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in the context of Epstein-Barr
virus infection
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Compelling evidence indicates that Epstein Barr virus (EBV) infection is a

prerequisite for multiple sclerosis (MS). The disease may arise from a complex

interplay between latent EBV infection, genetic predisposition, and various

environmental and lifestyle factors that negatively affect immune control of the

infection. Evidence of gene-environment interactions and epigenetic

modifications triggered by environmental factors in genetically susceptible

individuals supports this view. This review gives a short introduction to EBV

and host immunity and discusses evidence indicating EBV as a prerequisite for

MS. The role of genetic and environmental risk factors, and their interactions, in

MS pathogenesis is reviewed and put in the context of EBV infection. Finally,

possible preventive measures are discussed based on the findings presented.
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Introduction

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the

central nervous system (CNS), with both genetic and environmental factors contributing to

its development. While significant progress has been made in identifying genetic risk

factors for MS, these genetic variants explain only a proportion of the heritability, which is

estimated to be around 50% (1). This missing heritability phenomenon may partly be

explained by the influence of multiple genetic variants on the risk of the disease, each with a

small or modest effect, making it challenging to identify them. Epigenetic modifications,

which can influence gene expression without altering the DNA sequence, may also play a

role (2, 3). Furthermore, environmental factors implicated in the disease may interact with

genetic and other environmental exposures or lifestyle habits to increase the risk of the

disease (4). Thus, the complex interplay between multiple genetic variants, epigenetic

modifications, and environmental factors may contribute to explain the missing heritability

in MS. Compelling evidence suggests that infection with Epstein-Barr virus (EBV), a

gamma-herpes virus that infects more than 90% of the population, is a prerequisite for

developing MS. Several aspects of EBV infection, such as high EBV-specific antibodies and

infectious mononucleosis (IM), have consistently been associated with increased MS risk
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(5, 6). Nearly all patients with MS are EBV-seropositive, whereas the

risk of the disease in seronegative individuals is extremely low (7).

In a seronegative group of young adults in the US military, the risk

of MS increased by 32-fold following infection with EBV, strongly

indicating a causal link (8). However, since most EBV seropositive

individuals will never develop MS, inadequate control of the virus

may be another prerequisite for the disease to occur. Several

environmental and lifestyle factors have been implicated in MS

such as vitamin D, smoking, and obesity (4). According to the

sufficient cause model by Rothman, a disease occurs when multiple

risk factors act together and reach a threshold level of causality,

which then trigger the disease process (9). The model is a useful

framework for studying complex diseases as it emphasizes the

importance of multiple risk factors interacting to cause disease

and can help to identify high-risk populations and guide the

development of targeted interventions and preventive strategies.

This review gives a short introduction to EBV and host immunity

and discusses evidence indicating that EBV is a prerequisite for MS.

The role of genetic and environmental risk factors, and their

interactions, in the development of MS are reviewed and put in

the context of EBV infection. Finally, possible preventive measures

are discussed based on the findings presented.
Epstein-Barr virus – background

EBV lytically infects epithelial cells and B lymphocytes. The

virus has a double-stranded DNA genome enclosed by an

icosahedral capsid, a tegument layer, and an outer lipid envelope

containing the viral attachment and entry proteins. Infection of B

lymphocytes involves the attachment of the viral envelope

glycoprotein gp350/220 to the complement receptor CD21 on B

lymphocytes, followed by the interaction of viral gp42 with MCH

class II molecules (10). This interaction leads to fusion of the viral

envelope with the cellular membrane, allowing the viral capsid to

enter the cell. Once inside the cell, the nucleocapsid is transported

to the nucleus where viral DNA is released and begins to replicate.

Following primary infection, EBV persists latently throughout life,

mainly in memory B lymphocytes (11). During latency, the virus

enters a state of limited gene expression which enables it to evade

host immune surveillance (12). A balance is typically established

between viral persistence and immune control, although

reactivation of the virus occurs periodically, usually without

symptoms (13).
Immune response to EBV

Primary EBV infection is usually asymptomatic in childhood.

Subsets of natural killer (NK) cells become activated within one or

two days as a first-line defense, playing a crucial role in limiting viral

spread. EBV-specific CD8+ T cells are responsible for eliminating

proliferating and lytically infected B cells while EBV-specific

antibodies neutralize viral infectivity by binding to free virus (14,

15). During latency, the number of infected memory B cells varies

between individuals but remains rather stable throughout life,
Frontiers in Immunology 02
reflecting a dynamic equilibrium between viral persistence and

EBV-specific immune responses. Healthy EBV carriers typically

show IgG-antibody titers against the viral capsid (VCA) and

Epstein-Barr virus nuclear antigens (EBNAs) (16).

When primary EBV infection is delayed beyond childhood, it

often manifests as acute IM, indicative of a reduced capacity of the

CD8+ T cell response to rapidly control the infection (17). The

symptoms of IM are caused by an exaggerated cellular immune

response to EBV, which may be influenced by host genetics (18, 19)

and an age-related impaired CD8+ T cell function (20–22).

Furthermore, early NK cell-mediated control over primary EBV

infection decreases during the first decade of life which may

contribute to the development of an exaggerated CD8+ T cell

response when the infection is acquired at an older age (23, 24).

In IM, the number of latently infected memory B cells can rise to

half of the peripheral memory B cell compartment. Latent infection is

only achieved after a massive expansion of CD8+ T cells that target

EBV proteins from the early stages of the lytic cycle. The CD8+ T cell

expansion coincides with the onset of symptoms. In addition, cytotoxic

CD4+ T cell populations are also amplified and contribute to the

symptoms of acute IM by massive cytokine production (17). Although

the total number of CD8+ T cells is not significantly raised in children

with asymptomatic primary EBV infection, EBV-specific CD8+ T cells

are highly activated and can control the infection without causing

excessive expansion (14, 15), confirming that cytotoxic lymphocytes

are the cornerstone of EBV-specific immune control, and that IM is an

immunopathologic condition.
Epstein-Barr virus as a necessary
factor in MS

EBV has a profound influence on the immune system, and

recent studies have suggested a causal role of EBV in MS. There is

consistent evidence that EBV infection precedes MS onset. EBV-

specific antibodies are present in nearly all patients with MS

whereas the risk of MS in seronegative individuals is extremely

small (7). In a seronegative group of young adults in the US

military, the risk of MS increased 32-fold after infection with

EBV. The study also demonstrated that serum levels of

neurofilament light chain, a biomarker that reflects neuroaxonal

damage, increased shortly after seroconversion (8). These findings

indicate that EBV is a necessary, but not sufficient, factor in

MS development.

Presence of EBV in latency has been found to be considerably

more prevalent in MS brain tissue than in non-MS brain, and lytic

EBV infection has been detected in chronic MS lesions (25, 26) and

in meningeal B cell follicles (27, 28). Apart from infected B

lymphocytes, EBV has also been detected in astrocytes and

microglia in some MS cases with widespread presence of EBV in

brain tissue (26). However, other studies have been unable to detect

EBV in MS brain tissue and therefore, the issue of the presence of

EBV in MS brain tissue remains unresolved (29–31).

Generally, patients with MS have higher levels of EBV-specific

antibodies than control populations (32), which suggests that the

control of latent EBV infection may be compromised in these
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individuals. Several studies have observed a significant increase in

EBNA-1 antibody titers many years prior to the clinical onset of MS

(33–35). Moreover, the risk of MS increases with increasing EBNA-

1 antibody levels (36). Under normal circumstances, the immune

system effectively controls EBV infection, leading to a state of viral

latency where the virus remains dormant in B cells. However, an

increase in the levels of EBNA-1 antibodies implies that the overall

immune response may be insufficient to effectively control the virus,

resulting in persistent or reactivated infection. The presence of

disease-associated oligoclonal Ig-bands in the cerebrospinal fluid

(CSF) is a well-established characteristic of MS, indicative of local

antibody production within the CNS. In a subset of patients, EBV-

specific antibody synthesis occurs within the CNS. However, it is

generally observed that the frequency of EBV-specific antibodies in

the CSF is lower compared to other viral infections in MS (37),

which may be attributed to differences in localization of antibody

production, viral tropism, or temporal dynamics of antibody

response. EBV-specific CD8+ T cells present in the CNS of MS

patients provide further evidence that EBV-infected cells are

present in the brain (38, 39). Furthermore, a higher frequency of

CD4+ T cells primarily targeting EBNA has been observed in MS

patients (40, 41), where a subset of the T cells cross-reacted with

CNS-antigens (41). In this context, it is conceivable that the elevated

levels of EBNA-1 antibodies reflect a breakdown in immune

tolerance, where the immune system fails to distinguish between

viral and CNS-antigens. The presence of high levels of EBNA-1

antibodies in MS patients could thus be attributed to various factors,

including the complex interplay between EBV infection, immune

dysregulation, and potential cross-reactivity with CNS antigens.

Further research is needed to elucidate the precise mechanisms

underlying these observations and their implications in the

pathogenesis of MS.

Several hypotheses have been put forward to explain the role of

EBV in MS (42, 43), but the pathogenic mechanisms remain

uncertain. During primary EBV infection, there is a high

frequency of EBV-infected B lymphocytes. An impaired immune

response to the virus may increase the viral load whereby circulating

EBV-infected B cells may enter the CNS and initiate proliferation.

Failure to eradicate the infection could lead to viral antigens

stimulating an anti-EBV immune response with maintenance of

local inflammation, intrathecal immunoglobulin synthesis and

oligoclonal bands. If EBV-specific CD8+ and CD4+ T cells

migrate into the CNS and become reactivated by EBV-infected B

lymphocytes, the resulting immune response would lead to

bystander damage and the release of CNS-antigens, which could

subsequently result in a CNS-directed immune response.

Alternatively, EBV-transformed B lymphocytes could activate

EBV-specific T cells cross-reactive with CNS antigens. However,

the exact mechanisms by which EBV increases the risk of MS are yet

to be determined.
Infectious mononucleosis

The risk of MS is increased more than two-fold following IM (5,

6), suggestive of an inadequate cytotoxic CD8+ T cell control of the
Frontiers in Immunology 03
infection. Several studies have observed impaired EBV-specific CD8

T cell responses in patients with MS (44, 45). Furthermore, CD8+ T

cells specific for lytic EBV antigens increase during the active phase

of MS whereas CD8+ T cells against latent antigens dominate

during inactive disease (46). During primary EBV infection, there

is a high frequency of EBV-infected B lymphocytes. An impaired

immune response to the virus may, apart from increasing the risk of

IM, increase the viral load whereby circulating EBV-infected B cells

may enter the CNS and initiate proliferation.

Past IM does not correlate with EBNA-1 antibody levels (36, 47)

and both aspects of EBV infection appear to be separate risk factors

for MS. A synergistic effect between past IM and high EBNA-1

antibody levels has been observed, which indicates that they are

involved in at least one common biological pathway to disease (36).

Both past IM and high EBNA-1 antibody levels may thus reflect a

deficient control of the EBV infection, for which cell-mediated

immune responses play a pivotal role. Since most seropositive

individuals will never develop MS, inadequate control of the virus

may thus be another prerequisite for developing the disease.
Risk factors for MS onset in the
context of EBV

The high prevalence of EBV seropositivity in the general

population and the low incidence of MS indicates that a potential

pathogenic effect of the virus is influenced by other risk factors for

the disease. According to the sufficient cause model by Rothman

(9), the development of a disease is the result of a sufficient cause

which is a set of conditions or events that act together to produce

the disease. A necessary cause is a factor that must be present for the

disease to occur, whereas component causes are other factors that

contribute to the development of disease but are not sufficient on

their own. All component causes in a sufficient cause are required to

be either present or have taken place before disease onset. In the

case of MS, EBV appears to be a necessary component cause. In

every sufficient cause that leads to MS, EBV would thus be required.

All component causes in the same sufficient cause act in concert to

produce the disease. If EBV is a necessary component cause for MS

to occur, it would thus be expected to interact with every other risk

factor for the disease (sufficient cause interaction). The sufficient

cause model recognizes that multiple pathways can lead to the same

disease, and that different combinations of factors can lead to the

same outcome (48). The model can be used to guide research and

intervention efforts, as it emphasizes the importance of identifying

and addressing all factors that contribute to the development

of disease.

Interaction between two exposures is present when the effect of

one exposure on the outcome depends on the other exposure.

Statistical interaction evaluates whether the combined effect of the

exposures deviates from either additivity or multiplicativity,

depending on the scale of the model (48). Although it is not

possible to draw conclusions regarding biologic mechanisms

through statistical analysis of observational data, interaction on

the additive scale can be used to test for sufficient cause interactions

in epidemiologic research when the outcome is rare. Additive
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interaction (departure from additivity) means that the combined

effect of two exposures differs from the sum of the risks conferred by

each exposure and can be assessed by using different measures such

as the synergy index, the attributable proportion due to interaction,

and the relative excess risk due to interaction. The additive scale is

preferable from a public health perspective since it implies that

some subgroups would obtain a greater absolute risk reduction

from preventive measures. Studies investigating additive

interactions between risk factors in MS etiology are thus

important for the development of effective preventive measures

but may also shed light on disease pathogenesis. In the following,

risk factors for MS and their interactions will be discussed and put

in the context of EBV infection.
Viral infections apart from EBV

In addition to EBV, several other viruses have been implicated

in MS, such as human endogenous retroviruses (HERVs), human

herpesvirus 6 (HHV-6) and cytomegalovirus (CMV), which all have

the capacity of establishing lifelong latent infections (49). The

underlying mechanisms are poorly understood. Exposure to prior

antigens could result in heterologous immunity in which the

immune response to a prior infection provides some degree of

protection or enhances response against a different but related

infection (50). The specific mechanisms by which prior infections

could affect the immune response to EBV are likely complex and

multifactorial and may vary depending on factors such as the timing

and severity of infections as well as on the host immune status.

HHV-6, associated with increased risk of MS (49), is capable of

infecting glia and neurons and is one of the most common viruses

detected in the adult brain (51, 52). Regarding risk of MS, an

additive interaction has been observed between high antibody levels

against EBV and HHV-6A (53). Some studies have reported that

HHV-6 can infect and activate EBV-infected B cells, leading to

increased viral replication and persistence (54–56). Compared with

controls, increased expression of both HHV-6 and HERVs have

been found in MS plaques (57–59), and cumulative roles for EBV,

HHV6, and HERVs in MS pathogenesis has been suggested (60).

In seroepidemiological studies, CMV has been inversely

associated with MS (61, 62). CMV infection may result in

changes in the CD8+ T cell repertoire with an accumulation of

oligoclonal differentiated T cells with limited proliferative capacity

(63), which could potentially limit the immune response to EBV.

One study found a reduced proportion of memory B cells, with

reduced inflammatory profile, in MS patients with previous CMV

infection, compared to those without CMV infection (64).

However, potential mechanisms by which viral infections

contribute to MS are hypothetical and more research is necessary.
Genetics

The genetic contribution to MS is complex, with hundreds of

common genetic variants, identified by genome-wide association

studies, contributing to MS heritability (1). The importance of
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human leukocyte antigen (HLA) class I and II alleles in MS is

well established. The strongest genetic factor is the DRB1*15:01

allele in the class II region which increases the risk of MS

approximately 3-fold, whereas the HLA class I allele A*02:01

confers a protective effect (65). The class II molecules present

peptide ligands to CD4+ lymphocytes, which are thought to play

a crucial role in the pathogenesis of MS. In addition to HLA genes,

more than 200 non-HLA risk alleles have been identified as

implicated in disease susceptibility (1). Most of these are

associated with innate or adaptive immune functions or brain-

resident immune cells. While individual genetic variants have only

small or modest effects on MS risk, recent studies have shown that

combining multiple genetic variants into a polygenic risk score can

improve the accuracy of predicting the risk of disease (66).

Considering the role of HLA class II for the infection of B

lymphocytes, variations in HLA may account for the differences in

EBV susceptibility (67). EBV serostatus has been linked to the

ability of EBV to bind to B lymphocytes. Since CD21 on B cells is

highly conserved, the binding capacity of EBV to B lymphocytes is

likely a result of variation in HLA.

Once established, both class I and II-restricted antigen

presentation are involved in the control of the EBV infection.

Genetic differences in the HLA class I locus have been associated

with both the development and outcome of primary EBV infection

as well as with viral persistence (19, 68). The frequency of A*02:01

has been shown to be lower among MS patients with past IM

compared to both cases without IM history and healthy controls

(36). The MS protective allele A*02:01 can present several EBV-

derived peptides and mediates an effective immune response against

EBV antigens (69, 70), although both B and T cells carrying this

allele display a reduced response to type I IFN stimulation (71).

Carriers of DRB1*15:01 have higher EBNA-1 antibody levels

compared to DRB1*15:01 negative individuals, both among MS

patients and healthy controls (36, 68), indicating a defective

immune response to EBV. Non-HLA loci influencing both

EBNA-1 antibody levels and risk of MS have also been identified

(72, 73). The class II molecules, involved in antigen-presentation to

CD4+T cells by antigen presenting cells, are essential in shaping the

TCR repertoire. The DRB1*15:01 allele has been associated with a

narrower TCR repertoire with T cells of high affinity for specific

peptides (74). Epigenetic mechanisms may also be involved, as it

has been suggested that DNA methylation mediates the effect of

DRB1 expression and could lead to a changed TCR repertoire more

prone to CNS-reactive responses (75). In a humanized mouse

model, HLA-DRB1*15-restricted CD4+ T clones were less

efficient in recognizing EBV-transformed B cell lines, resulting in

increased expansion of CD8+ T cells and higher viral load. The CD4

+ T cell clones also demonstrated cross-reactivity with CNS-

antigens (76). Furthermore, it has been suggested that the

DRB1*15:01 haplotype may promote the activation of brain

homing autoreactive CD4+ T cells by memory B cells (77). In

MS, EBV-specific CD4+ T cells among DRB1*15:01 carriers also

show higher reactivity against several CNS-antigens (78).

The findings presented may contribute to explain the

interaction between HLA alleles, encoding molecules regulating T

cell adaptive immunity, and measures of EBV infection, in the
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development of MS (79–85). Both past IM and high EBNA1

antibody levels act synergistically with the main MS risk HLA

genes, presence of DRB1*15:01 and absence of A*02:01 (85).

Carriers of DRB1*15:01 without the protective effect of A*02:01

and with high EBNA-1 antibody levels following IM run an almost

30-fold increased risk of MS, compared to those who have none of

these risk factors. Table 1 provides a compilation of studies

examining the additive interaction between EBV and HLA-

DRB1*15:01 (and absence of HLA-A*02:01) in relation to the

development of MS. Studies that investigated the individual
Frontiers in Immunology 05
effects of each risk factor as well as their combined effects were

included. The presented results are directly extracted from the

original works referenced.
Sun exposure and vitamin D

The increasing MS occurrence with distance from the equator

(86, 87) has been attributed to lower sun exposure and

consequently, lower endogenous production of vitamin D (82,
TABLE 1 Compilation of studies examining the additive interaction between Epstein-Barr virus and HLA-DRB1*15:01 (and absence of HLA-A*02:01) in
relation to the development of MS.

Risk factors OR for each risk factor in the absence of the other/s Combined
OR

Additive
interaction

Reference

Anti-EBNA seropositive
HLA-DRB1*15:01 positive

2.3 + 1.5 8.5 AP 0.7 (0.4-1.0) 78

High anti-EBNA-1 IgG
HLA-DRB1*15:01 positive

2.0 + 3.0 5.8 SI 1.6, p=0.4 77

High anti-EBNA
HLA-DRB1-15:01 positive

4.6 + 3.3 9.7 Not calculated 82

Anti-EBNA>median
HLA-DRB1*15:01
heterozygote*

2.6 + 3.2 10.0 AP 0.5 (0.4-0.6) 83

Anti-EBNA>median
HLA-DRB1*15:01
homozygote*

2.6 + 7.7 19.5 AP 0.5 (0.4-0.7) 83

Anti-EBNA>median
HLA-DRB1*15:01 positive
HLA-A*02:01 negative

2.3 + 3.4 + 1.6 16.8 Total RERI 11.6 (9.1-
14.0)

33

Anti-EBNA>median
HLA-DRB1*15:01
heterozygote*
HLA-A*02:01 negative

2.2 + 3.2 + 1.4 14.9 Not calculated 83

Anti-EBNA>median
HLA-DRB1*15:01
homozygote*
HLA-A*02:01 negative

2.2 + 8.5 + 1.4 28.7 Not calculated 83

Anti-EBNA>median
Past IM
HLA-DRB1*15:01 positive
HLA-A*02:01 negative

2.2 + 3.3 + 1.5 + 1.3 27.1 Not calculated 33

Past IM
HLA-DRB1*15:01 positive

1.6 + 3.5 7.3 AP 0.45 (0.2-0.7)
RERI 3.3 (0.5-6.1)
SI 2.1 (1.6-2.6)

79

Past IM
HLA-DRB1*15:01 positive

1.7 + 2.4 7.0 Not calculated 80

Past IM
HLA-DRB1*15:01 positive

1.5 + 2.3 7.8 SI 3.8, p=0.03 77

Past IM
HLA-DRB1*15:01 positive

1.2 + 2.5 7.4 Not calculated 81

Past IM
HLA-DRB1*15:01 positive
HLA-A*02:01 negative

1.5 + 4.2 + 1.8 8.7 Total RERI 8.7 (4.7-12.6) 33
f

*Reference group was HLA-DRB1*15:01 negative; OR, odds ratio; EBNA, Epstein-Barr virus nuclear antigen; IM, infectious mononucleosis; HLA, human leukocyte antigen; AP, attributable
proportion due to interaction, RERI, relative excess risk due to interaction; SI, synergy index. The total 3-way interaction takes all two-way interactions and the three-way interaction into account.
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83). Observational studies have found higher risk of MS with lower

sun exposure and with lower vitamin D levels. Although

distinguishing between the effects of sun exposure and vitamin D

may be challenging in observational studies, independent benefits

have been observed when both factors have been considered

simultaneously (88, 89). Sun exposure may influence MS risk

through both vitamin D and non-vitamin D pathways, both of

which impact innate and adaptive immune functions.

Vitamin D is converted enzymatically in the liver to its major

circulating form (25-hydroxyvitamin D) and then in the kidney to

its active form (1,25-dihydroxyvitamin D). Active vitamin D acts as

a transcription factor by binding to the vitamin D receptor (VDR)

and modulating the expression of over 200 genes. Vitamin D

influences the immune system in multiple ways, including

enhancing innate immunity, modulating adaptive immunity, and

regulating cytokine production. It increases the differentiation of

hematopoietic stem cells into NK cells and may enhance their

function (90, 91). It also increases the production of antimicrobial

peptides involved in directly killing virus (92). Vitamin D decreases

the proliferation and differentiation of T cells and their cytokine

production, while promoting the development and function of

regulatory T cells. Both in vitro and in vivo studies show that

vitamin D results in increased production of the anti-inflammatory

cytokine IL-10 (93). The effects of vitamin D on B lymphocyte

function are less certain. Although in vitro studies have provided

some evidence that vitamin D inhibits the T cell-stimulating

capacity of B cells and enhances the activity of regulatory B cells,

it is not supported by in vivo data (94).

Exposure to UVR also has effects on the immune system that

are independent of vitamin D, including induction of interferons

that inhibit viral replication and enhancement of innate immune

responses (95). Sun exposure also results in suppression of cell-

mediated immunity, independent of vitamin D. Exposure to sun

induces regulatory T cells through antigen presentation of sun-

damaged Langerhans cells in the lymph nodes, leading to antigen-

specific immune tolerance. Exposure to sun also inhibits effector

and memory T cell activation, and induces systemic changes in

immune mediators, leading to suppression of the adaptive immune

response (96, 97). A suppressive effect of UVR through pathways

independent of vitamin D have also been confirmed in several

experimental studies (98, 99).

In patients with MS, an inverse relationship has been observed

between EBNA-1 antibody levels and serum vitamin D levels (100,

101), suggesting that vitamin D deficiency may impair the T cell-

mediated response to EBV, leading to viral reactivation and

augmented antibody production. Low sun exposure/vitamin D

deficiency has also been found to act synergistically with high

levels of EBNA-1 antibodies regarding risk of MS (102). There is

some evidence that vitamin D levels could affect the interaction

between EBV and MS predisposing genes. EBNA2, a transcriptional

activator with importance for B cell transformation, binds to MS

susceptibility loci in the host genome of infected B cells and may

influence their expression (103). An overlap between EBNA2 and

VDR binding sites has been observed and it has been suggested that

EBNA2 and VDR compete for binding to these susceptibility loci of

which the majority is related to immune responses (104).
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Considering that EBV and vitamin D may have antagonistic

effects on B cell function, adequate vitamin D levels could thus

have a protective effect against MS by blocking EBNA2

genomic occupancy.

The influence of vitamin D on MS risk has been suggested to be

important during a time window. While low vitamin D levels during

thefirst trimester resulted in increased riskofMS in theoffspring (105),

studies investigating the associationbetweenneonatal vitaminD status

and risk of subsequently developing MS have been conflicting (106,

107). However, several studies have consistently found decreased risk

of MS with increasing vitamin D levels in childhood and young

adulthood. In a prospective, nested case-control study among US

military personnel, the inverse association between vitamin D levels

and risk of MS was particularly strong for vitamin Dmeasured before

age 20 years (108).

The latitude gradient in MS occurrence and the association

between increased risk of MS and both IM history and vitamin D

deficiency have led to the hypothesis that the season of IM could

influence MS risk (109). If vitamin D dependent responses against

primary EBV infection affects the risk of MS, it would be expected

that IM during winter, when vitamin D levels are at their lowest,

confers a stronger risk of subsequently developing MS. However,

the increased risk of MS following IM does not seem to be

dependent on the season of infection (110, 111). One explanation

could be that vitamin D deficiency has more long-term effects on

the immune system, possibly by reducing the expression of key

genes involved in T cell development and function.
Lung-irritating agents

There is strong epidemiological evidence for an association

between smoking and other lung-irritating agents and risk of MS.

Smoking increases the risk of MS in a dose-response manner (112,

113). A similar dose-response correlation has been observed

between increased risk of MS and exposure to passive smoking,

organic solvents, and air pollution, respectively (114–117). These

lung-irritating agents also display a considerable interaction with

MS-associated risk genes (118–121). Since it seems unlikely that MS

risk genes would regulate smoking behavior or other exposures to

lung-irritating agents, it is an argument for a causal role of

pulmonary irritation in MS development.

Tobacco smoking and its oxidative agents results in airway

inflammation and increased levels of inflammatory markers (122–

124). Alveolar macrophages in the lungs increase in numbers with

concurrent impairment of their function, contributing to the

inflammatory process. The development and effector function of

both innate and adaptive immune cells are affected by smoking,

including NK cells, CD8+ and CD4+ T cells as well as memory B

and T lymphocytes. The majority of studies in humans have found

that smoking increases the number of CD8+ T cells and enhances

their functional response while the frequency of CD4+ T cells are

reduced (122–124). Smoking also induces changes in the

distribution and function of memory B cells, with a higher

prevalence of memory B cells in peripheral blood and in the lung,

whereas regulatory B cell numbers decrease (125).
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Smoking may act synergistically with high levels of EBNA-1

antibodies to increase the risk of MS ( (126–128), Table 2). Apart

from inducing proinflammatory responses, smoking results in a

relative immune deficiency (123). Smokers have higher EBNA-1

antibody levels than non-smokers both among patients with MS

and healthy controls (128–130), and smoking has been associated

with frequent reactivation of EBV whereby EBV antibodies against

viral antigens become elevated. There is a dose-response

relationship between smoking and both oral EBV load, anti-EBV

IgG levels, and the frequency of EBV reactivation (131, 132). This is

also supported by experimental evidence showing replication of

EBV with expression of its lytic-phase genes following exposure to

cigarette smoke (133). Smoking-associated DNA methylation and

changes in gene expression in immune cell types have been

identified and may contribute to EBV reactivation (134).

Smoking-associated pulmonary inflammation could contribute

to the activation of tissue-resident immune cells within the lung

including potentially autoreactive effector and memory cells. In

experimental studies, CNS-directed cells in the lung become

activated by local stimulation, whereby they assume a migratory

pattern and traffic to the CNS (135). Smoking also affects the

immune system barrier function and may promote migration of

autoreactive immune cells into the CNS.

While some aspects of childhood or adolescence seem to be

critical regarding the impact of several environmental factors onMS

risk, smoking increases the risk of MS regardless of age at exposure

(113). Following smoking cessation, the detrimental effect abates

within a decade, even in heavy smokers with a long duration of

smoking (113).
Obesity

Several observational studies have observed that obesity in

adolescence and young adulthood confers an approximately

doubled risk of MS, compared to normal weight individuals (136,

137). The association is supported by Mendelian randomization
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studies showing associations between genetic predisposition to

obesity and risk of MS (138–140).

Obesity induces a chronic low-grade systemic inflammation due

to increased numbers of adipose tissue macrophages that undergo a

phenotypic switch with increased production and secretion of

inflammatory mediators (141). Several aspects of the adaptive

system are affected, including increased proliferation and

activation of T cells and reduced numbers of regulatory T cells,

which exacerbate adipose tissue inflammation and could promote

the onset of autoimmune responses (142, 143). The inflammatory

pathways activated by obesity also upregulate pro-inflammatory

cytokines and cause a decrease in the blood-brain barrier integrity,

allowing for easier immune penetration (144). Apart from increased

proinflammatory responses, obesity results in a relative state of

immunodeficiency which increases susceptibility to infections

(145). Obesity has been associated with a reduced function of NK

cells (146), which are critical during primary EBV infection. Obesity

could also have impact on the immune response to EBV infection

by contributing to dysbiosis (147).

Obesity at young age is associated with subsequent risk of

MS (148, 149) while obesity at the time of MS diagnosis does

not differ between cases and healthy controls (148). It has also

been suggested that obesity during adolescence rather than

during childhood, is of importance for adulthood-onset MS,

suggesting that obesity at the time of primary EBV infection

may be of importance (150). In two studies, adolescent BMI

exceeding 25 kg/m2 interacted with both past IM and high

EBNA-1 antibody levels regarding risk of MS (Table 3). Past IM

in obese individuals carrying the HLA-DRB1*15:01 haplotype

rendered a 22-fold increased risk of MS, compared with normal

weight DRB1*15:01 negative individuals without history of IM.

The interaction between BMI and EBNA-1 status became

stronger with increasing EBNA-1 antibody levels (151, 152).

The obesity-induced immunodeficiency may thus alter the

immune response to EBV and may , par t i cu la r ly in

DRB1*15:01 carriers, increase the risk of an autoreactive

response directed at CNS-antigens.
TABLE 2 Compilation of studies examining the additive interactions between Epstein-Barr virus and smoking in relation to the development of MS.

Risk factors OR for each risk factor in the absence of the other/s Combined OR Additive interaction Reference

High anti-EBNA
Ever smoking

1.8 + 2.5 2.7 SI 0.7, p=0.6 77

Anti-EBNA>median
Ever smoking

2.7 + 1.5 3.8 AP 0.2 (0.1-0.3) 128

Anti-EBNA>median
Current smoking

2.7 + 1.6 4.4 AP 0.3 (0.2-0.4) 128

Anti-EBNA>75th percentile
Ever smoking

4.1 + 0.6 7.4 AP 0.4 (0.1-0.7) 126

Past IM
Ever smoking

1.5 + 2.1 3.2 SI 1.4, p=0.6 77

Past IM
Current smoking

1.8 + 1.6 3.0 AP 0.2 (0.004-0.4) 128
f

OR, odds ratio; EBNA, Epstein-Barr virus nuclear antigen; IM, infectious mononucleosis; AP, attributable proportion due to interaction; SI, synergy index.
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Other potential risk factors

The gut microbiota plays a key role in regulating immune

functions and has attracted major attention in MS (153). Intestinal

microbiota has been shown to promote the triggering of CNS-

reactive CD4+ T cells (154) and modulates astrocyte activity and

neuroinflammation (155, 156). The microbiota composition in

patients with MS has been reported to be distinct compared to

healthy controls (157–159) and the transplantation of MS intestinal

microbiota has been shown to induce or exacerbate experimental

autoimmune encephalomyelitis (158, 159). Dysbiosis, which refers

to an imbalance in the gut microbiota, has been associated with

changes in the production and metabolism of fatty acids, which

have immunomodulatory effects and modulate the differentiation of

both innate and adaptive immune cells and their function (160).

The level and composition of circulatory and tissue-resident fatty

acids have been implicated in MS (160). Although the exact

mechanisms by which the microbiome may affect the risk of MS

remain uncertain, these findings highlight the importance of

further research.

Polyunsaturated fatty acids (PUFAs) possess potent

immunomodulatory effects (161). Several observational studies

investigating the influence of PUFA dietary sources on the risk of

MS have reported that a higher intake of fatty fish or

supplementation with cod liver oil is associated with a reduced

risk of developing the disease (162–165). However, the findings

should be interpreted with caution due to potential sources of bias.
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Although studies have not been consistent (165–167), sibship

structure has been suggested to decrease the risk of MS by

preventing delayed primary EBV infection (167).

Shift work, poor sleep, and psychological stress, all of which can

negatively affect the immune response to infection, have also been

associated with increased risk of MS (168–170).
Preventive measures

Evidence strongly suggests that EBV is a prerequisite for MS

and the most effective way to prevent the disease would be to

prevent the primary EBV infection through vaccination. Various

immunogens, including both lytic and latent proteins, have been

explored for inclusion in prophylactic EBV vaccines (171), and

several vaccines are currently undergoing clinical trials. Even if the

primary infection is not prevented, a vaccine that prevents the

excessive immune responses against primary EBV infection may be

effective in reducing the incidence of MS. However, given that the

onset of MS may occur decades after primary EBV infection, long-

term follow-up studies will be necessary to evaluate the effectiveness

of a vaccine in preventing MS, and it is important to identify

alternative strategies to reduce the overall risk of the disease.

Several modifiable factors have consistently been associated

with increased risk of MS that could be targeted through

preventive measures. Based on the presented findings, one

approach could be balanced information regarding the risks and
TABLE 3 Compilation of studies examining the additive interactions between Epstein-Barr virus and overweight/obesity in relation to the
development of MS.

Risk factors OR for each risk factor in the absence of the other/s Combined
OR

Additive
interaction

Reference

Anti-EBNA 50-75th

percentile*
Adolescent BMI>25 kg/m2

2.1 + 1.5 2.7 AP 0.02 (-0.3-0.3) 151

Anti-EBNA 75-95th

percentile*
Adolescent BMI>25 kg/m2

3.4 + 1.4 4.6 AP 0.3 (0.1-0.5) 151

Anti-EBNA >95th percentile *
Adolescent BMI>25 kg/m2

4.0 + 1.4 7.3 AP 0.4 (0.1-0.7) 151

Anti-EBNA>median
HLA-DRB1*15:01 positive
Adolescent BMI>25 kg/m2

2.5 + 2.8 + 1.6 13.5 Total RERI 8.6 (5.0-12.1) 151

Past IM
Adolescent BMI>27 kg/m2

1.8 + 1.7 8.1 AP 0.7 (0.3-0.8)
RERI 5.5 (1.7-12.8)
SI 4.6 (2.0-10.2)

152

Past IM
Adolescent BMI>27 kg/m2

1.8 + 1.6 7.0 0.7 (0.2-0.8)
RERI 4.5 (1.1-11.2)
SI 4.2 (1.7-10.2)

152

Past IM
DRB1*1501 positive
Adolescent BMI>25 kg/m2

2.0 + 3.4 + 1.4 22.2 Total RERI 15.4 (0.8-
30.1)

151
f

*Reference group was EBNA-1 antibody levels below the median among controls; OR, odds ratio; EBNA, Epstein-Barr virus nuclear antigen; IM, infectious mononucleosis; BMI, body mass
index; AP, attributable proportion due to interaction; RERI, relative excess risk due to interaction; SI, synergy index.
The total 3-way interaction takes all two-way interactions and the three-way interaction into account.
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benefits of sun exposure. The ultraviolet index can be useful for

guiding sun exposure behavior in accordance with WHO guidelines

to minimize the risk of skin cancer (172), but sensible sun exposure

is essential for vitamin D synthesis and for capturing other vitamin

D-independent benefits (95). Reducing the prevalence of smoking

requires a multi-faceted approach that involves a combination of

strategies, such as governmental regulations, prevention programs

in schools, cessation programs for smokers, and increased access to

smoking cessation resources. Parents should be informed regarding

the importance of protecting their children from secondhand

smoke. Childhood obesity is a serious and growing problem in

developed countries. Preventive measures include encouraging

healthy eating habits, promoting regular physical activity, limiting

screen time, and encouraging healthy sleep habits. Healthcare

professionals could be consulted when a child is at risk of

becoming obese for guidance on appropriate nutrition and

physical activity strategies. The health benefits of Mediterranean-

style diet for obesity-related comorbidities are well-established

(173). The diet is rich in fiber, vitamins, minerals, and

antioxidants, and is based on consumption of high amounts of

vegetables, fruits, nuts, fish and other seafood, and the use of olive

oil (174). These guidelines align with those for general health

benefits and may have the potential to lower the risk of MS.
Conclusions

MS may arise from a complex interplay between latent EBV

infection, genetic predisposition, and various environmental and

lifestyle factors that negatively affect immune control of the

infection. Increasing evidence from various research disciplines

emphasizes the crucial involvement of EBV in the development of

MS. EBV infection as a prerequisite for MS is further supported by

evidence indicating that other established risk factors for MS act

synergistically with EBV in the development of the disease.
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However, while numerous genetic variants and environmental

factors have been identified that predispose to MS, their biological

significance remains uncertain, and their effects are often small or

modest. Certain environmental factors could have multiple

biological effects that are significant in the pathogenesis, whereas

other exposures may impact a small set of shared pathways, leading

to comparable biological effects. Despite recent progress, gaining a

comprehensive understanding of the various risk factors for MS

onset remains a significant challenge. A multidisciplinary approach

could provide further insight into the mechanisms of disease

pathogenesis and provide important information for disease

prevention that could be implemented.
Author contributions

The author confirms being the sole contributor of this work and

has approved it for publication.
Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G,
et al. Multiple sclerosis genomic map implicates perhipheral immune cells and
microglia in susceptibility. Science (2019) 365:eaav7188. doi: 10.1126/science.aav7188

2. Zhou Y, Simpson SJr, Holloway AF, Charlesworth J, van der Mei I, Taylor BV.
The potential role of epigenetic modifications in the heritability of multiple sclerosis.
Mult Scler (2014) 20:135–40. doi: 10.1177/1352458514520911

3. Andlauer TFM, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, et al. Novel
multiple sclerosis susceptiblity loci implicated in epigenetic regulation. Sci Adv (2016)
2:e1501678. doi: 10.1126/sciadv.1501678

4. Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV. Role of environmental
factors in multiple sclerosis. Expert Rev Neurother (2021) 21:1389–408. doi: 10.1080/
14737175.2021.1978843

5. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. Environmental risk
factors and multiple sclerosis: an umbrella review of systematic reviews and meta-
analyses. Lancet Neurol (2015) 14:263–73. doi: 10.1016/S1474-4422(14)70267-4

6. Handel AE, Williamson AJ, Disanto G, Handunnetthi L, Giovannoni G,
Ramagopalan SV. An updated meta-analysis of risk of multiple sclerosis following
infect ious mononucleosi s . PloS One (2010) 5:e12496 . doi : 10 .1371/
journal.pone.0012496

7. Pakpoor J, Disanto G, Gerber JE, Dobson R, Meier UC, Giovannoni G, et al. The
risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a
meta-analysis. Mult Scler (2013) 19:162–6. doi: 10.1177/1352458512449682
8. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal
analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis.
Science (2022) 375:296–301. doi: 10.1126/science.abj8222

9. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd edition.
Philadelphia: Lippincott Wolliams & Wilkins (2008).

10. Shannon-Lowe C, Rowe M. Epstein Barr Virus entry; kissing and conjugation.
Curr Opion Virol (2014) 4:78–84. doi: 10.1016/j.coviro.2013.12.001

11. Thorley-Lawson DA. EBV persistence – introducing the virus. Curr Top
Microbiol Immunol (2015) 390:151–209. doi: 10.1007/978-3-319-22822-8_8

12. Kanda T. EBV-encoded latent genes. Adv Exp Med Biol (2018) 1045:377–94.
doi: 10.1007/978-981-10-7230-7_17

13. McKenzie J, El-Guindy A. Epstein-Barr Virus lytic cycle reactivation. Curr Top
Microbiol Immunol (2015) 391:237–61. doi: 10.1007/978-3-319-22834-1_8

14. Jayasooriya S, de Silva TI, Njie-jobe J, Sanyang C, Leese AM, Bell AI, et al. Early
virological and immunological events in asymptomatic Epstein-Barr virus infection in
African children. PloS Pathol (2015) 11:e100474. doi: 10.1371/journal.ppat.1004746

15. Abbott RJ, Pachnio A, Pedroza-Pacheco I, Leese AM, Begum J, Long HM, et al.
Asymptomatic primary infection with Epstein–Barr virus: observations on young adult
cases. J Virol (2017) 91:e00382. doi: 10.1128/JVI.00382-17

16. Niller HH, Bauer G. Epstein-Barr Virus: clinical diagnostics. Methods Mol Biol
(2017) 1532:33–55. doi: 10.1007/978-1-4939-6655-4_2
frontiersin.org

https://doi.org/10.1126/science.aav7188
https://doi.org/10.1177/1352458514520911
https://doi.org/10.1126/sciadv.1501678
https://doi.org/10.1080/14737175.2021.1978843
https://doi.org/10.1080/14737175.2021.1978843
https://doi.org/10.1016/S1474-4422(14)70267-4
https://doi.org/10.1371/journal.pone.0012496
https://doi.org/10.1371/journal.pone.0012496
https://doi.org/10.1177/1352458512449682
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1016/j.coviro.2013.12.001
https://doi.org/10.1007/978-3-319-22822-8_8
https://doi.org/10.1007/978-981-10-7230-7_17
https://doi.org/10.1007/978-3-319-22834-1_8
https://doi.org/10.1371/journal.ppat.1004746
https://doi.org/10.1128/JVI.00382-17
https://doi.org/10.1007/978-1-4939-6655-4_2
https://doi.org/10.3389/fimmu.2023.1212676
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hedström 10.3389/fimmu.2023.1212676
17. Balfour HH, Dunmire SK, Hogqvuist KA. Infectious mononucleosis. Clin Transl
Immunol (2015) 4:e33. doi: 10.1038/cti.2015.1

18. Rubicz R, Yolken R, Drigalenko E, Carless MA, Dyer TD, Bauman L, et al. A
genome-wide integrative genomic study localizes genetic factors influencing antibodies
against Epstein–Barr virus nuclear antigen 1 (EBNA-1). PloS Genet (2013) 9:e1003147.
doi: 10.1371/journal.pgen.1003147

19. McAulay KA, Higgins CD, Macsween KF, Lake A, Jarrett RF, Robertson FL,
et al. HLA class I polymorphisms are associated with development of infectious
mononucleosis upon primary EBV infection. J Clin Invest (2007) 117:3042–8.
doi: 10.1172/JCI32377

20. Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent
viral infections. Front Immunol (2013) 4:271. doi: 10.3389/fimmu.2013.00271

21. Goronzy JJ, Li G, Yang Z, Weyand CM. The janus head of T cell aging–
autoimmunity and immunodeficiency. Front Immunol (2013) 4:131. doi: 10.3389/
fimmu.2013.00131

22. Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-
related profiling of DNA methylaltion in CD8+ T cells reveals changes in immune
response and transcriptional regular genes. Sci Rep (2015) 5:13107. doi: 10.1038/
srep13107

23. Münz C. Role of human natural killer cells during Epstein-Barr virus infection.
Crit Rev Immunol (2014) 34:501–7. doi: 10.1615/critrevimmunol.2014012312

24. Azzi T, Lünemann A, Murer A, Ueda S, Béziat V, Malmberg KJ, et al. Role for
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