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interacting with cancer
cells and myeloid cells
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Introduction: Despite predicted efficacy, immunotherapy in epithelial ovarian

cancer (EOC) has limited clinical benefit and the prognosis of patients remains

poor. There is thus a strong need for better identifying local immune dynamics and

immune-suppressive pathways limiting T-cell mediated anti-tumor immunity.

Methods: In this observational study we analyzed by immunohistochemistry,

gene expression profiling and flow cytometry the antigenic landscape and

immune composition of 48 EOC specimens, with a focus on tumor-infiltrating

lymphocytes (TILs).

Results: Activated T cells showing features of partial exhaustion with a

CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ surface profile were

exclusively present in EOC specimens but not in corresponding peripheral

blood or ascitic fluid, indicating that the tumor microenvironment might

sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed

several tumor-associated antigens possibly able to stimulate tumor-specific TILs,

macrophages provided both co-stimulatory and inhibitory signals and were

more abundant in TILs-enriched specimens harboring the CD137+CD39+PD-

1+TIM-3+CD45RA-CD62L-CD95+ signature.
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Conclusion: These data demonstrate that EOC is enriched in CD137+CD39+PD-

1+TIM-3+CD45RA-CD62L-CD95+ T lymphocytes, a phenotype possibly modulated

by antigen recognition on neoplastic cells and by a combination of inhibitory and co-

stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we

have identified immunosuppressive pathways potentially hampering local immunity

which might be targeted by immunotherapeutic approaches.
KEYWORDS

ovarian cancer, high grade serous ovarian cancer (HGSOC), tumor-infiltrating
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Introduction

Ovarian cancer accounts for 2.5% of all female tumors. Despite its

relatively low incidence, it represents the 8th most common cause of

death from cancer in women (1). The prognosis of patients affected

by epithelial ovarian cancer (EOC) has not substantially changed over

the last decades, after platinum-based chemotherapy was introduced,

and the majority of patients initially responding to chemotherapy will

eventually develop chemoresistance and relapse (2). There is thus an

urgent need for innovative and effective therapies.

Despite being considered a “cold tumor” with a low tumor

mutational burden, a positive correlation between the amount of

tumor-infiltrating lymphocytes (TILs), in particular CD8+ cells, and

favorable clinical outcome has been reported in EOC, suggesting

that this disease might be sensitive to immunotherapeutic

approaches, including adoptive T cell therapy (3–10). The

analysis of the pattern of the immune infiltration in EOC has

revealed that TILs are mainly distributed within the stroma (S-TIL)

or both in the stroma and in the epithelium (ES-TIL), with high

intra-patient variation. In a minority of cases, EOC is completely

devoid of lymphocytes (N-TIL) (11–14). Noticeably, the clinical

significance of the infiltration pattern and spatial location of TILs

remains poorly investigated (12, 14).

The functional phenotype of TILs has been largely studied in so

called “hot tumors” (15), such as melanoma and colorectal cancer

(16). Prolonged exposure of tumor-specific T cells to tumor

antigens in an immunosuppressive microenvironment often

induces an exhausted status in TILs (17), characterized by the co-

expression of multiple inhibitory receptors (IRs) and associated to

cancer immune evasion. According to these observations, in

selected tumors, specific cell-surface signatures in TILs have been

identified and proved enriched in tumor-reactive T cells (18–22).

Differently from other solid tumors, EOC harbors a low frequency

of tumor-specific TILs (23). The identification of a cell surface

signature associated with tumor-reactive T cells in EOC is thus

more cumbersome and first results are controversial: while none of

the markers evaluated by Scheper et al. segregated tumor-specific

TILs from bystander lymphocytes (23), other authors found that the

expression of CD137 or of PD-1 and the co-expression of CD39 and
02
CD103 in intraepithelial TILs is associated with a high degree of

anti-tumor reactivity (19, 24–26). These data depict a complex

scenario for EOC, where several key molecules could be involved in

the regulation of local immunity. Accordingly, therapy with single

immune checkpoint blocking agents inhibiting the PD-1/PD-L1

pathway, alone or in combination with chemotherapy, had limited

clinical efficacy (27–29). Furthermore, T-cell exhaustion is largely

dependent on the interaction between TILs, cancer cells and

myeloid cells. Tumor associated macrophages, for instance, can

modulate TILs function through soluble immunosuppressive

factors secreted in the tumor microenvironment (17) and by

providing costimulatory or inhibitory signals (30–32). In human

ovarian cancer, myeloid cells have a dual role: while they favor

immunosuppressive microenvironment by TGFb production,

regulatory T cells recruitment and PD-L1 expression (33–35),

these cells also provide CD28 costimulation, which is required for

reinvigoration of CD8+ TILs and for their response to PD-1

blockade, and are the main source of CXCL9, which is essential

for T-cell recruitment (36, 37). A more comprehensive

characterization of TIL phenotype appears therefore essential to

precisely identify the pathways involved in the local suppression of

anti-tumor immunity, thus prompting the design of disease-tailored

immunotherapeutic regimens, and potentially cell-based

immunotherapeutic approaches.

EOCs is characterized by a low mutational burden, that usually

associates with a low number of immunogenic neoantigens (38);

thus the expression of tumor-associated antigens (TAAs) may

better describe the antigenic landscape in EOC patients. New

York-esophageal squamous cell carcinoma-1 (NY-ESO-1) antigen

has been extensively studied because serum antibodies and specific

TILs can be detected in ovarian cancer patients (39). The possibility

of generating NY-ESO-1 specific immune responses has been tested

in clinical trials, with generation of CD4+ and CD8+ antigen-specific

T-cell responses (40, 41). Cancer Antigen 125 (CA125) and Mucin-

1 (MUC-1) are expressed in EOC and have been a target for

adoptive immunotherapeutic approaches (42–44). Wilms tumor-1

antigen (WT-1) has emerged as an ideal target for immunotherapy,

as it is selectively overexpressed in ovarian carcinoma and its

expression positively correlates with survival (45–47).
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To unravel the cellular and molecular players active in the EOC

microenvironment, we performed an extensive characterization of

IRs and IR ligands in EOC immune infiltrate, and we combined this

analysis with an evaluation of TAAs expression in neoplastic cells.

Our data show that EOC is infiltrated by effector memory T (TEM)

cells displaying features of activation and partial exhaustion, a

phenotype possibly modulated by antigen recognition on

neoplastic cells and by a combination of inhibitory and co-

stimulatory signals largely provided by infiltrating myeloid cells.
Methods

Patients’ selection and samples collection

Forty-eight patients diagnosed with EOC at the Department of

Gynecology and Obstetrics, Ospedale San Raffaele (OSR) and

undergoing cytoreductive surgery from March 1999 to July 2019

were enrolled in the study. Inclusion criteria were: women older

than 18 years, diagnosed with advanced EOC who gave their

informed consent for participating to this study. Formalin-fixed

and paraffin-embedded (FFPE) tumor specimens were analyzed for

all the patients, and for a subgroup of 19 patients also fresh

neoplastic tissue, peripheral blood, and ascitic fluid (n=14,

depending on the presence of peritoneal ascites) were available.

Local ethics committee approved the study.

The following clinicopathological characteristics were registered

in a dedicated database: age, histopathological diagnosis,

International Federation of Gynecology and Obstetrics (FIGO)

stage, breast cancer susceptibility genes (BRCA)1/2 status (either

somatic or germline), presence of somatic pathological variants in

21 genes implicated in homology recombination repair (HRR)

pathway (48, 49) (Supplementary Table 1), type of surgical

procedure performed, residual tumor, type of cytoreduction

(primary vs interval debulking surgery) and type of chemotherapy

and maintenance therapy administered.

Tumors were staged according to FIGO staging system of 2014

(50). Reclassification of cases diagnosed prior to this new staging

system was applied retrospectively evaluating surgical reports.

A summary of the clinicopathological characteristics of the

included patients is provided in Supplementary Table 2.
Samples’ processing for flow cytometry

Peripheral blood, tumor tissue and when available ascitic fluid

were collected at diagnostic surgery, before any chemotherapy

treatment. After collection, samples were assigned an anonymized

reference by the Institutional Biobanking Service. Tumor specimens

were in part paraffine-embedded for IHC, IF and gene expression

analyses, and in part stored in Tissue Storage Solution (Miltenyi

Biotec) for flow cytometry. All samples were kept at +4°C and

processed within 24 hours.

Peripheral blood mononuclear cells (PBMC) were obtained from

whole blood by density gradient centrifugation (Lymphoprep,

Sentinel diagnostics).
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Tissue samples were minced and then digested with the Tumor

Dissociation kit in gentleMACS Dissociator (Miltenyi Biotec)

according to manufacturer’s instructions. After digestion, samples

were filtered with a 40 mm cell strainer (Falcon, Corning) and

washed with RPMI-1640 medium (BioWhittaker), then red blood

cells were lysed 10 minutes at +4°C with ammonium-chloride-

potassium (ACK) lysis buffer (BioWhittaker) and samples were

washed again with RPMI-1640 containing 10% Fetal Bovine Serum

(FBS), 1% penicillin/streptomycin and 1% L-glutamine (all

from BioWhittaker).

Ascitic fluids were centrifuged and treated with ACK buffer as

above described.
Flow cytometry

Freshly processed single-cell suspensions from tissue, blood,

and ascites were stained with antibodies listed in Supplementary

Table 3 in the presence of Brilliant Stain Buffer (BD Biosciences).

Before incubation with antibodies, dead cells were stained with

Zombie Green Fixable Viability Kit (Biolegend) and Fc receptors

were blocked with human FcR Blocking Reagent (Miltenyi Biotec)

according to manufacturers’ instructions. After staining and

washing, samples were fixed with Fixation Buffer (Biolegend),

stored at +4°C and acquired within 24 hours. The acquisition of

the samples was carried out with LSRFortessa and FACSymphony

cytometers (BD Biosciences). Data were analyzed with FlowJo v10

software (BD).
High-dimensional analysis of flow
cytometry data

Only samples acquired with LSRFortessa cytometer were used

for high-dimensional analysis. After compensation optimization,

events were isolated from the raw .fcs files according to physical

parameters (FSC-A, FSC-H and SSC-A), negativity for the viability

dye and positivity for the CD3 marker. All live T lymphocytes were

then exported to a new .fcs file. Using the application cytoChain

(51) data were then optimized for acquisition stability, all the

channels’ fluorescence intensities were transformed by the arcSinh

function (cofactor 150) and random downsampling to 5000 events

per sample was performed. CytoChain was also used for subsequent

data handling after concatenation of the optimized flowset as

previously described (52). The concatenated flowset was also

analyzed by FlowJo v10 (BD) to validate cytoChain results.

After a first t-SNE mapping, CTLA-4 marker showed a low and

almost uniform expression, with very little differences among the

clusters. Therefore, we decided to remove CTLA-4 from mapping

and clustering analysis to exclude a potential confounding effect.
Immunohistochemistry

Immunohistochemistry (IHC) analyses were performed on

FFPE tumor specimens with antibodies listed in Supplementary
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Table 4, and two independent pathologists evaluated the specimens.

A triple immunohistochemical staining (CD3, CD20, CD163) was

performed to establish the presence and spatial distribution of T

(CD3+), B (CD20+) cells and macrophages (CD163+) in the tumor

microenvironment (TME). TILs percentage was evaluated in the

stroma and in the epithelial tumor cells (14). Consequently, cases

were classified by the TILs distribution in epithelial TILs (E-TILs)

(higher TILs percentage in the epithelial tumor component than in

stroma), stromal TILs (S-TILs) (higher TILs percentage in the

stroma than in epithelial tumor component), epithelial and

stromal TILs (ES-TILs) (same percentage in both) and no TILs

(N-TILs) (TILs absent or less than 1% in the tumor). Furthermore,

the expression of IRs (PD-1, LAG-3 and TIM-3) by immune cells or

of PD-L1 by both neoplastic and immune cells present in the TME

were evaluated. For each marker, the number of positive immune or

tumor cells per 100 neoplastic cells was calculated. A panel of TAAs

(WT-1, NY-ESO-1, CA125, MUC-1) was also assessed and the

percentage of their expression in tumor cells was calculated.
Gene expression analysis

RNA was extracted from FFPE samples by using Maxwell RSC

RNA FFPE Kit and Maxwell RSC Instrument (Promega), according

to the manufacturer’s instructions.

Elution was performed in 50 ml and RNA was quantified using

the Qubit RNA HS Assay Kit on Qubit 3.0 Fluorometer

(ThermoFisher Scientific).

Gene expression analysis was performed using nCounter Prep

Station and nCounter Digital Analyzer (NanoString), following the

instrument protocol. The nCounter PanCancer IO 360™ Panel

(NanoString) was used, with the addition of a custom panel

targeting 29 genes (Supplementary Table 5). Cartridges were run

using the 280 FOV protocol.

After quality control and background correction, gene expression

was normalized using the target to housekeeping gene expression

ratio with the Advanced Analysis module of the nSolver Analysis

Software version 4.0 (NanoString Technologies). Samples were

categorized using the combination of Epithelial and Stromal TILs

data: TIL-Low (TIL ≤ 8%, n = 24 subjects) and TIL-High (TIL > 8%,

n = 22 subjects) groups.
Immunofluorescence analysis
for CD137/CD39

An immunofluorescence (IF) double stain was performed to

evaluate the co-expression of CD137 and CD39 in lymphocytes (see

Supplementary Table 6). CD137+CD39+ cells were identified in five

epithelial intra-tumoral high power field areas (HPF) and five stromal

intra-tumoral HPF. Each HPF (40x magnification=0.237575938 mm²

area) was selected considering the areas more enriched by

CD137+CD39+ cells.
Frontiers in Immunology 04
Statistics

Statistical analyses were carried out using GraphPad Prism 9

and SPSS version 17.0 softwares. In the presence of two variables,

the comparison between groups was carried out using two-way

ANOVA followed by Sidak’s multiple comparison test. Comparison

between two groups was performed by Wilcoxon (for paired

groups) or Mann-Withney (unpaired) tests. Correlation analysis

was performed by simple linear regression. Statistical significance

was defined as p value <0.05.

Receiver operating characteristic (ROC) analysis was used to

identify the levels of CD137+CD39+ among CD4+ and CD8+ T

lymphocytes and of CD33+ among total CD45+ cells characterized

by the best sensitivity and specificity for the prediction of the

presence of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+

CD4+ and CD8+ T cells in the same EOC samples.

Survival curves were calculated using the Kaplan-Meier method

and were compared with the Log-rank test to assess the statistical

significance. Patients were censored when lost to follow up. Cox’s

regression model was used to analyze the role of clinicopathological

factors as prognostic factors for survival.

NanoString nCounter analysis was based on multivariate linear

regression with Benjamini-Hochberg (BH) adjustment. We defined

genes as differentially expressed if they displayed an adjusted p value

less than 0.1 in a pairwise comparison. Finally, we compared the

pathway activity scores with two-tailed Student’s t-test and

unpaired Student’s t-test, two-way and an adjusted p value (BH

correction) less than 0.05 was set as cut-off.
Data availability

The datasets generated for this study are available on request to

the corresponding authors.
Results

Patients’ characteristics

In this study we performed a multidimensional investigation of the

tumor microenvironment and antigenic landscape of EOC on

biological samples harvested from 48 patients at diagnosis. Patients’

clinicopathological characteristics are summarized in Table 1 and

detailed in Supplementary Table 2. Most of the patients (93.7%)

presented with advanced-stage disease (stage III and IV), which was

high-grade serous ovarian cancer (HGSOC) in 85.4% of cases, thus

representing the typical population of patients affected by EOC at

diagnosis (53). After surgery, all patients received platinum-based

chemotherapy, except for one patient who died soon after diagnostic

surgery due to myocardial infarction. First line chemotherapy was

followed by maintenance therapy with either bevacizumab (n=13) and/

or poly (ADP-ribose) polymerase (PARP)-inhibitor (n=1). PARP-
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inhibitor was administered as maintenance after platinum-based

chemotherapy at subsequent relapse in 9 patients.

Twelve patients (25%) underwent a diagnostic biopsy due to

widespread disease deemed unresectable at primary surgery and

were therefore addressed to neoadjuvant chemotherapy followed by

interval debulking surgery. The remaining patients underwent

primary cytoreductive surgery. Eleven patients (22.9%) harbored

either somatic or germline BRCA pathological variants. Among 29

specimens evaluated, 18 harbored pathological alterations in HRR

pathway. Survival data were available for 42 patients. In April 2022,

median progression free survival (PFS) was 9.0 ± 2.16 (95%CI 4.76-

13.20) and median overall survival (OS) was 34.0 ± 3.34 (95%CI

27.44-40.55) months.
EOC is infiltrated by TILs
with dominant stromal localization
and expresses several TAAs

The type and spatial distribution of the immune infiltrate in

EOC was assessed by IHC upon staining for CD3, CD20 and CD163

on the whole cohort, and by flow cytometry by CD3, CD19 and

CD33 on 19 freshly processed tumor samples. According to

previous data (54), the two techniques were highly concordant in

revealing a strong infiltration by T lymphocytes and myeloid cells,

with very low levels of B lymphocytes (Figure 1A). IHC showed that

TILs display a stromal distribution in the majority of patients, with
Frontiers in Immunology 05
36% of cases with TIL accumulating both in stromal and epithelial

areas (Figures 1B, C, Supplementary Figure 1A).

To investigate the antigenic landscape of EOC, and identify

potential targets for immunotherapy, the expression by cancer cells

of WT-1, CA125, MUC-1 and NY-ESO-1 immunogenic TAAs was

evaluated by IHC. WT-1, CA125, MUC-1 were expressed by the

majority of analyzed samples, with average percentages of TAA

expressing cells of 80% (range 0-90, 68% of positive specimens) for

WT-1, 70% (range 0-90, 70% of positive specimens) for CA125 and

85% (range 15-95, 81% of positive specimens) for MUC-1. NY-

ESO-1 showed the lowest expression levels in all analyzed samples

(median 0, range 0-80, 5% of positive specimens) (Figures 1D, E).

No differences were observed in the immune composition or

TAAs expression of the specimens with Ovarian Clear Cell

Carcinoma (OCCC) or Endometrioid Ovarian Cancer (EOvC)

histology compared to HGSOC (Supplementary Figures 2A, B).
The gene expression signature of highly
TIL-infiltrated EOCs indicate an active T
cell-myeloid cross-talk

The gene expression profiles of our EOC samples were evaluated

with a panel of 799 immune and cancer-related genes by the

NanoString platform. The correlation matrix identified a good

clusterization between samples identified by TIL content above or

below the median value (TIL-High and TIL-Low, respectively), while

other clinical or biological parameters had lower impact on the

molecular signature (Figure 2A). We performed pairwise

comparison, obtaining 174 and 17 deregulated genes (p<0.1,

Benjamini-Hochberg correction, BH) specifically high expressed in

TIL-High and TIL-Low tumors, respectively (Figure 2B,

Supplementary Table 7). By performing pathway enrichment

analysis (Figures 2B, C, Supplementary Figure 1B), in TIL-High

samples we observed increased expression of genes related to T-cell

recruitment and accumulation (e.g. CD3E, CD8A, CD4, CCL5,

CXCR6, CXCL9, CXCL13, IL2RB, IL2RG, CD2, TRAT1, ITGAL

and CCL18), lymphocyte activation and costimulation (LCK, ITGAL,

CD48, STAT4, CD96) and antigen processing and presentation

(HLA-DRB1, CD74, CD96, CTSS, PSMB9, HLA-DPA1) (36, 55–

58). Moreover, also genes typical of myeloid cells (CD33, CXCL9,

CD48, APOE, CD74, HLA-DRB1, CD96, IRF4, HCK) and genes

induced by interferons (CXCL9, CD48, GBP4, CCL5, HLA-DRB1,

LAG3, NLRC5, CD69, IRF2, IRF4, PSMB9) (36, 59–61) were

expressed. Importantly, in TIL-High samples we also detected an

upregulation of genes associated with a better prognosis of ovarian

cancer patients (CD8A, CD4, LCK, CCL5, CXCR6, CXCL9, CXCL13,

CD27, CD48RO, APOE, GBP4, TRAT1) (3, 36, 56–58, 62–69).

Interestingly, in TIL-High samples we observed a downregulation

of genes belonging to the Hedgehog pathway (Figure 2C,

Supplementary Figure 1B, Supplementary Table 7), which is

associated with EOC progression, in vitro chemoresistance and

reduced response to anti-PD-L1 therapy in mouse models (70–72).

Overall, these data revealed a distinctive microenvironment in

TILs-enriched tumor samples characterized also by myeloid cell
TABLE 1 Patients’ characteristics.

Patients (n=48)

Age (years) – mean ± SD (range) 61.3 ± 11.5 (32-82)

Stage, Grade – n (%)

IIB G3 2 (4.2)

IIIA G3 1 (2.1)

IIIB G3 2 (4.2)

IIIC G3 31(64.6)

IV G3 12 (25.0)

Histotype – n (%)

HGSOC 41 (85.4)

EOvC 4 (8.3)

OCCC 3 (6.3)

BRCA mutation – n (%)

Yes 11 (22.9)

No 37 (77.1)

Survival data - median (range)

PFS (months) – median (range) 9.0 (0-48)

OS (months) - median (range) 34.0 (4-260)
BRCA, Breast Cancer susceptibility genes; EOvC, Endometrioid Ovarian Cancer; HGSOC,
High Grade Serous Ovarian Cancer; OCCC, Ovarian Clear Cell Carcinoma; OS, Overall
Survival; PFS, Progression Free Survival.
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enrichment and activation, and suggestive of a crosstalk between

innate and adaptive immune cells.
T lymphocytes co-expressing activation
and exhaustion markers are enriched
in EOC

To reveal the activation, exhaustion and differentiation status of

TILs, we first performed IHC staining for PD-1, LAG-3 and TIM-3,

which revealed strong expression of these IRs by lymphoid cells within
Frontiers in Immunology 06
EOC (Supplementary Figure 3). Considering the lack of B cells, T

lymphocytes or NK cells might be the major lymphoid subsets

expressing those IRs in our specimens. To gain more insights on the

level of T-cell exhaustion, in selected cases, we comparatively analyzed

TILs, matched T lymphocytes accumulating in the ascitic fluid and

circulating T cells by polychromatic flow cytometry. To this aim we

designed a flow cytometry panel able to simultaneously identify

activated and exhausted T cells within each T-cell memory subset.

We examined freshly processed matched PBMC, ascites and tumor

samples from 8 high-grade EOC patients. High-dimensional analysis

performed using the application cytoChain (51) allowed to identify 25
A B

D E

C

FIGURE 1

EOC samples are highly infiltrated by T and myeloid cells and express different TAAs. (A), quantification of T and B lymphocytes and myeloid cells
infiltrating EOC by IHC (n=47, left panel) and flow cytometry (n=19, right panel). Comparisons by two-way ANOVA: *, p<0.05; **, p<0.01; ***,
p<0.001; ns, not significant. (B), distribution of lymphocytes (CD3+ or CD20+ cells) in n=47 EOC specimens accordingly to their main localization in
stroma (S-TIL), epithelium (E-TIL), in both stromal and epithelial areas (ES-TIL) or to their absence (N-TIL, TILs ≤ 1% in all the examined areas).
(C), representative staining for ES-TILs, E-TILs, S-TILs and N-TILs by x10 (upper panels) and x20 (lower panels) magnification. (D), expression of the
indicated TAAs by neoplastic cells evaluated by IHC (n=47 for WT-1, n=44 for CA125, n=43 for MUC-1, n=19 for NY-ESO). (E), representative staining
for the indicated TAAs, x10 magnification.
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site-specific phenotypic T-lymphocyte metaclusters (mc), with major

differences observed between PBMC and tumor and an intermediate

pattern in T cells from ascitic fluid (Figures 3A, B). Metacluster (mc)2

and mc3 were uniquely expressed in peripheral blood (mc2 p=0.03 for

PBMC vs ascites and p=0.04 for PBMC vs tumor, mc3 p=0.002 for

PBMC vs ascites and p=0.003 for PBMC vs tumor) and included CD4+

T lymphocytes with naïve (TN, CD45RA
+CD62L+CD95-, mc3) and

central memory (TCM, CD45RA
-CD62L+CD95+, mc2) phenotype,

while mc8 was expressed in both PBMC and ascitic compartments

(p=0.03 for PBMC vs tumor) and was composed by late-stage (TEMRA,

CD45RA+CD62L-) CD4+ T cells. Conversely, mc12, mc17, mc19 and

mc20 were enriched in both neoplastic and ascitic samples compared

to PBMC (mc12 p=0.01 for PBMC vs both ascites and tumor, mc17

p<0.001 for PBMC vs tumor, mc19 p=0.02 for PBMC vs ascites

and p<0.001 for PBMC vs tumor, mc20 p=0.03 for PBMC vs ascites

and p<0.001 for PBMC vs tumor) and consisted of CD4+ or CD8+

effector memory cells (TEM, CD45RA
-CD62L-, mc12, mc19 and mc20)
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or of double-negative lymphocytes (mc17). Exhaustion markers were

found only at low levels in these mc (GITR in mc2 and mc3, TIGIT in

mc8, 2B4 in mc17 and mc20), with the only exception of discrete levels

of CD39 in mc19. Importantly, no expression of CD137, a marker of

recently activated T cells (73), or co-expression of multiple IRs has been

found in these metaclusters (Figures 3B–D).

Interestingly, CD137 expression was restricted to mc22 and

mc24, which were present only in TILs but not in T lymphocytes

from PBMC or ascites (mc22 p=0.04 for tumor vs both ascites and

PBMC, Figure 3C). These metaclusters consisted of either CD4+

(mc22) or CD8+ (mc24) T cells sharing a TEM phenotype, high

CD39 and CD95 expression and higher expression of PD-1 and

TIM-3 compared to the overall T cell population, identifying a

CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature for

T lymphocytes exclusively present in the tumors (Figures 3B, E).

Within mc expressed in TILs, CD137 relative expression levels

correlated with the number of positive IRs in the same mc
A

B

C

FIGURE 2

Higher expression of cytotoxicity, anti-tumor chemokines and myeloid-related genes in TIL-High samples. (A), heatmap showing the correlation
between 46 surgical specimens according to gene expression profile. Unsupervised clustering using maximum distance and ward.D2 linkage.
Annotations of the samples on the top of the heatmap indicate age, histopathological and biological features according to the color legends.
(B), volcano plot showing differentially regulated genes derived from NanoString analysis of 46 surgical specimens separated by TIL percentage into
TIL-Low (TIL<8% of tumor cells, n=24) and TIL-High (TIL>8% of tumor cells, n=22) groups. Eight percent of TIL content has been used as threshold
being the median percentage of TILs infiltration in the evaluated samples. Blue and red dots indicate genes significantly upregulated in TIL-Low and
TIL-High, respectively (adjusted p value < 0.1, BH correction). (C), boxplots showing pathways upregulated or downregulated in TIL-High group
compared to TIL-Low group. Pathway scores are calculated as the first principal component of the pathway genes’ normalized expression. Statistical
significance by two-tailed Student’s t-test and BH correction: *, p<0.05; **, p<0.01; ***, p<0.001.
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(Figure 3F), underlining the contemporary presence of activation

and exhaustion markers. We then dissected the expression of the

identified mc in TILs from the 8 neoplastic samples used for high-

dimensional analysis, which derived from tumors with different

clinical and biological features. Mc24 was enriched (p<0.001) in

lesions characterized by mutations in genes belonging to HRR

pathway and in samples with an ES-TIL infiltration pattern

(p=0.02 for S-TIL vs ES-TIL, p<0.001 for N-TIL vs ES-TIL).

Mc22 was enriched in samples with high TIL accumulation

compared to those without lymphocyte infiltration (p=0.02 for S-

TIL vs N-TIL) and, most importantly, in tumors from patients with

PFS longer than the median of the whole cohort (p=0.01). Both

mc22 and mc24 display a trend for enrichment in tumors

expressing WT-1 (Supplementary Figure 4). Interestingly,

metacluster 12, representing resting non-exhausted CD4+ TEM

cells, decreased in samples with mutations in HRR pathway
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(p<0.001), high WT-1 expression (p=0.02) and in tumors from

long-surviving patients (p<0.001). These data suggest a beneficial

effect of the tumor infiltration by activated T lymphocytes, even

though such cells co-express exhaustion-related molecules.
Tumor infiltration by CD137+CD39+

T lymphocytes is associated with
better prognosis

Manual gating cytofluorimetric analysis on the freshly

processed samples investigated above and on additional samples

from 6 EOC patients (Supplementary Figure 5) confirmed the

presence in neoplastic lesions of both CD8+ and CD4+ T

lymphocytes with the CD137+CD39+PD-1+TIM-3+CD45RA-

CD62L-CD95+ phenotypic signature previously identified by high
A B

D E F

C

FIGURE 3

High-dimensional analysis of T cells identifies different T-cell subsets in PBMCs, ascitic fluids and tumors. (A), tSNE analysis (upper panels) and Flow-
SOM metaclusters overlay (lower panels) of CD3+ T cells from either all concatenated samples or PBMC, ascites and tumor specimens from 8 high-
grade EOC patients. (B), heatmap for the 25 Flow-SOM metaclusters; the ratio of fluorescence intensity with respect to the maximum is reported.
Brown boxes highlight the clusters expressed only in tumor specimens. (C), metaclusters frequency in T cells from matched PBMC (light blue),
ascites (orange) and tumor (brown) specimens. Analysis by two-way Anova with Sidak’s multiple comparison: *, p<0.05; **, p<0.01; ***, p<0.001.
(D), metaclusters overlay for all concatenated samples showing the differential contribution for each type of tissue as in C. (E), detail of metaclusters
n. 22 and 24. Brown boxes indicate the markers enriched or reduced in both clusters. (F), correlation by linear regression analysis between the
relative expression of CD137 in each mc and the number of IRs co-expressed in the same mc. Only metaclusters with >1% of cells in concatenated
neoplastic samples have been analyzed. IRs were considered positive when their relative expression was >0.5.
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dimensional analysis. This cellular subpopulation was not

detectable in T cells from ascitic fluid nor in peripheral blood of

the same patients (Figure 4A; CD8+: p<0.001 for tumor vs both

PBMC and ascites, CD4+: p=0.02 for tumor vs ascites and p=0.01

for tumor vs PBMC). Interestingly, also in this small cohort of the

13 patients for which PFS was available, we found a trend for better

PFS in patients with detectable CD137+CD39+PD-1+TIM-

3+CD45RA-CD62L-CD95+ TILs (Figure 4B, median PFS 26 vs 11

months, hazard ratio 0.45, 95%CI of ratio 0.12 to 1.71). We thus re-

analyzed the data in search of a combination of few cell surface

markers correlated with this complex signature, to be exploited in a

larger cohort of patients. Interestingly, we observed that the

percentage of CD137+CD39+ T cells within EOC samples

positively correlates with the CD137+CD39+PD-1+TIM-

3+CD45RA-CD62L-CD95+ signature, in both CD4+ and in CD8+

T cells (Figure 4C). ROC analysis identified the values of 1.8%

CD137+CD39+/CD8+ (area under the curve (AUC)=0.978,

p=0.004) and 6.3% CD137+CD39+/CD4+ (AUC=1, p=0.002) as

the best thresholds for the presence of CD137+CD39+PD-1+TIM-

3+CD45RA-CD62L-CD95+ CD8+ or CD4+ T cells, respectively

(Supplementary Table 8, Figure 4D). Furthermore, CD137+CD39+
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T cells showed increased expression of several IRs compared to the

total CD8+ and CD4+ T lymphocytes (Supplementary Figure 6A).

Based on these findings, we screened all available (n=38) EOC

specimens by IF for CD137 and CD39 (Figure 5A). Double-positive

lymphocytes were detected, albeit at low numbers, in both stromal

and epithelial compartments (Figure 5B). Interestingly, we observed

a trend for a better survival for HGSOC patients with more

CD137+CD39+ TILs compared to patients with lower

CD137+CD39+ TILs (stromal TILs: median PFS 13 vs 6.5 months,

hazard ratio for disease progression 0.50, 95%CI of ratio 0.23 to

1.09. Intra-epithelial TILs: median PFS 13 vs 6.5 months, hazard

ratio for disease progression 0.50, 95%CI of ratio 0.23 to 1.07)

(Supplementary Figure 6B), while total T-cell infiltration did not

correlate with PFS (data not shown).

No major differences among different EOC histotypes were

observed for T-cell phenotype, including the presence of

CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature or

of CD137+CD39+ lymphocytes (Supplementary Figures 2C–E).

Overall, these data show that in EOC a T-cell infiltrate enriched

in cells co-expressing CD137 and CD39 has a potential positive

prognostic implication.
A
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C

FIGURE 4

Manual analysis confirms co-expression of activation and exhaustion markers by TILs. (A), quantification by manual gating of CD137+CD39+PD-
1+TIM-3+CD45RA-CD62L-CD95+ cells among CD8+ (left) and CD4+ (right) T lymphocytes in matched tumor (n=14), ascites (n=13) and PBMC (n=14)
samples from EOC patients. Bars, median values. Analysis by one-way Anova: *, p<0.05; ***, p<0.001; ns, not significant. (B), Kaplan-Meier estimates
of PFS in 13 patients with or without detectable CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T cells in their tumors (cut-off >0.1% of
CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ cells among either CD8+ or CD4+ T lymphocytes). Lines indicate censored data. Comparisons
by Log-rank test. (C), correlation by linear regression analysis between the percentage of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ and of
CD137+CD39+ cells among CD8+ (left) and CD4+ (right) T lymphocytes from n=14 EOC specimens. Dotted lines indicate the values of
CD137+CD39+ T lymphocytes which identify with the best sensitivity and specificity by ROC analysis the presence of CD137+CD39+PD-1+TIM-
3+CD45RA-CD62L-CD95+ cells (1.8% for CD8+ T cells and 6.3% for CD4+ T cells). (D), frequency of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-

CD95+ among CD8+ (left) and CD4+ (right) T cells from n=14 EOC specimens containing percentages of CD137+CD39+ cells below or over the
thresholds identified with ROC analysis. Analysis by Mann-Whitney test: **, p<0.01; ***, p<0.001.
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Myeloid cells expressing IR ligands are
abundant in EOC specimens enriched in
CD137+CD39+PD-1+TIM-3+CD45RA-

CD62L-CD95+ T cells

Ligands for IRs might be expressed by cancer cells and by

different cellular components of the tumor microenvironment (74–

76). To identify the cell type possibly engaging IRs in TILs, we

analyzed by flow cytometry the expression of several molecules on

neoplastic and myeloid cells and T lymphocytes; B lymphocytes

were not characterized due to their low frequency in EOC samples.

Our data show that a large fraction of myeloid cells co-expressed IR

ligands in the majority of EOC samples, with a prevalence of HLA-

DR, CD80, CD86, PD-L1 and CD48. In a lower proportion of

samples, we also observed myeloid cells expressing high percentages

of PD-L2 or CD155. Conversely, cancer cells, defined by EpCAM

expression, scarcely expressed IR ligands, with the exception of

HLA-DR and of a minority of samples highly positive for PD-L2. T

lymphocytes displayed in almost all the samples high levels of

CD48, while CD155, HLA-DR and PD-L2 were more

heterogeneous and the other ligands mainly absent on this subset

(Figure 6A, Supplementary Figure 7). IHC confirmed the prevalent

expression of PD-L1 by myeloid cells (Figure 6B). Although the

expression of TIM-3 ligands could not be evaluated on the cells

from fresh neoplastic specimens, gene expression analysis showed

increased expression of Galectin-9 associated with increased

expression of TIM-3 in TIL-High compared to TIL-Low samples.

This finding was confirmed by IHC assessment of Galectin-9

expression on immune cells (Supplementary Figure 8).

Interestingly, the abundance of myeloid cells in EOC samples

positively correlated with the presence of CD8+ T lymphocytes

characterized by the CD137+CD39+PD-1+TIM-3+CD45RA-

CD62L-CD95+ signature (Figure 6C). Furthermore, ROC analysis
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identified the value of 35.8% CD33+/CD45+ as the best threshold for

the presence of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-

CD95+ in CD8+ T cells (AUC=0.933, p=0.009) (Supplementary

Table 9A, Figure 6D). Similar trends were detected for CD4+ T cells

(AUC=0.688, p=0.25) (Figures 6C, D, Supplementary Table 9B).

These results, according to gene expression data, indicate the

presence in EOC samples of a cooperation between TILs and

myeloid cells, the latter providing not only co-stimulation and

antigen presentation but also triggering of IRs on T lymphocytes.
Discussion

Cancer immunotherapy is an innovative therapeutic approach that

already proved effective in several tumor types. However, the use of

checkpoint inhibitors and/or of engineered cellular products should be

tailored to the specific immunosuppressive pathways active in each

disease. Here, we analyzed the EOC microenvironment by

complementary approaches including multiparametric flow

cytometry, gene expression profiling and immunofluorescence to

identify specific immunological patterns characterizing this aggressive

disease. Results pinpoint to a specific signature composed of effector-

memory TILs co-expressing the activation marker CD137 and high

levels of immunosuppressive molecules such as CD39, TIM-3 and PD-

1, a phenotype suggestive of recent T-cell activation and continuous

antigen exposure (73, 77, 78). No or very low expression of the other

IRs evaluated, including TIGIT, LAG-3, CTLA-4, GITR, 2B4 and

KLRG1, was detected in these cells, suggesting that they are not

completely exhausted. The CD137+CD39+PD-1+TIM-3+CD45RA-

CD62L-CD95+ TILs signature identified by flow cytometry correlated

with a simplified CD137+CD39+ T cell signature, which could be

exploited and validated by IF on a wider set of samples. In this cohort, a

trend for a better PFS was associated with the presence of
A B

FIGURE 5

Presence of CD137+CD39+ lymphoid cells in the stomal compartment is associated with better prognosis. (A), Representative immunofluorescence staining
for CD39 (red), CD137 (green) and DAPI (blue), 40x magnification. (B), quantification by immunofluorescence of CD137+CD39+ lymphoid cells in either the
stromal or the epithelial compartment of 38 EOC specimens. Bars indicate mean values ± SD. Analysis by Wilcoxon test: n.s., not significant.
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CD137+CD39+ lymphocytes in the stromal compartment of HGSOC,

which is more frequently infiltrated by T lymphocytes compared to

epithelial areas. Although this correlation might not be completely

correct due the heterogeneity in rates of optimal cytoreduction and

maintenance treatments, and needs to be validated in larger cohorts of

patients receiving homogeneous therapy, these findings possibly

suggest that activated CD137+ T cells retain functionality, despite the

co-expression of multiple inhibitory receptors. In line with this

hypothesis, in different studies, CD137 expression on EOC TILs

identified functional and tumor-specific lymphocytes among either

CD39+, CD103+ or PD-1+ TILs (19, 26), and agonistic CD137-specific

antibodies enhanced the effect of anti-PD-1 inhibition on cytokines

production by CD39+ EOC TILs (79).

CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T cells were

barely detectable in the peripheral blood or even in the ascitic fluid

from the same patients, suggesting that this functional phenotype is

dependent by the EOC microenvironment. We observed that, while

neoplastic cells expressed several immunogenic TAAs, which might

activate TILs, infiltrating myeloid cells dominantly expressed IR

ligands, that could sustain the phenotype of TILs.
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Furthermore, both gene expression and flow cytometry analyses

suggest a strong association between T-cell infiltrate and the presence

of myeloid cells providing co-stimulation and antigen-presentation. In

agreement, antigen-presenting cells in intraepithelial myeloid cell

niches have been described to provide TILs co-stimulation, which

was essential for the response to PD-1 blockade in vitro in EOC (37).

Analysis on samples with rare histologies (clear cell carcinoma

or endometroid), did not show any difference from HGSOC in the

composition or localization of the immune infiltrate, although this

finding needs to be validated in larger cohorts given the low

sample size.

Three TAA (WT-1, MUC-1 and CA125) were found highly

expressed by neoplastic EOC cells, suggesting a potential role for

TAAs in inducing an anti-tumor response in EOC.

One main limitation of the present study is related to the wide

time span during which all the patients have been treated. Over this

time period, surgical approaches and therapeutic strategies have

changed. In particular, first line maintenance treatment such as

bevacizumab and PARP inhibitors were not available at the

beginning of the study, and became available only for the patients
A B
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FIGURE 6

Myeloid cells mainly express IR ligands in the tumor microenvironment and correlate with CD137+CD39+PD-1+TIM-3+ TEM. (A), percentage of
myeloid (green bars, CD33+ n=13) epithelial (yellow bars, EpCAM+ n=13) or T (red bars, CD3+ n=6) cells from EOC samples expressing the indicated
IR ligands by flow cytometry analysis. Dots indicate individual values. Analysis by two-way Anova with Sidak’s multiple comparison: *, p<0.05; **,
p<0.01; ***, p<0.001. (B), upper panel, expression of PD-L1 by neoplastic or immune cells in n=36 EOC samples by IHC. Analysis by Wilcoxon test;
*** p<0.001. Right panel, representative IHC staining for PD-L1 showing predominant expression by myeloid-like cells. (C), upper panels, correlation
by linear regression analysis between the percentage of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ among CD8+ (left) and CD4+ (right) T
lymphocytes and of CD33+ among CD45+ cells from n=14 EOC specimens. Dotted lines indicate the value of CD33+ cells which identify with the
best sensitivity and specificity by ROC analysis the presence of CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ cells (35.8%). (D), presence of
CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ among CD8+ (left) and CD4+ (right) T cells from n=14 EOC specimens containing percentages
of CD33+ cells among CD45+ cells below or over the threshold identified with ROC analysis. Analysis by Mann-Whitney test: *, p<0.05; **, p<0.01.
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enrolled later than 2013 for bevacizumab and 2016 for PARPis

maintenance. These maintenance therapies have shown to be

effective in prolonging PFS and in modulating the tumor immune

microenvironment (80–82). It is clear that being these treatments

not completely homogeneous and considering the number of

analyzed samples, caution is needed when interpreting positive or

negative correlations with PFS. Moreover, tumor biopsies at

primary surgery were retrieved from different sites (petitoneum,

omentum or ovary) and this might affect the presented

comparisons. Another limitation is the lack of TMB assessment

and correlation to our findings, that will need to be addressed in

future (83–86).

Collectively, our results depict an EOC microenvironment

where activated antigen-experienced CD137+CD39+PD-1+TIM-

3+CD45RA-CD62L-CD95+ T lymphocytes and myeloid cells co-

exist and possibly cooperate to drive local immune response. These

results suggest that the combined inhibition of multiple exhaustion-

related pathways might be needed for effective immunotherapy in

EOC, and identify CD39, PD-1 and TIM-3 as potential targets for

the reinvigoration of anti-tumor immunity.
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