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Immunotherapy has ushered in a new era in cancer treatment, and cancer

immunotherapy continues to be rejuvenated. The clinical goal of

cancer immunotherapy is to prime host immune system to provide passive or

active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs)

play an immunomodulatory role in tumor microenvironment (TME) which is

closely related to immune escape of tumor cells, thus influence tumor progress.

Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs),

cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and

promise. In this review, we will summarize the recent research advances in tumor

immunotherapy, including the molecular mechanisms and clinical effects as well

as limitations of immunotherapy.
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Introduction

Cancer remains one of the most incurable diseases in the world. Before the 21st

century, the main treatments for cancer were surgical resection, radiotherapy, and

chemotherapy. Theoretically, cancer can be cured if the tumor tissue is completely

removed, however, many cancers have metastasized before they are detected, and most

surgical resections are radical removal of the entire organ, causing a certain degree of

damage to the patient. Although radiotherapy can kill most of the tumor cells using high

doses of radiation, most of the tumor cells will still remain micrometastases, which are

difficult to be thoroughly eradicated. Early chemotherapy mainly directly targets on DNA

strands, such as platinum compounds and antimetabolites blocking DNA replication and

inducing DNA damage. Subsequently derived chemotherapeutic agents center on

inhibiting enzymes involved in DNA replication and mitosis, such as camptothecin,

anthracyclines, vincristine and paclitaxel. Despite the satisfactory efficacy of

chemotherapy, it inevitably damages the patient’s immune system and reduces the

quality of life.

More than a century ago, immunological approaches to cancers were first suggested

when physicians observed that advanced cancers occasionally faded completely after acute

bacterial infections. Immunotherapy has revolutionized cancer treatment and led to a
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deeper understanding of tumors: treatment of tumors should not

only target cancer cells but should take the entire tumor

microenvironment (TME) into account. Although the immune

system has a complex array of mechanisms to detect and destroy

cancer cells, however, tumor cells are deteriorated from autologous

epithelial cells and therefore have very low antigenicity and are not

easily recognized by the immune system. Although some cancer

cells can be recognized by the immune system, some mechanisms

inherent in tumor cells help cancer evade the attack of the immune

system, which is clearly explained by the concept of cancer immune

editing, which emphasizes the dual role of the immune system in

suppressing tumor growth while also shaping tumor

immunogenicity, describing the process of tumorigenesis using a

3-step process: elimination, equilibrium and escape (1). Immune

escape is one of the ten new features of tumors. Although initially

cancer cells can be effectively monitored and recognized by the

immune system, however, due to the immune-editing effects of

cancer, they will eventually enter an immune escape state where the

tumor will instead use the immune system to accomplish faster

metastasis (2). Tumor immune escape is also one of the bottlenecks

in improving the efficacy of current tumor therapy. The mechanism

of tumor immune escape is complicated but can be summarized as

two aspects: one is the immune escape mediated by tumor cells

themselves, such as the absence of major histocompatibility

complex (MHC) or co-stimulatory molecules of tumor cells,

reduced immunogenicity of tumor antigens, and down-regulation

of the expression of genes related to antigen presentation. Second,

changes in the function of the body’s immune system, such as the

failure of the immune system to recognize low levels of tumor-

associated antigens in the early stage of tumorigenesis, the

suppression of cellular tolerance and function to tumor-associated

antigens caused by myeloid-derived suppressor cells (MDSC),

regulatory cells (Treg) and tumor-associated macrophages, and

the failure of specialized antigen-presenting cell function (3).

Immune cells are the cellular basis of immunotherapy, and in

some highly immune infiltrated tumors, tumor infiltrating

leukocytes (TILs) can reach more than 40% (4). Therefore,

understanding immune infiltration in TME is key to improving

response rates and developing new cancer immunotherapy

strategies. Immune cells are the cellular basis of immunotherapy,

and in some highly immune infiltrated tumors, tumor infiltrating

leukocytes (TILs) can reach more than 40% (4). Therefore,

understanding immune infiltration in TME is key to improving

response rates and developing new cancer immunotherapy

strategies. Although some tumours, such as glioblastoma, have

low immune cell infiltration and are referred to as “cold” tumors,

there are immunotherapeutic approaches aimed at increasing and

activating TILs in the TME of cold tumors to allow more effective

antitumor immunity (5).

Immunotherapy, which aims to boost the autoimmune system

to remove malignant cells, is a landmark breakthrough in cancer

treatment. Despite limited response rates, multiple cancer types

have shown sustained clinical responses to immunotherapy (6–8).

Several immunotherapies, including immune checkpoint inhibitors

(ICIs), cancer vaccine, adoptive cell transfer (ACT), oncolytic virus
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therapy (OVT), have achieved inspiring results, however, all these

treatments in the clinical practice have their own limitations.
Immune checkpoint inhibitors

Within the tumor, effector T cells have reduced cytokine

expression and effector capacity and are resistant to reactivation,

a state known as “T-cell exhaustion”. Exhausted T cells highly

express a variety of inhibitory surface molecules that effectively

prevent T cell activation (9), including cytotoxic T lymphocyte

antigen 4 (CTLA-4), programmed death 1 (PD-1), lymphocyte

activation gene-3 (LAG-3), and T cell immunoglobulin and ITIM

domain (TIGIT). These inhibitory surface molecules are defined as

immune checkpoints.

Immune checkpoint blockade (ICB), which targets regulatory

pathways in T cells by immune checkpoint inhibitors (ICIs) to

enhance anti-tumor immune responses, has shown improved

survival over conventional cancer therapy for various cancers and

provided a new weapon against tumors. Compared to previous

therapies which target to inherent properties of cancer cells, ICB

leads to more durable anticancer response via boosting anti-tumor

response of immune system (10). Currently various ICIs have been

approved by FDA (Table 1), such as ipilimumab and nivolumab.

Newly identified immune checkpoints would also be summarized in

this section.
CTLA-4

Cytotoxic T lymphocyte antigen 4 (CTLA-4) (CD152) and

CD28 are homologous receptors expressed on the surface of

CD4+ and CD8+ T cells that mediate opposite functions in T cell

activation. Recognition of TCR and peptide-MHC class I complexes

(pMHC-I) alone is not sufficient to fully activate T cells, activation

by co-stimulatory signals is also required, among which the

interaction of CD28 and its ligands B7-1 (CD80) and B7-2

(CD86) is most important. The intracellular domain of CD28

contains the YMNM motif and PYAP motif, which can bind to

adaptor proteins and several kinases. Some proteins bind to either

or both motifs though SH2 or SH3 domain interactions, thereby

stimulate IL2 transcription which is mediated by CD28-dependent

activation of nuclear factor of activated T cells (NFAT), activator

protein 1 (AP-1) and nuclear factor-kB (NF-kB) family

transcription factors (24). However, CTLA-4 has much higher

affinity and avidity for both CD80 and CD86, binds to CD80/86

and activates intracellular signals that ultimately cause IL-2

downregulation, apoptosis, and anergy (25). CTLA-4 is bivalent

homodimer while CD28 is monovalent homodimer, by the way,

CD80 is also homodimer while CD86 is monomer, and it has been

proved that CD80 may be a more efficient ligand for CTLA-4 based

on its bivalent nature (Figure 1), whereas CD86 mainly binds to

CD28 (26). CD28 is constitutively expressed at the plasma

membrane and presents the second signal, but CTLA-4 is

predominantly present in the intracellular vesicles of FoxP3+ Treg
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cells or activated T cells, which is due to the constitutive clathrin-

dependent endocytosis of CTLA-4 from the plasma membrane,

resulting in 90% of CTLA-4 being intracellular, but CTLA-4

trafficking is extremely rapid, with 80% of surface CTLA-4 being

internalized within 5 minutes (27). CTLA-4 also degrades CD80

and CD86 by “trans-endocytosis” (28), a mechanism first proposed

by Pamela J. Kooh in study of Delta and Notch interactions during

Drosophila development, is kind of phagocytosis of transmembrane

proteins dependent on receptor-ligand interactions, which may be

related to the C terminus of CTLA-4 (29). In this way, CTLA-4

could capture its ligands CD80/86, then CD80/86 are degraded by

cells inside cells expressing CTLA-4 (28). However, novel research

demonstrated that although CTLA-4 targets both CD80 and CD86

for degradation via trans-endocytosis, this process has different

consequences for CTLA-4 itself. In the presence of CD80, CTLA-4

remains bound to CD80, being ubiquitinated and trafficked through

late endosomes and lysosomes. In contrast, in the presence of CD86,

CTLA-4 detaches and recycles back to the cell surface in a PH-

dependent manner to allow further trans-endocytosis (30). Besides,

CTLA-4 may recruit PP2A, which could dephosphorylate the

activated CD28 amino/threonine phosphorylation site, leading to

its inactivation (31). These properties of CTLA-4 enable it play

negative immunoregulatory effects. In 1996, Leach, D. R. et al.

found that anti-CTLA-4 treatment could repress the growth of
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murine colon carcinoma and murine fibrosarcoma (32), and more

than a decade later anti-CTLA-4 monoclonal antibody ipilimumab

was used in phase II and phase III clinical study of advanced

melanoma in patients who had undergone previous treatment and

was proved to improve both overall survival(OS) and progression-

free survival (PFS) (11, 33), and ipilimumab was the first immune

checkpoint inhibitor approved by US Food and Drug

Administration (FDA) for advanced melanoma in 2011.

Nevertheless, it has been observed that dose-dependent immune-

related adverse events (IRAEs) occurred in ipilimumab treatment

(33). Furthermore, CD80 and CD86 are expressed on the surface of

antigen-presentation cells (APCs) like dendric cells and monocyte-

macrophages, while the non-hematologic tumor doesn’t express

CD80 or CD86, so blockade of CTLA-4 is thought to stimulate T

cell activation in the secondary lymphoid organs where naive T cells

are co-stimulated and differentiate into effector or memory T cell,

but not in the tumor microenvironment (24). Besides, CTLA-4 is

constitutively expressed on CD4+ Tregs, later work demonstrated

that the CTLA-4 antibody acted, at least partially, through Fcg
receptor (FcgR)-dependent depletion of tumor-infiltrating Treg

cells (34). Activated conventional T cells also express CTLA-4,

and there is additional evidence shows that respectively blockade of

CTLA-4 on either Treg or effector T cells with selective blocking

antibodies enhances the anti-tumor immune effect, suggesting that
TABLE 1 Summarized immune checkpoint inhibitors approved by FDA or under clinical trials.

Years
approved Target Drugs Features Indication Response data Original manu-

facturer Reference

2011 CTLA-4 Ipilimumab fully humanized IgG1k mAb Melanoma ORR 10.9% Bristol-Myers Squibb® (11)

2014 PD-1 Nivolumab fully humanized IgG4 mAb

Melanoma ORR 31.7%

Bristol-Myers Squibb®

(12)

NSCLC ORR 14.5% (13)

RCC ORR 25% (14)

classical
Hodgkin’s
lymphoma

ORR 69% (15)

2014 PD-1 Pembrolizumab fully humanized IgG4 mAb

Melanoma ORR 33.7%

MerckSharp&Dohme®

(16)

NSCLC ORR 58% (17)

RCC ORR 59.3% (18)

classical
Hodgkin’s
lymphoma

ORR 69% (19)

2016 PD-L1 Atezolizumab
FcgR binding-deficient, fully
humanized IgG1 mAb

NSCLC ORR 56%

Roche®

(20)

urothelial
carcinoma

ORR 23.5% (21)

breast cancer ORR 53% (22)

2022 LAG-3 Relatlimab fully humanized IgG4 mAb Melanoma
mPFS 10.1 months
(with Nivolumab)

Bristol-Myers Squibb® (6)

Not yet
approved

TIGIT Tiragolumab
fully humanized IgG1 mAb
with IgG1 backbone effect

NSCLC
mPFS 5.9 months
(with atezolizumab)

Roche® (23)

Not yet
approved

TIGIT Vibostolimab
fully humanized IgG1 mAb
with IgG1 backbone effec

NSCLC ORR 26% MerckSharp&Dohme® (7)
f

NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma; ORR, objective response rate, mPFS, median progression-free survival.
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both Treg and effector T cells are relevant targets of anti–CTLA-4

antibodies (35). Yofe, Ido et al. demonstrated that interactions

between anti-CTLA-4 antibodies and FcgR contribute to the

conversion of TME to a pro-inflammatory state by inducing Treg

cell depletion and myeloid cell reprogramming (36). Although the

mechanism of immunotherapy with anti-CTLA-4 monoclonal

antibody is not fully understood, the available data support the

importance of binding to FcgR.
As the first identified immune checkpoint, anti-CTLA-4

treatment indeed makes great progress in neoadjuvant

immunotherapy of cancer. However, there are still some treated

patients do not respond. With the increasing interest in

neoadjuvant (preclinical) immunotherapy, currently some

preclinical trials investigating the use of anti-CTLA-4 antibodies

in combination with other immune checkpoint inhibitors are in

progress to achieve a more potent therapeutic effect. Although the

clinical benefit of CTLA-4 blockade can be improved by

combination with PD-1 inhibition, IRAEs are still inevitable

which suboptimally limit the doses of anti-CTLA-4 mAb that can

be used (37). Dovedi, S. J., et al. designed a monovalent bispecific

antibody named MEDI5752 targeting PD-1 and CTLA-4.

MEDI5752 preferentially targets CTLA-4 on PD-1+CTLA-4+

double-positive CD4+ and CD8+ T cell. When compared with a

combination of mAbs targeting the PD-1 and CTLA-4 pathways,

MEDI5752 can enhance T-cell activity and can preferentially

accumulate in the TME in humanized mice, generating effective
Frontiers in Immunology 04
antitumor immune responses (38). Besides, it was also proved that,

compared with parental mAb, MEDI5752 induced a more rapid

time- and dose-dependent internalization and degradation of cell-

surface PD-1 in CHO PD-1+CTLA4+ (10:1) cells, perhaps on the

result of colocalization of CTLA-4 and PD-1 under MEDI5752

treatment, while parental mAbs resulted in no change in

colocalization (38).
PD-1/PD-L1

The second identified immune checkpoint is programmed

death 1 (PD-1, also known as PDCD1 or CD279) pathway.

Unlike the rapid regulation of CTLA-4, the regulation of PD-1

depends on transcriptional activation. PD-1 contains a

conventional immunoreceptor tyrosine inhibitory motif (ITIM)

and an immunoreceptor tyrosine switch motif (ITSM). PD-1’s

ITIM and ITSM bind the inhibitory phosphatase SHP-2 (SH2

domain-containing protein tyrosine phosphatase-2) (39). PD-1

engagement directly inhibits TCR-CD28 signaling such as ZAP70,

Ras-MAPK and PI3K signaling, as well as increases T cell migration

within tissues, thus restraining the time that a T cell has to recognize

the surface of interacting cells for the presence of cognate peptide-

MHC complexes (Figure 2) (39). Besides, PD-l includes

upregulation of basic leucine transcription factor, ATF-like

(BATF), a transcription factor in the AP-1 family to impair T cell
FIGURE 1

Structure and biological activities of CTLA-4. As homolog of CD28, CTLA-4 possesses the same structure and shares the same ligands B7, CD80
(B7-1) and CD86 (B7-2). CTLA-4 is a divalent dimer, which contains two binding sites, whereas CD28 is a monovalent (which contains a single
binding site) dimer. Although both belong to the B7 family, CD80 is a divalent dimer and CD86 is a monomer. CTLA-4 is predominantly present in
the intracellular vesicles of T cells, which is due to the constitutive clathrin-dependent endocytosis of CTLA-4 from the plasma membrane, resulting
in 90% of CTLA-4 being intracellular. Endocytosis of CTLA-4 is related to the dephosphorylation of its YVKM motif, once CTLA-4 is
dephosphorylation, clathrin adapter AP-2 binds to GVYVKM motif of CTLA-4, rapidly inducing internalization. In the TGN, newly synthesized CTLA-4
binds to the transmembrane adapter TRIM, which promotes the formation of CTLA-4-containing vesicles and their transport to the cell surface.
CTLA-4, Cytotoxic T-lymphocyte antigen 4; APC, antigen-presentation cell; TGN, trans-Golgi network; TRIM, TCR-interacting molecule; AP-2, m2
subunit of the clathrin adaptor protein complex.
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proliferation and cytokine secretion (31). Because its ligands PD-L1

(also known as CD274 or B7-H1) and PD-L2 (also known as CD273

or B7-CD) are mainly expressed on the surface of tumor cells and

tumor infiltrating leukocytes (TILs), it has been demonstrated that

tumor escaped from immune surveillance by expressing PD-L1/L2,

thereby suppressing TILs via PD-1/PD-L1,2 interactions, so anti-

PD-1 strategy is viewed as predominately play role in TME.

Normally, the naive T cells, effector T cells (Teff) and memory T

cells (TM) are defined as PD-1-CD8+, however, tumor infiltrating

CD8+T cells which undergo chronic antigen exposure and

stimulation of the TCR, would be dysfunctional due to its

exhausted state, called exhausted T cells (Tex). Chronic infection

with the clone 13 strain of LCMV is the gold standard experimental

model for studies of T cell dysfunction or exhaustion. In this model,

PD-1 expression was shown to correlate strongly with the severity

of infection (40). Bulk and single-cell RNA profiles of CD8+ TILs

revealed that combination of Tim-3 and PD-1 blockade expanded

the subset of PD-1-CD8+ T cells in the TME, and shift CD8+ T cells

from naive-like to Teff or TM, which promoted durable antitumor

immune responses and positively correlated with the prognosis of

tumor patients (41). The first anti-PD-1 inhibitor nivolumab (BMS-

936558 or MDX1106), a fully human IgG4 monoclonal antibody,

manufactured by Bristol-Myers Squibb, was approved by FDA in

2014, and proved that be effective in several cancers, like melanoma
Frontiers in Immunology 05
(42), advanced nonsquamous non-small-cell lung cancer (NSCLC)

(43), squamous NSCLC (44), advanced renal cancer carcinoma

(14), relapsed or refractory Hodgkin’s lymphoma (45) and so on.

Despite promising progress in anti-PD-1 therapy, most patients

didn’t show durable remission, and some cancers have been

completely insensitive to response with checkpoint blockade.

Combination with other immune checkpoint inhibitors is a

suitable approach. In the 4T1.2 breast cancer mouse model of

neoadjuvant immunotherapy, triple combination of anti-CTLA4

and anti-PD1and IL-2 cured almost twice as many mice as

compared with dual checkpoint inhibitor therapy (8).
LAG-3

Lymphocyte activation gene-3 (LAG-3), a human gene of the Ig

superfamily (IgSF), consisting of three regions: the intracellular,

transmembrane, and extracellular regions which contains four

immunoglobulin superfamily (IgSF) domains, D1, D2, D3, and

D4 (Figure 2), which include eight cysteine residues and 4 N-linked

glycosylation sites, is upregulated on activated CD4+ and CD8+ T

cells and a subset of natural killer (NK) cells. In addition to effector

CD4+ T cells, LAG-3 is also expressed on regulatory T cells (Treg).

LAG-3 is expressed on both activated natural Treg (nTreg)
FIGURE 2

Interactions between antigen presenting cell and T cell. The major histocompatibility complex-peptide (pMHC) complex on APC or tumor cell
recognizes and binds TCRs from T cells, while CD80/CD86 binds CD28 and fully activates TCR-CD28 signaling, promoting T cell activation,
proliferation, and triggering the expression of associated transcription factors such as nuclear factor of activated T cells (NF-AT), activator protein 1
(AP-1) and nuclear factor-kB (NF-kB). PD1 could bind with PD-L1 expressed by APC or tumor cell and cause dephosphorylation of Zap70 and Ras by
recruiting phosphatases, such as SHP2, to the tyrosine-based immunoreceptor switch motif (ITSM) in the intercellular domain of PD1, inducing
inhibition of the relevant pathway. Besides, PD1 increases the expression of transcription factors such as BATF (basic leucine zipper transcription
factor, ATF-like) to inhibit T cell function. LAG-3 contains four IgSF domains, each of which contains a glycosylation site. There’re several ligands of
LAG-3 like LSECtin expressed on the surface of APC or tumor cells, and FGL-1 secreted by tumor cells. FGL-1 binds to D1 and D2 domain of LAG-3
and LSECtin binds to D2 domain of LAG-3. TIGIT is composed of an extracellular Ig variable (IgV) domain, a type 1 transmembrane domain, and a
cytoplasmic tail with two inhibitory motifs: an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an Ig tail-tyrosine (ITT)-like motif. Binding
to its ligand phosphorylates the cytoplasmic tail of TIGIT which binds to cytosolic adaptor growth factor receptor-bound protein 2 (Grb2), recruiting
SH2-containing inositol phosphate-1 (SHIP-1) which inhibits PI3K and MAPK signaling cascades.
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and induced CD4+ FoxP3+ Treg (iTreg) to help Treg execute

immune inhibitory functions (46). The cytoplasmic tail of LAG3

consists of three conserved motifs: the first is a potential serine

phosphorylation site, however no function has been ascribed to this

motif thus far, the second is KIEELE motif which is a highly unique

and conserved six amino acid sequence and is proved to be essential

for interaction with downstream signaling molecules and further

inhibit T cell functions (47). The third is EP motif which is also

conserved and contains a glutamic acid and proline dipeptide repeat

and is also conserved. Iouzalen et al. reported that LAG-3-

associated protein (LAP) bound to the EP motif LAG-3 by using

yeast two-hybrid cloning experiment (48). However, the exactly

immune-inhibitory mechanism of KIEELE and EP motif has not

been elucidated. The sequence data and the chromosomal

localization revealed that LAG-3 is closely related to CD4 (49).

Indeed, LAG-3 is structurally like the CD4 co-receptor and binds to

pMHC-II with a higher affinity than CD4. LAG-3 impacts the

function of CD8+ T cells and NK cells, neither of which interact

with pMHC-II, suggesting that there might be alternate ligands for

LAG-3. Xu et al. found that LSECtin, a cell surface lectin of the DC-

SIGN family expressed in dendritic cell (DC) that inhibits T-cell

responses (50). LSECtin is expressed in many tumors as well as

normal liver. Although it has been proved that fibrinogen-like

protein 1 (FGL1), a liver-secreted protein, is a LAG-3 functional

ligand which binds to the extracellular D1 and D2 domain of LAG-3

independent from pMHC-II, exhibiting negative regulation of a T

cell activation (51), however, Maruhashi T et al. demonstrated that

binding of LAG-3 to stable pMHC-II but not to FGL-1 induced T

cell suppression. Consistently, LAG-3 mutants lacking FGL1-

binding capacity but not those lacking stable pMHC-II binding

capacity retained suppressive activity, suggesting that blocking of

pMHCII-LAG-3 interactions is a potential therapeutic target (52).

Up to 2021, the first-in-class human IgG4 LAG-3 blocking antibody

relatlimab (BMS-986016) was used in a phase 2-3 clinical trial in

combination with nivolumab in untreated advanced melanoma, it

showed that relatlimab–nivolumab dual checkpoint inhibition had

twice the median PFS and a 25% reduction in the risk of disease

progression or death compared to nivolumab alone (6). Besides, the

frequency of EMOE+CD8+ T cells in post-treatment samples was

higher in responding patients after relatlimab and nivolumab

treatment, achieving a 70% pathologic remission rate in patients

with resectable stage III or IV hypermetastatic melanoma with a

favorable safety profile (53). Nivolumab is a current standard

therapy for melanoma. These studies demonstrated the clinical

promise of relatlimab. In 2022, Bristol Myers Squibb developed a

fixed-dose combination immunotherapy (Nivolumab and

relatlimab-rmbw; Opdualag™) for the treatment of multiple types

of advanced cancer, which is the first FDA-approved LAG3

monoclonal antibody combination therapy, making LAG3 the

third immune checkpoint in clinical use after PD-1 and CTLA-4.
TIGIT

T cell immunoglobulin and ITIM domain (TIGIT), is a receptor

of the Ig superfamily, which plays a critical role in limiting adaptive
Frontiers in Immunology 06
and innate immunity. It is expressed on NK cells, Treg cells, effector

and memory T cells and is also known as Vstm3 (54), WUCAM

(55) and TIGIT (56). There are two ligands binding TIGIT: the

nectin family CD155 and CD112, which are expressed on APCs, T

cells, and a variety of non-hematopoietic tumor cells. Like CTLA-4,

TIGIT also has its positive counterpart CD226, which promotes

cytotoxicity and enhances anti-tumor responses, executing

immunostimulatory functions when binds to CD155 and CD112,

however, TIGIT has much higher affinity than CD226 (57). The

TIGIT IgV domain and CD155 D1 domain have a typical Ig b-
sandwich fold, and two TIGIT/CD155 dimer assemble into a

heterotetramer, which mediate cell adhesion and signaling (58).

Up to date, the majority of the anti-TIGIT clinical candidates for

anti-TIGIT are IgG1 isoforms known to interact with the high-

affinity Fcg receptors (Fcg R). Others are mutations in the Fc

structural domain of IgG1 that enhance or abolish the binding of

Fcg R or have IgG4 isotypes with a limited ability to interact with

Fcg R. Tiragolumab is a fully humanized IgG1 anti-TIGIT

monoclonal antibody with IgG1 backbone effect (59). In

tiragolumab plus atezolizumab (anti-PD-L1) treatment, median

PFS of NSCLC patients was higher (5.4 months versus 3.6

months) than placebo plus atezolizumab treatment (23).

However, 14 (21%) patients receiving tiragolumab plus

atezolizumab and 12 (18%) patients receiving placebo plus

atezolizumab had serious treatment-related adverse events

(TRAEs), among which two treatment-related deaths (of pyrexia

and infection) occurred in the tiragolumab plus atezolizumab

group. Vibostolimab is another humanized anti-TIGIT mAb with

an effector IgG1 backbone. In the first-in-human phase I study,

vibostolimab in combination with pembrolizumab therapy

improved objective response rate (ORR) (37.3% versus 20.6%)

and median PFS (5.6 versus 3.9 months) compared with

atezolizumab monotherapy with a tolerable safety profile (60).
CD47

The CD47-SIRPa (signal-regulatory protein-a) axis is the first
recognized phagocytosis checkpoint in innate immune cells. The

CD47 protein (also known as integrin-associated protein, IAP) is a

transmembrane protein expressed on both healthy and cancer cells,

transducing a ‘don’t eat me’ signal when it binds to the SIRPa
receptor expressed on myeloid cells to negatively regulate

phagocytos is . Binding of CD47 and SIRPa l eads to

phosphorylation of immunoreceptor tyrosine-based inhibition

motif (ITIM) on SIRPa and recruitment and activation of Src

homology phosphatases 1 (SHP-1) and 2 (SHP-2) (mainly SHP-1 in

macrophages), both of which inhibit accumulation of myosin-IIA at

the phagocytic synapse, and interrupt signaling from tyrosine

kinase-dependent receptors like the M-CSF receptor c-fms,

thereby inhibits phagocytosis of macrophages (61, 62), anti-body-

dependent cellular cytotoxicity (ADCC) mediated by NK cells (63),

and neutrophil-mediated killing of tumor cells (64).

Because of their determination of tumor cell phagocytosis,

antibodies that block the CD47-SIRPa axis show great

application prospects. However, both anti-CD47 and anti-SIRPa
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antibodies contain Fc segments, which could which lead to the

activation and engagement of FcR on macrophages, leading to

phagocytosis. This leads to a debate about CD47-SIRPa blocking

agents that whether blocking the interaction between SIRPa and

CD47 alone, independent of FcR activation, is sufficient to trigger

macrophage phagocytosis and tumor cell elimination (65).

Nevertheless, in response to anti-CD47 F(ab’)2 fragments

treatment, macrophages are much more efficient at engulfment of

haematopoietic tumor cells such as human B-cell tumor cell lines

Raji and Daudi, compared with non-haematopoietic tumor cells like

colon carcinoma cell lines Colo205, SW480, and SW620. Chen, J.,

et al. proved that phagocytosis of haematopoietic tumor cells during

SIRPa–CD47 blockade was strictly dependent on signaling

lymphocytic activation molecule (SLAM) family receptors in vitro

and in vivo (66), indicating that engagement of FcR was not needed

for phagocytosis of haematopoietic tumour cells such as Raji cells.

But it remains unclear which of the CD47-SIRPa blockers, such as

anti-CD47 antibodies, anti-SIRPa antibodies or soluble SIRPa
proteins, provides the greatest antitumor efficacy and the least

toxicity, and secondly, whether these agents should contain an Fc

fraction requires further study.

Although the discovery of ICI ushered in a new era of

immunotherapy, revealing the interactions between tumor cells

and immune cells in TME and leading to a deeper understanding

of the complex TME, there’re still many difficulties in clinical

practice: some patients are unresponsive to ICIs or ICIs-

refractory, possibly due to lack of infiltration of immune cells in

the TME, or low expression of immune checkpoints. The

assessment of TILs played a vital role. Assessment of TILs in

TME was first performed in colorectal cancer (CRC). By

observing the type, density and location of immune cells within

the TME, survival in CRC can be predicted more accurately than

with the traditional TNM system (67), leading to the development

and implementation of the immunoscore, a robust and consistent

standardized scoring system based on the quantification of two

lymphocyte populations (CD3 and CD8) at the tumor center and

invasive margin (68). By classifying cancers according to immune

infiltration, the system introduces the four proposed types of

tumour based on Immunoscore: hot, altered(excluded,

immunosuppressed) and cold. The “hot” tumor is defined as

highly T cell-infiltrated with immune score I4 while “cold” tumor

is defined as non-infiltrated with immune score I0. There’s the

tricky issue that cold tumor scarcely expresses PD-L1 and MHC-I,

which makes it immunologically ignorant and intractable and

hardly respond to ICI. Therefore, converting “cold” tumors into

“hot” tumors in response to ICIs is one of the hot topics in this field.

One of recommended approaches is combining therapies

enhancing T cell responses with the removal of co-inhibitory

signals and/or the supply of co-stimulatory signals to increase

functional T cells to response to ICI (69).

Although cancers can be classified as “cold” or “hot”

tumors based on the evaluation of TILs, however, due to the

heterogeneity of cancer and individual differences, different

patients with the same tumor exhibit widely varying response

rates to ICIs. Therefore, when selecting the most appropriate

therapeutic regimen, robust biomarkers need to be identified
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to determine which patients are suitable for treatment

with ICIs.
Cancer vaccine

The clinical application of ICIs has greatly facilitated cancer

treatment. However, there’re still limitations since tumor cells have

intrinsic anti-ICIs mechanism, besides, tumor cells have a high

degree of heterogeneity. Therefore, it is important to explore tumor-

specific antigens to provide more precise treatment approaches

while tumor vaccines can meet these needs. The world’s first

preventive tumor vaccine Gardasil for clinical use was approved

by the FDA in 2006, for the prevention of uterine cancer caused by

HPV16 and HPV18 infections (70). In 2010, PROVENGE

(sipuleucel-T), a DC vaccine, the world’s first therapeutic cancer

vaccine for clinical use, was approved by the FDA for treatment of

patients with advanced prostate cancer, especially those refractory

to hormone therapy (71). In fact, since the start of immunotherapy,

people have invested numerous passion and efforts in the research

of tumor vaccines. There are mainly three types of therapeutic

cancer vaccines: cell vaccines, peptide vaccines, and nucleic acid

vaccines (Figure 3). The role of tumor vaccines is mainly to increase

the infiltration of TILs in the TME or to increase the anti-tumor

activity of TILs. Although tumor vaccines seem very promising,

their ultimate clinical application is very limited.
Cancer cell vaccines

Cancer cell vaccines mainly contain two types: autologous

tumor cell-based vaccine and DC vaccine. An autologous tumor

cell-based vaccine is usually irradiated, CpG-activated tumor cells

from patient, reserving most C which activates T cells. In a phase III

study, infusion with autologous tumor cell–bacillus Calmette-

Guérin (BCG) vaccine after surgical resection in stage II and III

colon cancer patients didn’t show statistically significant differences

in clinical outcomes compared with the arm under surgical

resection alone, though there was a slight trend in PFS and OS

(72). The autologous tumor cell-based vaccine is also used in renal

cancer carcinoma (73, 74), head and neck squamous cell

carcinomas (75), B-cell chronic lymphocytic leukemia (76),

NSCLC (76), mantle cell lymphoma (77) and so on. In many

cases, the tumor cell vaccine is genetically modified to add more

functions such as cytokines production and expression of pro-

inflammatory molecules because irradiated tumor cells alone are

not sufficient to elicit vital anti-tumor immunity. For instance, by

transfection with pGEG.mIL-12 and pGEG.mIL-18 plasmids by

means of EBV/lipoplex, the engineered B16 melanoma vaccine

could secrete approximately 10 times higher level of related

cytokines than transfection with pG.mIL-12 and pG.mIL-18,

inducing IFN-g production and cytotoxic T lymphocyte (CTL)

and natural killer (NK) activation, in mice B16 melanoma model,

this engineered vaccine showed strong tumor suppression (78).

Among many cytokines, irradiated B16 melanoma tumor cells

expressing granulocyte-macrophage colony-stimulating factor
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(GM-CSF) could arouse potent, durable, and specific anti-tumor

immunity, activating both CD4+ and CD8+ cells. That was how

GVAX (GM-CSF transduced tumor cell vaccine) produced (79).

Despite its effective immune modulatory which has generated

research enthusiasm, its clinical effect is not satisfactory. A phase

II study showed that maintenance therapy with GVAX and

ipilimumab did not improve OS with continuous chemotherapy,

but instead resulted in lower survival values for metastatic

pancreatic ductal adenocarcinoma (80).

The other tumor cell vaccine is based on dendritic cells (DC).

DC have an important role in mediating innate immune responses

and inducing adaptive immune responses and have been recognized

as the most potent antigen presenting cells (APC), activating both

naive and memory immunity. One possible approach is to use DC

which present tumor neoantigens which are highly patients specific.

Sipuleucel-T is a therapeutic vaccine based on DC in advanced

prostate cancer. In this approach, autologous peripheral-blood

mononuclear cells (PBMC) are separated which are enriched DC,

incubating with a recombinant fusion protein (PA2024) consisting

of a prostate antigen, prostatic acid phosphatase, and GM-CSF. In

metastatic castration-resistant prostate cancer, there was a relative

reduction of 22% in the risk of death with a 4.1-month

improvement in median survival (25.8 months versus 21.7

months) in Sipuleucel-T treated group compared with placebo

group (71). DC-based cancer cell vaccines therefore show great

potential and application prospects and have been used to

melanoma (81), lung cancer (81),and other solid tumors,

testifying application of DC in tumor is safe and feasible.
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Cancer peptide vaccine

Tumor peptide vaccines mainly based on HLA-restricted

antigen epitope which could induce both CD4+ and CD8+

immune response against specific tumor-associated antigens

(TAA) or tumor-specific antigens (TSA) which highly expressed

in cancer cells and not in normal tissues (82). Compared with

lentivirus-transduced DC vaccines, peptide vaccines are simple

manufacturing and low cost with excellent safety profile.

However, the application of single peptide vaccine in clinic seems

disappointing. With a better understanding of tumors, it is

gradually recognized that tumors are not composed of a single

group of cancer cells but have a complex microenvironment

including normal tissues and cells as well as immune regulatory

network, besides, the immunoevasion of tumors which induces loss

of TAA or TSA might render a single peptide vaccine ineffective

(83). Moreover, even with the conjunction of adjuvants, the peptide

vaccine induced T cell response is far from the antitumor effect with

short duration.
Cancer nucleic acid vaccine

Current cancer nucleic acid vaccines are mainly DNA vaccines

and mRNA vaccines. mRNA-based vaccines are well tolerated,

easily degradable, and have the potential to induce both humoral

and cell-mediated immunity. mRNA-based vaccines are not

incorporated into the host genome thereby avoiding
FIGURE 3

Different cancer vaccine administration routes. DNA or RNA or peptides of screened tumor-associated antigens are injected into dendritic cells in
tumor-draining lymph nodes by various routes (intravenous, intramuscular or subcutaneous). DNA or RNA vaccines can be delivered directly
intratumorally, e.g., DNA vaccines can be electroporated directly at the injection site, and RNA vaccines can be delivered intravenously via
nanoparticles (e.g., liposomes), which contribute to the delivery of the vaccine to lymph node-resident dendritic cells (DCs). In addition, DNA and
RNA vaccines can also be delivered in vitro by presenting to patient-derived PBMC-isolated DC cells, which are then administered subcutaneously,
intramuscularly, intranodally, or intravenously into the patient. IM, intramuscular; pMHC-I, peptide-MHC class I complexes; PBMC, Peripheral blood
mononuclear cell.
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carcinogenicity. Dendritic cells (DC) are the target of choice for

mRNA vaccine strategies because they link intrinsic and adaptive

immune responses and are major regulators of cytotoxic and

humoral adaptive responses (84). Synthesized mRNA encoding

TAA or TSA is delivered via autologous engineered DC with

mRNA in vitro or via formulated or non-formulated (naked)

mRNA injections. After vaccination and cellular uptake by APC,

mRNA is transported to the cytoplasm for antigen processing and

into the presentation of MHC class I and MHC class II to activate

CD8+ and CD4+ T cells. Non-formulated (naked) mRNA vaccines

contain only mRNA dissolved in buffer, could be injected

administered either intradermally or intranodally. Intranodally

administration of non-formulated mRNA enables antigen delivery

to APC at the actual site of T-cell activation, thereby avoiding APC

migration. A phase I study used an individualized tumor mutation

signature with ten selected neoepitopes as target antigen to design

mRNA vaccine injected to inguinal lymph nodes under ultrasound

control in melanoma patients, all patients developed T-cell

responses against numerous vaccine-encoded neoepitopes (85).

Non-formulated mRNA vaccines are rarely used in clinic because

they are highly susceptible to degradation by RNases in the

environment. Therefore, many nanocarrier systems have been

developed for application in the production of formulated mRNA

vaccines such as protamine-formulated mRNA-based cancer

vaccines, mRNA-based lipoplex vaccines, mRNA-based lipid

nanoparticle vaccines (86).

Given the ubiquity of RNase and the structural differences

between DNA and mRNA, DNA vaccines have longer half-lives

than mRNA vaccines. Similarly, DNA vaccines are more heat-

stable, allowing for better subcellular sorting and transportation.

Because plasmid DNA is more stable than mRNA, there was a large

amount of research in the early years of DNA vaccine discovery. In

addition, DNA vaccines can be delivered by intratumoral

electroporation directly in situ in the tumor, thereby driving

sufficient antigen processing and presentation (87).

Current strategies for tumor vaccine development focus on the

on the following aspects, first, the screening appropriate and specific

tumor antigens and effective adjuvants, which may require

transcriptome sequencing and proteomics data. Since some

tumors are very low in antigenicity, sufficient sequencing depth is

required to screen for tumor mutation sites such as single-

nucleotide variants (SNVs) and nucleotide insertions or deletions

(indels) which result in single amino acid substitutions or aberrant

protein expression. Besides, how to product large-scale of nano-

vaccine with less economic cost and procedures remains to be

resolved. Despite great success made in the animal models, the

transformation from animal research to clinical trials still faces

many obstacles because of large individual heterogeneity of different

patients, as a result, optimal administration of tumor vaccine needs

to be explored. Therapeutic vaccines are usually inoculated

intravenously while preventive vaccines are usually given

subcutaneously and intramuscularly to induce a strong immune

response. To achieve a better therapeutic effect, the accessibility of

tumor site is also taken into consideration in the selection of the

vaccine delivery methods.
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Adoptive cell transfer

ACT isolates natural host T cells that exhibit anti-tumor

responsiveness and reinfuses T lymphocytes into patients with the

purpose of stimulation and expansion of antigen-specific T cell

immunity. Different from one of the significant limitations

associated with tumor-vaccine based strategy, ACT doesn’t

require de novo activate tumor antigen-specific T cell response.

Initial approaches to apply ACT involved leukapheresis of

PBMCs from patients followed by bulk ex vivo expansion and

reinfusion. CTL and NK cells are majorly exploited as tool cells for

the ACT, while DC cells and/or immune effector cells, or

combination of both also could be used in ACT. Generally, CTL

and NK cells are reinfused along with exogenous IL-2 and DCs are

often used as vaccine carriers or APCs to prime naive T cells to be

mature effect T cells in vitro or in vivo. Indeed, ACT does not

specifically enrich for antigen-specific T cells, but rather generates a

population of non-specific activated T cells which have lowered

triggering thresholds. However, comparative analyses revealed that

TCR that recognize self-tumor antigens have substantially lower

affinities (approximately 1.5 logs) for cognate pMHC complexes

compared to their virus-specific counterparts (88), indicating that

adopting transfer of autologous T cells may not be sufficient to

induce tumor cell death. Therefore, gene transfer-based strategies

have been developed to overcome the effects of immune tolerance

on tumor-specific T cells. These approaches use genetically

engineered host cells with antigen-specific T cell receptor a and b
chains (abTCR) or chimeric antigen receptors (CARs) composed of

antigen recognition and binding domains fused to T cell signaling

domains. Using these approaches, ACT has mediated significant

regression in a variety of cancer tissues, including melanoma,

cervical cancer, lymphoma, leukemia, cholangiocarcinoma, and

adult neuroblastoma.
CAR-T cell

In 2017 FDA approved CAR-T cell therapy for the treatment of

patients with relapsed or refractory B-acute lymphoblastic

leukemia. CAR-T cell therapy involves genetically engineered T

cells expressing antigen-specific, non-MHC restricted receptors that

can target and attack specific pathological cells and exert

therapeutic effects on patients. The structure of CAR is constantly

being updated and has now evolved to the fifth generation. The

first-generation CAR contains only an extracellular domain which

specifically recognizes antigen and an intracellular CD3z signaling

domain, and their anti-tumor effects are very limited due to the lack

of co-stimulatory signals. Second-generation CAR has added an

intracellular motif consisting of a co-stimulatory receptor signaling

domain to their structure. Even in the absence of exogenous co-

stimulatory molecules, second-generation CAR-T cells can

continue to proliferate and release cytokines to exert anti-tumor

effects. The third-generation CAR contains two co-stimulatory

molecules designed to further enhance the killing ability of CAR-

T cells. The fourth generation CAR inserts additional molecular
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components to express functional transgenic proteins, such as

interleukin genes or suicide genes, enhancing the killing ability

and safety of CAR-T cells. Currently, fifth-generation CAR uses an

adapter-specific recognition domain to replace the tumor-specific

scFv extracellular structural domain used in previous generations of

CAR-T cells, which binds to an adapter molecule that targets a

tumor-specific target, such as split, universal, and programmable

(SUPRA) CAR system (89) and biotin-binding immune receptor

(BBIR) CAR (90).

So far, CAR-T cell immunotherapy has made tremendous

progress for hematological malignancies such as acute

lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma

(DLBCL) and myeloma. The FDA has approved five CAR-T cells,

all five targeting B-cell surface markers, four targeting CD19, and one

targeting B-cell maturation antigen (BCMA). However, unlike

exciting results achieved by CAR-T in hematologic malignancies,

the efficacy of CAR-T in solid tumors has been unsatisfactory.

Despite the great success of CAR-T targeting CD19 in B-

lymphocytic malignancies, there is a lack of antigens targeted on

solid tumors. Therefore, target selection is one of the determinants to

CAR-T immunotherapy efficacy. For instance, overexpressed

proteins on the surface of cancer cells, like mesothelin (MSLN)

and epithelial cell adhesion molecule (EpCAM) are highly expressed

in a variety of cancers like breast cancers, prostate cancers, and

gastric carcinoma, suggesting that they might be good candidate as

targets of designed CAR-T cell. Nevertheless, though it is

theoretically possible to produce CAR-T cells by gene engineering

using mRNA electroporation, typically, transfected mRNA

transiently express CAR molecules and produce cytotoxicity up to

a week (91), resulting the short lifespan of CAR-T in vivo. Besides,

some intrinsic characteristics of tumors, such as aberrant

vasculature, dense extracellular matrix (ECM) include cancer-

associated fibroblast (CAF) and abnormally expressed adhesion

molecules, combine to result in inadequate trafficking and

infiltration of CAR-T within the tumor. Although some stroma-

targeting agents have been considered (92), however, these targets

may exist in their host as well. One of CAR-T targeting to CAF was

proved to recognize both mouse and human multipotent bone

marrow stromal cells (BMSCs) with lethal bone toxicity and

cachexia (93). Furthermore, immunosuppressive factors in the

TME also hinder the effects of CAR-T cells, like tumor-associated

macrophages (TAM), regulatory T (Treg) cells, myeloid-derived

suppressor cells (MDSCs) and tumor-associated fibroblasts (TAFs)

could directly inhibit CAR-T cells, and many cytokines like

transforming growth factor beta (TGF-b), IL-4, IL-10 could

promote infiltration of suppressive immune cells, thereby

indirectly inhibiting CAR-T. Moreover, when CAR-T cells are fully

activated, multiple cytokines would be released including IL-1, IL-2,

IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) a, the
induced cytokine release syndrome (CRS) is severe and even lethal

(94). Immune effector cell-associated neurotoxicity syndrome

(ICANS) is also observed in some patients under CAR-T therapy

(95). Although CAR-T cell activity could be supplemented with

inflammatory cytokines such as high dose IL-2, however, systemic

IL-2 treatment induces severe capillary leak syndrome and

eventually end-organ dysfunction. Allen, Greg M et al. engineered
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therapeutic T cells bearing synthetic cytokine circuits in which a

tumor-specific synthetic Notch (synNotch) receptor drives IL-2

production. In the immune-excluded tumor models like pancreatic

cancer and melanoma, engineered synNotch→IL-2 induction

circuits induced potent infiltration of chimeric antigen receptor

(CAR) or TCR T cells into TME, which provides a possibility of

treating solid tumors with CAR-T (96).
CAR-NK cell

Natural killer (NK) cells are specialized innate immune cells

and manifest rapid and potent cytotoxicity for cancer

immunotherapy without previous sensitization. NK cells are key

mediators of antibody-dependent cell-mediated cytotoxicity

(ADCC) recognizing the IgG Fc fraction bound to tumor cells

and kill cancer cells by expressing CD16. To avoid graft-versus-host

disease (GVHD), CAR-T therapy requires the use of autologous T

cells while CAR-NK could be manufactured with “off-the-shelf”

cells. Besides, NK cells have a different cytokines profile with T cells

which release inflammatory cytokine, leading to CRS, GVHD and

neurotoxicity. In a phase I/II trial, the HLA-mismatched anti-CD19

CAR-NK cells derived from cord blood were administered to 11

patients with relapsed or refractory CD19-positive cancers (non-

Hodgkin’s lymphoma or chronic lymphocytic leukemia), of the 11

patients treated, 8 (73%) responded. The injected CAR-NK cells

expand and persist at low levels for at least 12 months. Besides, the

dose of CAR-NK cells was not associated with CRS, GVHD,

neurotoxicity and release of cytokines (97). The design of CAR

was like CAR-T, consisting of an anti-CD19 scFv extracellular

domain, a CD28 transmembrane domain, and a CD28.CD3z
signaling intracellular domain, in combination with IL-15 gene

and the inducible caspase-9 suicide gene. This genetically modified

CAR-NK was transduced with a retroviral vector (inducible

caspase9/anti-CD19 CAR/IL-15), for the purpose of production of

IL-15 to support CAR-NK proliferation and survival, and

expression of caspase-9 that can be pharmacologically activated to

eliminate transduced cells (98). Human peripheral blood memory-

like (ML) NK cells which are modified to express anti-CD19 CAR

(19-CAR-ML) exhibited enhanced NK cell functional responses

(cytotoxicity, degranulation, and cytokine production) which were

CAR-antigen specific. Besides, in NSG (NOD-scid IL-2Rgnull) mice

inoculated IV with Raji cells, 19-CAR-ML NK cells were able to

effectively expand and persist, control tumor growth, and prolong

survival of tumor-bearing mice (99).

Although the advantages of CAR-NK cell therapy over CAR-T

cell therapy are clear, there are significant limitations. Almost all the

hurdles associated with CAR-T therapy also apply to CAR-NK cells,

from target selection, CAR design, manufacturing to post-infusion

challenges such as difficulties in migration to tumor sites, and

immunosuppressive TME. In addition, NK cells have a short half-

life, which is a double-edged sword, which means that CAR-NK is

advantageous in the event of severe toxicity, but also poses a

challenge in that repeated dosing may be required to achieve a

durable response. The reprogramming of CAR-NK cells with

memory cell properties and long-term survival in vivo for
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continuous immune surveillance and prevention of cancer

recurrence is currently an area of active exploration.
CAR-macrophage

Due to barriers to CAR-T and CAR-NK cell therapies, CAR-

macrophage (CAR-M) research has emerged as an alternative therapy.

Unlike CAR-T, CAR-M have high trafficking and infiltration within

solid tumors while T cells are physically excluded or inactivated

(Table 2). Tumor-associated macrophages (TAMs) derive from

circulating monocytic precursors, infiltrating macrophages in tumor

tissue are driven by tumor-derived cytokines (e.g. IL-10, TGF-b) and T
cell-derived cytokines (e.g. IL-4, IL-13) and acquire a polarized M2

phenotype (100). TAMs assist in tumor growth, cancer

immunosuppression, and angiogenesis. High infiltration rate of

TAMs usually associated with poor prognosis in solid tumor, and

TAMs interact with almost all cellular components of the TME

(including cancer cells, immune cells and other resident non-

immune cells), therefore, development of CAR-M has great promise.

Most CAR-M only engulf fragments of target cells, a phenomenon

resembling trogocytosis while the whole cell engulfment is infrequent.

There have been studies confirming that blockade of the ‘don’t-eat-me’

signal CD47 (101) or CAR containing designed intercellular domain,

like derived from FcRg, multiple EGF-like-domains protein 10

(Megf10), and the CD19 cytoplasmic domain that recruits the p85

subunit of phosphoinositide-3 kinase (PI3K) (102) could enhance

macrophage phagocytic capacity.

Like CAR-T, the core components of CAR-M contain an

extracellular structural domain that provides specific recognition

through single-chain variable regions (scFv), a hinge structural

domain, a transmembrane structural domain (mainly CD8), and

an intracellular structural domain that provides dedicated

downstream signaling which is usually associated with activation

and enhancement of the phagocytic effect. Current studies on

extracellular signaling domains have identified several common

tumor targets, such as CD19 and HER2. The design of intracellular

signaling domains of CAR-M are quite diverse, and alternative

domains have been explored by several groups. By screening a panel

of engulfment receptor intracellular domains, Morrissey, M. A.,
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et al. engineered a kind of CAR for phagocytosis containing Megf10,

FcRg, adhesion G protein-coupled receptor B1 (Bai1) and tyrosine-

protein kinase Mer (MerTK) which direct macrophages to engulf

specific antigen (103). To breakdown the ‘physical barrier’ of the

tumor ECM, Zhang, W., et al. designed CAR-M contains CD147

which is essential for ECM remodeling by expressing MMPs (104).

TAM is known to be the polarized anti-inflammatory M2

phenotype which is considered to promote tissue remodeling and

tumor growth, consequently leads to its immunosuppressive

function. Zhang, L., et al. used non-integrating episomal vectors

encoding reprograming factors to induce pluripotent stem cells and

introduced CAR into single induced pluripotent stem cells (iPSC)

clones via lentiviral transduction to obtain CAR-iPSC and then

established a protocol for myeloid/macrophage differentiation to

induce differentiation of CAR-iPSCs to myeloid cells to obtain

CAR-expressing iPSC-induced macrophage (CAR-iMac). In this

research, CAR-iMac also possessed M2 phenotype, however, in

NSG mice, when CAR-iMac cells were treated with IFN-g to

polarize toward pro-inflammatory M1 phenotype before injection,

CAR-iMac-treated mice showed reduced tumor burden compared

to controls (105). Klichinsky, M., et al. found that CAR-M induced

pro-inflammatory pathways such as IFN signaling, TH1 pathway

and iNOS signaling in M2 macrophages, expressing qe1pro-

inflammatory cytokines and chemokines that phenotypically

convert M2 macrophages to M1, while inducing activation and

maturation markers in immature DCs to upregulate antigen

presentation mechanisms and recruit both resting and activated T

cells to resist immunosuppressive cytokines (106).

Despite the significant advantages of CAR-M over CAR-T, its

application in the clinic remains limited. First, macrophages which are

highly differentiated cells, do not have a proliferative potential either in

vitro or after injection in vivo. Besides, the complex TME should also be

considered when applying CAR-M therapy. Due to the heterogeneity

of tumor cells, the selection of targets of CAR-Mwould be also difficult.

In general, CAR-T therapy has made tremendous progress in

hematological malignancies while CAR-T therapy in solid tumors

has unsatisfactory effect due to lack of cancer-specific antigen, low

cell trafficking of CAR-T in TME and migration into tumor sites,

immunosuppressive TME among others. Besides, on account of the

strict MHC restriction and strong ability to release cytokines, CAR-
TABLE 2 Comparations of CAR- T cells, CAR-NK cells and CAR-macrophages.

CAR-T CELLS CAR-NK CELLS CAR-MACROPHAGES

Structure of
CAR

An adapter-specific recognition extracellular domain, a
transmembrane domain and an intracellular domain
CD3z with an intracellular co-stimulatory motif

A scFv extracellular domain, a
CD28 transmembrane domain and
an intracellular domain CD3z

A scFv extracellular domain, a CD8 transmembrane
domain and an intracellular domain like FcRg,
Megf10 and CD19 cytoplasmic domain

Origin
source

Autologous T cells or MHC-matched allogeneic Autologous NK cells, non-MHC-
matched allogeneic or NK cell lines
(off-the-shelf)

Autologous macrophages. Or iPSCs and cell lines
(Theoretically off-the-shelf, but only in preclinical
studies, no clinical data available)

Anti-tumor
mechanisms

CAR-dependent CTL effect CAR-dependent ADCC effect CAR-dependent phagocytosis of macrophages;
differentiation of macrophages into a pro-
inflammatory M1-like phenotype.

CRS and
ICANS

Common and severe Less common but also severe No clinical data available

Reference (90, 94) (97, 98) (103, 104)
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T therapy probably induces severe GVHD, CRS and ICANS.

However, different cytokines profile and limited life span make

CAR-NK a diminished risk for inducing GVHD, CRS and ICANS,

and non-MHC restriction allows generation of off-the-shelf

allogeneic CAR-NK cells using NK cell lines. Macrophages are

the major infiltrated cells and mainly immune regulators in TME.

Even TAM are immunosuppressive M2 phenotype, they also

possess strong phagocytic activity, indicting a strong potential for

engineered CAR-macrophage. There has been CAR-macrophages

explored as an alternative approach for the ACT. Future CAR

macrophage therapy still needs to overcome some other obstacles

encountered with CAR T therapy. Since TAM is also significant

immune regulator, one major research direction is to develop CAR-

macrophage not only as a phagocytic executor but an antigen

presenter and immune stimulator to promote anticancer

immunity. But at present only preclinical data is available.
Oncolytic virus therapy

Oncolytic viruses (OVs) are replication-specific viruses that

directly infect and lyse tumor cells in situ. OVs can enter both

normal and cancer cells, but the inherent abnormalities in the

cancer cell provide a selective advantage for viral replication,

allowing replication within tumor cells and direct lysis of tumor

cells, promoting tumor antigen presentation to induce systemic anti-

tumor immunity. Since virus recognition and clearance mechanisms

such as IFN release, Toll-like receptors (TLRs) signaling, and PKR-

related pathways exist in normal cells, these pathways may be

abnormal in tumor cells. Following infection with OV, tumor cells

release antiviral cytokines (e.g. IFN) to initiate an antiviral response.

After tumor cell lysis, viral progeny, tumor-associated antigens (TAA)

including neoantigens, are released. Antiviral cytokines promote

maturation of antigen-presenting cells (APCs), and viral progeny

infect more tumor cells. TAA and neoantigens are taken up by APC

and activate antigen/virus-specific CD8+ T cell responses, thus

creating an immune-stimulating environment (Figure 4). Both the

changes in type of cell death and danger signals released by virus-

infected cells can largely aid in the induction of host immune

responses. For example, necrosis or pyroptosis is a more

immunogenic form of cell death than apoptosis (107). Up to date,

four OVs have been approved to treat various cancers: Rigvir, T-VEC

(IMLYGIC), ONYX-015 (dl1520), and H101.

Rigvir is an unmodified virus belonging to the Picornaviridae

family, Enterovirus genus, ECHO group, type 7, as the first OV, it

was approved in Latvia in 2004 for local treatment of skin and

subcutaneous metastases of melanoma for prevention of relapse and

metastasis after radical surgery (108). Clinical studies also intend to

identify markers and expand the range of indications of Rigvir since

it has less severe adverse events. One of the latest Trends in the field

of oncology treatment is combination therapy, thus adding a

potential therapeutic mode for the application of Rigvir, such as

testing the effects of combining anti-PD-1 antibodies with Rigvir

(109). T-VEC is a genetically modified type 1 herpes simplex virus

(HSV-1) which is the first approved oncolytic virus for the

treatment of advanced melanoma by the US FDA (110) and
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remains the most widely approved therapy up to date. Deletion of

the herpes neurovirulence virus gene and deletion of the viral ICP47

gene resulted in reduced virulence and increased immunogenicity

of T-VEC, while T-VEC can encode GM-CSF to stimulate the host

immune system (110). In a phase III clinical trial, the T-VEC arm

had significantly higher durable response rate (16.3%; 95% CI,

12.1% to 20.5% versus 2.1%; 95% CI, 0% to 4.5%) and OS (26.4%;

95% CI, 21.4% to 31.5% versus 5.7%; 95% CI, 1.9% to 9.5%)

compared to GM-CSF arm (111).

Restoration of wild-type p53 function in tumors with an

exogenous vector (in most cases an adenoviral vector) is a kind of

gene replacement therapies that has been shown to inhibit tumor

growth. An advantage of the adenovirus delivery system is that it

does not result in integration of the vector DNA into the host cells.

ONYX-015 is an adenovirus lacking a 55 kDa protein from the E1B

region and was first designed to activate p53 function as E1B could

bind and inactive p53 (112). ONYX-015 is currently the most

prominent and clinically evaluated p53-expressing conditionally

replicating adenovirus vectors (CRAdp53) which can only

proliferate effectively in p53 mutant tumor cells but not p53 wild-

type cells. Although there’s some evidence of antitumor activity for

ONYX-015, the clinical effect of it has varied greatly, and there are

still many patients responding poorly (113). H101 is also an

E1b55K-deleted adenovirus with an additional deletion of 78.3–

85.8 mm gene segment in the E3 region. Chinese government

regulators (SFDA) approved H101 especially for advanced

nasopharyngeal carcinoma in combination with cisplatin and 5-

FU chemotherapy in 2005 (114).

Given the tolerable safety profile of OVs, they are interesting

agents to use in combination approaches. With the ability of viral

infection to induce IFN secretion, promoting cell necrosis and the

release of damage-associated molecular patterns (DAMPs), OVs are

attractive as combination agents with other forms of tumor

immunotherapy. As mentioned earlier, tumors can be classified

into “cold” and “hot” tumors according to the immune infiltration

within the tumor, in which “hot” tumors are much more responsive

to ICIs. Given the characteristic expression profile of IFNs in

tumors might induced by OVs, it is suggested that OVs may

serve as an inducer of tumors to become “hot”. OV infection

enhances the infiltration and activity of both innate and adaptive

immune cells within the TME (Figure 4). To date, the most studies

are still focused on the combination of OVs and ICIs.

As other immunotherapies, OVs also have some limitations.

First, there is a potential for host to produce neutralizing

antibodies, besides, in the hypoxia tumor core, tumor cells would

form nearby necrosis or calcification in response to hypoxia or

acidosis, which might limit the efficacy of OVs. Differently from

most other anticancer therapeutics, OVs are live replicating virus

which include unique challenge. Furthermore, although OVs could

rapidly kill and lyse tumor cells in situ and expose internal antigens,

too fast lysis of cells may be detrimental to viral expansion, as cells are

lysed before an optimal quantity of daughter viruses being replicated.

Besides, OVs are administered to patients intratumorally, rendering

many of the traditional methods for establishing clinical trial

eligibility endpoints, pharmacokinetics, and dosing inappropriate

for the evaluation of OVs.
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Discussions and perspectives

With the emerging field of synthetic immunology and the

progressive understanding of TME, the application of

immunotherapy in the field of tumor treatment has been

flourishing and gradually becoming a new approach to transform

tumor treatment. Several immune checkpoint inhibitors have been

approved to apply into clinical treatment and have satisfactory

outcome, but some tumor patients do not respond to ICIs because

of low expression of immune checkpoints and tumor cell intrinsic

resistance. Tumor vaccines targeting specific tumor-associated

antigens (TAA) or tumor-specific antigens (TSA) have made

some progress in preventing or treating kind of tumors like

Gardasil for uterine cancer and sipuleucel-T for advanced

prostate cancer. However, most tumors have low antigenicity and

no suitable TSA or TAA could be selected to design vaccines.

Besides, manufacturing nanocarriers of tumor vaccine needs

complex procedures and expensive materials which make this

approach time-consuming and economy-costing. What’s more,

due to the different immune systems among different individuals,

it’s difficult to transform animal vaccine research to human trials.

Adoptive cell transfer using genetically modified T cells recognizing

specific pMHC complexes has significantly improved the ability of

T cells killing malignant hematopoietic tumor cells, but induced

graft-versus-host disease (GVHD) and cytokine release syndrome

(CRS) is severe and sometimes even lethal. Under these

circumstances, MHC-free restricted NK cells and macrophages

were also transgenically modified. Under these circumstances,
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non-MHC restricted NK cells and macrophages were also

genetically modified, demonstrating lower side effects, but still

lacking sufficient available clinical data. Oncolytic virus

immunotherapy utilizes native or genetically modified viruses that

has selective replication advantages within tumor cells. The ability

of viruses to direct kill cancer cells has been recognized for nearly a

century, but only over the past decade have clinical trials

authenticated a therapeutic benefit of oncolytic virus in patients

with cancer, which made oncolytic virus therapy a new class of

immunotherapy. Melanoma patients treated with T-VEC showed

significantly improved durable responses (111), which has

revolutionized the field of OVs anti-cancer therapy.

Although the efficacy of ICIs in many cancers is encouraging,

there are still some difficulties. First, ICIs are effective only in highly

immune infiltrated cancers, but not in “cold” tumors with little

immune cells infiltration, such as pancreatic ductal adenocarcinoma

(PDAC). Second, due to cancer heterogeneity and individual patient

differences, the response to ICIs varies among patients with the

same cancer, and some patients still show no response. Therefore,

for “cold” tumors refractory to ICIs, cancer vaccines or oncolytic

virus in combination with ICIs could be considered in clinical trials,

aiming to improve TSA or TAA exposure and immune cell

infiltration in “cold” tumors and further enhance the immune

system’s attack on the tumor system. In view of heterogeneity of

tumor cells and complexity of TME, individualized or personalized

therapy might be alternative approach. For some patients who do

not respond to ICIs, further clinical identification of reliable

biomarkers is needed to help determine which patients are
FIGURE 4

Selective replication of oncolytic virus (OVs) in tumor cells. OVs can specifically infect tumor cells and replicate in tumor cells until the tumor cells
lyse and release nascent virus to infect neighboring tumor cells. In normal cells, OVs replicate at low or no levels due to antiviral signaling and other
mechanisms. Following infection with OV, tumor cells release antiviral cytokines to initiate an antiviral response.
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suitable for treatment with ICIs. Finally, although some patients

with high expression of immune checkpoints, such as PD-L1, did

not have an elevated ORR after ICIs (115), suggesting that there

may be some protein modifications that make this group of patients

unresponsive to ICIs but included in the population suitable

for ICIs.

Cancer vaccines have shown great promise for cancer

immunotherapy in preclinical studies because of their ability to

provide precision treatment for individuals. However, some

limitations need to be urgently considered. In terms of

mechanistic studies, vaccine inventions aim at activating immune

response mechanisms, so the screening of new antigens is crucial

and cancer vaccines that mimic the characteristics of autologous

pathogens are needed to target tumor cells for precise and

individualized treatment. With the booming development of

bioinformatics, genomic informatics, transcriptome sequencing

technologies and proteomics can be used to find suitable antigens.

Also, suitable vectors can be developed for cancer vaccine delivery.

Regarding clinical translation, there is a lack of suitable animal

models to study the role of cancer vaccines in humans, particularly

the balance between immune defense and systemic hyperactivation

after vaccination.

Despite the great progress of CAR-T therapy in hematopoietic

malignancies, the efficacy of CAR - T for solid tumors is poor: the

lack of tumor-associated antigens, immunosuppressive TME and

other problems lead to solid tumors not responding to CAR-T

therapy. The development of CAR-macrophages is currently

underway to improve suppressive TME, and the development of

novel delivery modalities to improve the efficiency of CAR-T, CAR-

NK, and CAR-macrophages transport and migration to target cells

in vivo is of high clinical relevance.

Discovery of oncolytic virus anti-tumor mechanism provides

new viable options for tumor therapy. The discovery of the anti-

tumor mechanism of lysovirus provides a new viable option for

tumor treatment. However, the anti-tumor mechanisms of OVs

have not been fully elucidated, and secondly, the short half-life of

OVs and the limited viral replication and dissemination in TME

limit the efficacy of OVs. Considering the low efficacy of OVs

monotherapy and the safety of systemic therapy, OVs are usually
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used in combination with ICIs, chemotherapy drugs or other

therapeutic regimens.
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