between the hub genes (IFI44L, ISG15, IFIT1, USP18, and RSAD2)

and the INTERFERON_ALPHA_RESPONSE, INTERFERON_

GAMMA_RESPONSE pathways in both SLE and pSS.
The expression of hub genes in single-cell
RNA-Seq datasets

The PBMC scRNA-seq datasets GSE135779 and GSE157278

were downloaded for subsequent analyses. We selected 5 healthy

controls and 7 adults with SLE from the GSE135779 dataset, while

the GSE157278 dataset contained 5 pSS patients and 5 normal

controls. The two datasets were analyzed separately. Following the

Seurat pipeline, and combining the SingleR algorithm with

canonical gene markers including CD3E, CD3D, CD4, CD8A,

CCR7, SELL, S100A4, CD79A, MS4A1, GNLY, NCAM1, NKG7,

GZMK, GZMB, CD14, LYZ, FCGR3A, MS4A7, FCER1A, CD1C,
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CLEC4C, LILRA4, PPBP, PF4, SLC4A10, TRDC, TRDV2, FOXP3 as

well as IL2RA, we identified cell populations. Among the identified

populations were CD4 naïve T cells, CD4 memory T cells, CD8

naïve T cells, CD8 memory T cells, CD8 effector T cells, monocytes,

NK cells, B cells, DCs and some other cells in the two datasets

(Figures 8A, B). The dot plot depicted the cell-type-specific markers

(Supplementary Figure 4). Cell composition analysis revealed that

monocytes (HC, 16.3%; SLE, 28.1%) and CD8 effector T cells (HC,

13.3%; SLE, 17.3%) were expanded, while CD4 naïve T cells (HC,

33.5%; SLE, 22.2%.) were decreased in SLE patients compared to

HCs (Figure 8C). For the pSS dataset, NK cells (HC, 12.9%; pSS,

20.6%), B cells (HC, 5.4%; pSS, 7.5%) and CD8 effector T cells (HC,

8.0%; pSS, 11.3%) were expanded, while CD4 naïve T cells (HC,

17.7%; pSS, 10.9%) and CD8 naïve T cells (HC, 12.0%; pSS, 5.5%)

were decreased in pSS patients compared to HCs (Figure 8D). The

violin plot showed that the expression levels of three hub genes

(IFI44L, ISG15 and ITGB2) were elevated in both SLE and pSS in

most cell types, especially in monocytes, NK cells and CD8 effector

T cells. (Figures 8E, F). In summary, the results showed that the

proportion of CD8 effector T cells increased, however the

proportion of CD4 naïve T cells decreased in SLE and pSS

patients. We performed DEG analysis in scRNA-seq datasets. For

SLE dataset GSE135779, 230 DEGs were upregulated, meanwhile

537 DEGs were upregulated in pSS dataset GSE157278. After

performing an intersection of the upregulated DEGs, 97 shared

upregulated DEGs were identified (Supplementary Figure 5A). The

GO results showed that the shared upregulated DEGs were mainly

associated with IFN response (Supplementary Figure 5B), which

was consistent with the results of WGCNA and DEGs analysis in

GSE50772 and GSE84844 datasets. The results of GO analysis on

the upregulated DEGs in SLE and pSS were highly consistent with

the previous results (Supplementary Figures 5C, D). We conducted

Hallmark annotation analysis on the upregulated DEGs in all cell

types (Supplementary Figures 5E, F). The results consistently

showed enrichment in the IFN response across all cell types in

both SLE and pSS.
A B

FIGURE 6

Verification of hub genes expression. (A) Expression of hub genes verified in GSE81622. (B) Expression of hub genes verified in GSE48378. The
comparison in the two sets of data used the mean t-test, separately; p -value < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Immune cell fractions and the correlation
with hub genes

The CIBERSORTx method was used to evaluate the immune

cell (IC) composition in peripheral blood using GSE135779 and

GSE157278 scRNA-seq datasets as reference matrices for

deconvolution on the SLE (GSE50772) and pSS (GSE84844)

datasets separately. The boxplot showed that the proportion of

CD4 naïve T cells in SLE samples was lower than that in HC

samples, despite lack of statistical significance. Interestingly, CD8

effector T cells and monocytes were significantly increased in SLE

patients compared to HCs (p < 0.05) (Figure 9A). Furthermore,

Pearson correlation analysis was performed to investigate the

correlations between hub genes and ICs in SLE. The heatmap

revealed that three hub genes (IFI44L, ISG15 and ITGB2) had

positive correlations with monocytes and CD8 effector T cells,

while having negative correlations with CD4 naïve T cells

(p < 0.05) (Figure 9B).

In comparison to HCs, the proportion of monocytes exhibited

significant increase in pSS samples (p < 0.05). Additionally, B cells

and CD8 effector T cells displayed increasing trend in pSS, though

statistically insignificant. More importantly, CD4 naïve T cells

exhibited significant decrease in pSS (Figure 9C). The correlations
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between hub genes and ICs in pSS demonstrated that three hub

genes (IFI44L, ISG15 and ITGB2) had positive correlations with

monocytes, B cells and CD8 effector T cells, while had significant

negative correlations with CD4 naïve T cells (p < 0.05) (Figure 9D).

In summary, the results showed a consistent pattern of increase in

CD8 effector T cells, and decrease in CD4 naïve T cells in both SLE

and pSS patients, which was consistent with our results of scRNA-

seq analysis. Meanwhile, hub genes (IFI44L, ISG15 and ITGB2)

exhibited positive correlations with monocytes in SLE and pSS,

especially ITGB2. The correlations between genes (IFIT1, USP18

and RSAD2) and ICs are provided in Supplementary Figure 6.
Single-cell analysis for the expression of
related pathways

According to the previous GSVA results (Figures 7A, B), hub

genes (IFI44L and ISG15) exhibited significant positive

correlations with INTERFRON_ALPHA_RESPONSE and

INTERFRON_GAMMA_RESPONSE pathways. Therefore, an

evaluation of the expression level of INTERFRON RESPONSE in

SLE and pSS was performed. We discovered that the INTERFRON

RESPONSE was increased in both SLE and pSS patients,
A

B

FIGURE 7

Correlation matrix between hallmark pathways and hub genes. (A) Correlation matrix of hallmark pathways and hub genes in SLE. (B) Correlation
matrix of hallmark pathways and hub genes in pSS. Red: positive correlation; Blue: negative correlation. SLE, systemic lupus erythematosus; pSS,
primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p < 0.001.
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particularly in monocytes (Figures 10A, B). Besides INTERFRON

RESPONSE, we also explored and identified ITGB2 as a hub gene.

Furthermore, we used CellChat to investigate the putative

interactions among the major cell types in disease versus control.

The results showed that the activity of ITGB2 signaling pathway
Frontiers in Immunology 11
was increased in SLE and pSS patients, and the ITGB2 signaling

pathway was most enriched from monocytes to CD4 T cells and

CD8 effector T cells (Figures 10C, D). The ITGB2, ICAM1, ICAM2,

CD226 and ITGAL expression levels related to ITGB2 signaling

pathway were verified both in scRNA-seq and microarray datasets
A B

D
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FIGURE 8

Validation of hub genes in scRNA-seq datasets. (A) UMAP visualization GSE157278 scRNA-seq datasets. (B) UMAP visualization GSE135779 scRNA-
seq datasets; Different colors indicate distinct cell types. (C) Cellular composition in SLE and HCs group (D) Cellular composition in pSS and HCs
group. The colors represent different cell types. (E) Violin plot of hub genes expression in different cell types in SLE. (F) Violin plot of hub genes
expression in different cell types in pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome.
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between disease conditions and healthy controls (51, 52)

(Supplementary Figure 7). The results demonstrated that ITGB2

signaling pathway related genes were upregulated both in SLE and

pSS patients, though some were not statistically significantly so.

Further analysis showed monocytes are the prominent sender and

influencer of the ITGB2 signaling pathway (Figures 10E, F). The

results indicated that monocytes may play vital roles in IFN

response and ITGB2 signaling pathway in the pathogenesis of
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SLE and pSS, which were consistent with our results of immune

cell analysis.
Prediction and verification of TFs

Based on the iRegulon algorithm, we have identified the top 6 TFs

that may regulate the expression of hub genes (IFI44L, ISG15 and
A

B

D

C

FIGURE 9

Landscape map of IC in SLE and pSS datasets. (A) Boxplot showing the differences of IC between SLE and HC. (B) Correlation matrix between IC and
hub gene in SLE. (C) Boxplot showing the differences of IC between pSS and HC. (D) Correlation matrix between IC and hub gene in pSS. Red:
positive correlation; blue: negative correlation. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001.
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ITGB2) (Figure 11A). We found that three TFs (STAT1, STAT2 and

IRF7) were highly expressed in SLE and pSS validation datasets

(Figure 11B). To further validate our findings, we employed

SCENIC to infer the TF regulatory information underlying each cell

type. Remarkably, the SCENIC analysis revealed that STAT1 was

upregulated in both diseases and mainly concentrated in monocytes

and DCs. Additionally, IRF7 was upregulated and concentrated in

DCs in SLE (Figures 12A, B). The violin plot showed that expression
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levels of 3 TFs (STAT1, STAT2 and IRF7) were significantly elevated

in SLE and pSS, especially IRF7 in DCs (Figures 12C, D).
Discussion

SLE and pSS are chronic autoimmune diseases predominantly

affecting women and exhibit overlapping clinical and serologic
A
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FIGURE 10

Verification of related pathways in scRNA-seq datasets. (A) Violin plot of INTERFERON_RESPONSE expression in SLE. (B) Violin plot of
INTERFERON_RESPONSE expression in pSS. (C) Circos plot showing the ITGB2 signaling pathway network across major cell types in SLE and HCs.
(D) Circos plot showing the ITGB2 signaling pathway network across major cell types in pSS and HCs. (E) Heatmap showing the relative importance
of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in SLE. (F) Heatmap showing the relative
importance of each cell type based on the computed four network centrality measures of the ITGB2 signaling pathway in pSS. SLE, systemic lupus
erythematosus; pSS, primary Sjögren’s syndrome.
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characteristics. In a subset of pSS patients, the disease may progress

to clinical manifestations, serological profiles and immunological

characteristics shared with SLE, leading to fulfillment of

classification criteria for both diseases. This condition is

commonly referred to as pSS/SLE overlap (53). Despite the

increasing knowledge regarding environmental triggers and

epigenetic mechanisms, the genetic factors underlying SLE and

pSS remain elusive. In this study, we aimed to investigate common

target genes, relevant pathways and TFs in SLE and pSS through

integrative bioinformatic analyses of transcriptomes. Firstly, we

conducted analyses of common genes in the WGCNA module

genes and shared DEGs of SLE and pSS. Enrichment analysis

showed that these genes were involved in both type I IFN

response and cytokine-mediated signaling pathway. Subsequently,

we combined the common genes in WGCNA and DEGs, and

obtained 152 shared candidate genes. Next, we identified 6 hub

genes (IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2) by the PPI

network and cytoHuba algorithms, and verified their expression

levels. The expression of hub genes was further verified in scRNA-

seq datasets. The results showed that 3 hub genes- IFI44L, ISG15

and ITGB2- were upregulated in disease groups. Additionally, we

evaluated the correlations between hub genes and ICs as well as

related pathways. The results showed that hub genes (IFI44L and

ISG15) had positive correlations with monocytes, as well as the IFN

response pathway. ITGB2 had a significant positive correlation with

monocytes and mainly involved in ITGB2 signaling pathway. The

IFN response and ITGB2 signaling pathway were increased and

enriched in monocytes in SLE and pSS. Finally, TFs (STAT1,

STAT2 and IRF7) were predicted and verified, and only STAT1

and IRF7 were upregulated in scRNA-seq data. Notably, IRF7 was

specially enriched in DCs.

The biological processes involved in the IFN response,

inflammatory, immune response and T cells activation were
Frontiers in Immunology 14
enriched among the upregulated DEGs in SLE. Activated IFN

response has been well recognized as an important feature in SLE

(54). The abnormal activation of T cells appears to be involved in

the pathogenesis of SLE. An analysis of lymphocyte composition

revealed a reduction in naïve CD4 T cells and an increase in CD8 T

cells in SLE patients (55). The autoantibodies and immune complex

mediated cytokines, such as IL-1, would cause persistent

inflammatory response in SLE (56). Besides, the neutrophil

extracellular traps and neutrophil to lymphocyte ratio played

essential roles in the pathogenesis of SLE (57, 58). Besides IFN

response, the upregulated DEGs associated with TNF response, I-

kappa B kinase/NF-kappa B signaling were also identified by GO

analysis in pSS patients. Serum level of TNF-a has been identified as

the most discriminating factor associated with the presence of

interstitial lung disease (ILD) in pSS patients (59). B cell-

activating factor of the TNF family (BAFF) may contribute to

focal lymphocytic infiltration and is an essential cytokine in pSS

physiopathology (60). In PBMC from pSS patients, phosphorylated

inhibitor of kB (IkB) kinase (IKK) ϵ (IKKϵ), total IKKϵ, pIKKa/b
and pNF-kB p65 were significantly increased compared to healthy

controls (61). Knockdown of RSAD2 attenuated pSS B cell

hyperactivity via suppressing NF-kB signaling (62). Owing to the

multitude of influencing factors observed in previous studies as well

as our own analyses, comprehensive understanding of the

pathogeneses of SLE and pSS remains an ongoing project. The

high IFN response plays a critical role both in SLE and pSS.

IFNs are a class of cytokines that exhibit antiviral effects and are

induced by viral infections, ultimately leading to the expression of

IFN-stimulated genes (ISGs) and further exerting antiviral effects

(63, 64). Type I IFNs, including IFN-a, IFN-b, IFN-ϵ and IFN-k,
are the primary interferons capable of exerting antiviral effects.

Studies have reported that IFNs can not only act on viruses to

interfere with their replication but enhance cellular immunity by
A B

FIGURE 11

Prediction and verification of TFs. (A) iRegulon plug-in predicted TFs of hub genes. (B) Expression of TFs verified in GSE81662 and GSE48378. SLE,
systemic lupus erythematosus; pSS, primary Sjögren’s syndrome. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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acting on T/B cell proliferation and differentiation (65, 66). Type I

IFNs stimulate monocytes differentiation and induce immature

DCs to express chemokines and costimulatory molecules, which

contributes to the pathogenesis of SLE (67). BAFF is stimulated by

type I IFNs and promotes B-cell activation, involved in the

pathogenesis of pSS (68). Our enrichment analysis of common

upregulated DEGs and overlapping genes from positively correlated

modules further demonstrates the importance of the type I IFN

response in diseases. We also employed GSVA and found hub genes

exhibited significant positive correlations with IFNa and IFNg
response pathways. Moreover, a meta-analysis of transcriptomes

has identified shared type I IFN- stimulated genes among

rheumatoid arthritis (RA), SLE and pSS, such as IFI44L, IFI44,
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IFI27 and IFIT1 (9). Unlike previous studies, our research employed

comprehensive and improved bioinformatic methods, and paid

more attention to the exploration of hub genes, related pathways

and TFs in peripheral blood that are common in SLE and pSS (69,

70). We identified 3 hub genes (IFI44L, ISG15 and ITGB2). IFI44L is

a type I IFN-stimulated gene, which has benn found to be

upregulated in patients with pSS and was markedly increased

following with either IFN-a or IFN-b stimulation (71). STAT3

promoted the overexpression of IFI44L in monocytes, which

contributes to the pathogenesis of SLE. IFI44L is expected to

become a new therapeutic target for SLE treatment (67, 72).

Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein

that is conjugated to intracellular target proteins upon activation by
A B
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FIGURE 12

Verification of TFs in scRNA-seq datasets. (A) SCENIC analysis revealed TF regulatory information of each cell type in SLE. (B) SCENIC analysis
revealed TF regulatory information of each cell type in pSS. Red: up-regulated TFs; blue: down-regulated TF. (C) Violin plot of TF expression in
different cell types in SLE. (D) Violin plot of TF expression in different cell types in pSS. SLE, systemic lupus erythematosus; pSS, primary Sjögren’s
syndrome.
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IFN-a and IFN-b (73). The expression level of ISG15 was higher in

saliva and serum from pSS patients than from controls. The

expression of ISG15 is relatively high in patients with SLE and

correlates with disease activity prior to treatment (74). We

identified IFI44L and ISG15 as common hub genes in the

two diseases.

However, the pathogeneses of SLE and pSS are exceptionally

complicated. Besides IFN response, we also explored and

identified ITGB2 as a hub gene. Integrin subunit b2 (ITGB2)

encodes integrin b2 protein (CD18) (75). Integrins are

heterodimeric transmembrane proteins consisting of alpha and

beta subunits. Integrins regulate immune cell trafficking by

modulating leukocyte adhesion to blood vessels and facilitating

their extravasation into tissues. These proteins play important roles

in inflammatory and autoimmune responses (76, 77). Behera and

colleagues reported that osteopontin can bind avb3 integrin and

induce JAK2/STAT3 activation in human breast cancer cells (78).

Mastrangeli and colleagues reported the binding properties of

deamidated IFN-b to avb3 integrin in triple-negative breast

cancer (79). The link between interferons and integrins remains

for further investigation. Beta2-integrins are leukocyte-specific

adhesion molecules that are essential for leukocyte trafficking and

immune cell activation. As a result, beta2-integrins may be involved

in many autoimmune diseases. ITGB2 was upregulated in PBMCs

from systemic sclerosis (SSc) patients, which may participate in

immune cell migration to involved tissues. Splenic B cells from

NZB/NZW F1 lupus mice showed ITGB2 activation compared to

normal C57Bl/6 mice (75, 80, 81). However, there are no studies

reporting its role in pSS, which provides a springboard for future

research. Our results are the first to demonstrate increased ITGB2

signaling pathway activity, and upregulated ITGB2 expression in

both SLE and pSS patients. Vedolizumab (targets integrin a4b7),
and etrolizumab (anti b7) have been approved by the FDA for the

treatment of inflammatory bowel disease (IBD), namely ulcerative

colitis (UC) and Crohn’s disease (CD). These drugs have

demonstrated efficacy with minimal systemic adverse effects (82,

83). The research about integrins antagonists underscores the

central role of these proteins in autoimmune diseases.

Additionally, organ-specific delivery of drugs to targeted tissue

may further increase the therapeutic potential for anti-integrin

agents (84). Lifitegrast, a small-molecule inhibitor that targets

integrin aLb2 has been approved for the topical treatment of dry

eye disease (DED). Topical application of lifitegrast provides

improvement in inferior corneal staining score and eye dryness

(85). Our study revealed that ITGB2 may be a novel therapeutic

target in SLE and pSS. Development of drug delivery strategies will

provide greater therapeutic opportunities for targeting integrins.

In addition, we also analyzed TFs and verified their expression

levels in microarray and scRNA-seq datasets. We found that 6 TFs

may regulate the expression of hub genes. Upon further verification,

two TFs (STAT1 and IRF7) are highly expressed in SLE and pSS.

Signal transducer and activator of transcription (STAT) families

and IFN regulatory factor (IRF) have been demonstrated to play

essential roles in regulating type I IFN response (86). All STAT

family members primarily function within the Janus kinase-signal

transducer and activator of transcription (JAK-STAT) pathway
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(87). IFNs cause STAT activation and subsequently trigger ISG

expression (88, 89). STAT1, STAT2 and IRF9 are capable of

amplifying JAK-STAT signaling to reinforce IFN response (90).

The JAK-STAT pathway transduces intracellular signals of multiple

cytokines, and is critical to the pathogenesis of autoimmune

diseases. SLE patients showed substantially higher STAT1 in B

cells and plasmablasts (91). STAT1 expression is also increased in

labial salivary glands from pSS patients (92). Our study confirmed

the essential role of STAT1 in both SLE and pSS. STATs, as JAK

substrates, have been investigated as attractive therapeutic targets in

autoimmune diseases. However, challenges in the development of

STAT inhibitors include issues with bioavailability, in vivo efficacy

and selectivity (93). Thus, Janus kinase inhibitors (Jakinibs),

targeting JAK-STAT pathways, hold promise to block STAT

expression. Currently, Jakinibs are most commonly used for RA

treatment. In SLE, tofacitinib has been used in phases of clinical

trials. Lee and colleagues (94) performed a series of experiments to

determine the safety and efficacy of filgotinib for pSS treatment, and

suggested that filgotinib has potential for pSS treatment. The

mammalian IRF family proteins (IRF1-9) are TFs that play

crucial roles in connecting microbial signaling to the responses of

IFNs, pro-inflammatory cytokines and innate immune responses

(95, 96). IRF3 and IRF7 play pivotal roles in the induction of type I

IFN gene transcription (97). IRF7 is a lymphoid TF that is

constitutively expressed only in B cells, monocytes and

plasmacytoid dendritic cells (pDCs), and is particularly highly

expressed in pDCs (98), which was consistent with our study.

IRF7 was specifically concentrated in DCs from both SLE and

pSS. IRFs can induce the expression of ISGs through a pathway that

may depend on or be independent of JAK-STAT signaling (99).

IRF7 as transcriptional regulators of type I IFNs and certain single

nucleotide polymorphisms (SNPs) in IRF7 to the onset of SLE have

been substantiated in previous literature (100). However, the

limited studies about IRF7 function regulation in SLE are mainly

on murine models. With respect to pSS, IRF7 was upregulated in B

cells from patients compared from healthy controls (101). In our

study, IRF7 was identified as a pivotal TF in both SLE and pSS.

Firstly, the functions of TFs need to be further verified with in vitro

models. Secondly, STAT1 and IRF7 might act as reporter genes for

preliminary screening of drug candidates in SLE and pSS diseases in

the future.

There are some limitations in our study. Although we employed

comprehensive and improved bioinformatic methods and verified

our results in other gene expression profiles, the analysis remains

speculative. Further experimental research is needed to confirm the

findings in this study, which provides a theoretical basis for future

research in the field.
Conclusions

In summary, we explored and identified the shared hub genes,

related pathways and TFs in peripheral blood from SLE and pSS

patients for the first time. The hub genes (IFI44L, ISG15 and ITGB2)

were identified, and relevant pathways (IFN response and ITGB2

signaling pathway) were found in SLE and pSS. In addition, STAT1
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and IRF7 were identified as common TFs, associated with

monocytes and DCs. Moreover, IRF7 was predominantly

expressed in DCs. This study provides novel insights for further

pathogenesis studies of SLE and pSS. In conclusion, a better

understanding of the pathogenesis of each disease is of

fundamental importance for identifying new therapeutic targets

and immunomodulatory agents in future management of SLE

and pSS.
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