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The close interaction between fetal andmaternal cells during pregnancy requires

multiple immune-endocrine mechanisms to provide the fetus with a tolerogenic

environment and protection against any infectious challenge. The fetal

membranes and placenta create a hyperprolactinemic milieu in which

prolactin (PRL) synthesized by the maternal decidua is transported through the

amnion-chorion and accumulated into the amniotic cavity, where the fetus is

bedded in high concentrations during pregnancy. PRL is a pleiotropic immune-

neuroendocrine hormone with multiple immunomodulatory functions mainly

related to reproduction. However, the biological role of PRL at the maternal-fetal

interface has yet to be fully elucidated. In this review, we have summarized the

current information on themultiple effects of PRL, focusing on its immunological

effects and biological significance for the immune privilege of the maternal-

fetal interface.

KEYWORDS

immune privilege, decidual prolactin, pregnancy, maternal-fetal interface, fetal
membranes, placenta, preterm labor, innate immunity
1 Introduction

Human pregnancy represents a unique immune-endocrine state that allows a semi-

allogeneic fetus to grow and develop in a tolerogenic environment created and protected by

the maternal-fetal interface. The interface between the transformed endometrium

(decidua) and the blastocyst is the scenario in which diverse critical immune-endocrine

crosstalk between maternal and fetal cells develop to establish immune privilege during
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1212736/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1212736/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1212736/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1212736&domain=pdf&date_stamp=2023-06-09
mailto:v.zagaclavellina@gmail.com
https://doi.org/10.3389/fimmu.2023.1212736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1212736
https://www.frontiersin.org/journals/immunology


Flores-Espinosa et al. 10.3389/fimmu.2023.1212736
pregnancy. Tolerance is required to avoid fetal rejection, and at the

same time, the maternal immune system should be ready to respond

efficiently to any infection or pathological inflammation (1, 2).

As pregnancy progresses, the maternal-fetal interface increases

and the placenta and fetal membranes expand their close contact

with the decidua. Therefore, the immunological balance between

fetal and maternal cellular responses is critical for a successful

outcome (3).

The process of differentiation between the chorionic sheet of

fetal membranes, which is composed of connective tissue and in

which the fetal blood vessels and extravillous trophoblasts cells are

located, is accompanied by changes in the surrounding maternal

tissues. Depending on its spatial relationship to the implanting

chorionic sac, the decidua is divided into several segments. The

decidua below and lateral to the blastocyst or later the one below the

placenta is the basal decidual (decidua basalis). Once implantation

is complete, the decidua closes over the blastocyst, this protruding

layer is the capsular decidua (decidua capsularis). All parts of the

decidua that line the uterine cavity without being in contact with the

blastocyst are called the parietal decidua (decidua parietalis)

(4). (Figure 1).

Several studies conducted between 1970 and 1980 provided the

first evidence for the role of the hormone prolactin (PRL) in the

maternal-fetal unit, which is essential for establishing and

maintaining a pregnancy (5–7). These works also showed that

pregnancy is a state of physiological hyperprolactinemia.

PRL is classified as a pleiotropic immune-neuroendocrine

hormone and an autocrine/paracrine factor that regulates more

than 300 biological functions, including immune regulation,

metabolism, angiogenesis, and osmoregulation (8). In addition, PRL
Frontiers in Immunology 02
plays an essential role in reproductive processes, such as sex steroid

production, blastocyst implantation, placentation, and lactation

(8–12). In rodents and other mammals, PRL regulates maternal

behavior (13) and maintenance of the corpus luteum (14, 15).

Pioneering studies have shown that PRL-knockout (KO) female

mice have irregular estrous cycles and do not become pregnant

when mated with fertile males. Although the egg can be fertilized,

implantation does not occur (16). Studies using PRL receptor

(PRLR)-KO mice have shown that females also fail to become

pregnant because they have multiple reproductive defects before

implantation, which explains the poor survival of embryos (17). In

addition, PRL-KO and PRLR-KO mice are entirely infertile because

the corpus luteum relies on PRL secretion to induce progesterone

(P4) synthesis and endometrial vascularization to support

implantation (17).

Despite the relatively well-known effects of PRL on blastocyst

implantation and fertilization, there is no recent research on the

recently described immunomodulatory functions of PRL, focusing

on its effects on human fetal membranes and the placenta. In this

review, we present the findings of our group and others aiming at

understanding the regulatory signals modulated by PRL to promote

an immunotolerant state in the essential tissues that protect,

nourish, and shelter the fetus.
2 Regulation of extra pituitary
PRL synthesis

In addition to the pituitary gland, tissues such as the uterus,

especially decidualized endometrial stromal cells and myometrial
FIGURE 1

Schematic of a maternal-fetal unit composed of decidua, placenta, and fetal membranes. There are three types of decidua, depending on their
location and cellular interactions: decidua basalis in contact with the placental bed, decidua capsularis in direct contact with the chorionic layer of the
fetal membranes, and decidua parietalis, lining the uterine cavity and eventually fusing with the decidua capsularis. The close contact between these
tissues involves the interaction between maternal immune cells and fetal cells (trophoblasts). The decidua cells produce IL-15 and PRL to stimulate
uterine NK cells (uNK) proliferation. The uNk cells recognize HLA-G expressed by the extravillous trophoblast (EVT), triggering a tolerogenic response.
The EVT is the active agent in trophoblast invasion, but it also expresses IL-10 and TGF-b, anti-inflammatory factors that reinforce the tolerogenic
environment in the decidua. In macrophages (MF), PRL mediates IDO expression by promoting the synthesis of kynurenine, which is cytotoxic to T
effector lymphocytes (Teff) and NK cells. In addition, PRL also appears to be involved in the differentiation of T regulatory cells (Treg) cells, an essential
source of IL-10. IL-15R, receptor of IL-15; PRL, Prolactin; PRLR, Prolactin receptor; TGF-b, Transforming Growth Factor b; KIR, Killer-cell
immunoglobulin-like receptors; IDO, Indoleamine 2,3-dioxygenase. Created in BioRender.com.
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cells, the ovaries, and the immune system, also produce extra

pituitary PRL that exerts mainly local autocrine and paracrine

functions (18).

Remarkably, the classical regulators of PRL synthesis, i.e.

dopamine, thyrotropin-releasing hormone (TRH), and pituitary

PRL per se, have shown no effect on extra pituitary PRL

production in vitro (18). Extra pituitary synthesis and secretion

mainly depend on the source cell type and their associated

microenvironment. For example, P4 is the primary regulator of

PRL release in the decidua and mammary glands but does not affect

PRL secretion in adipose tissue (19). In contrast, calcitriol

influences PRL production in the decidua and lymphocytes (20,

21). Furthermore, decidual PRL expression is inhibited by different

inflammatory cytokines, such as interleukin (IL)-2 and tumor

necrosis factor-alpha (TNF-a), as well as factors with anti-

inflammatory properties such as transforming growth factor beta

(TGF-b) (22–24).
Transcriptional regulation of PRL is controlled by two

promoters, a proximal one associated with pituitary expression

and a distal one associated with extra pituitary expression

(Figure 2A). The distal promoter is more than 2 kb-long and

includes two enhancer regions that contain binding sites for

CCAAT/enhancer-binding protein beta (C/EBPb), Forkhead Box

O1A (FOXO1A), Nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB), Activator protein 1 (AP-1) responsive

elements, among others (18, 25) (Figure 2B). Notably, activation of

the cAMP/PKA pathway induces extra pituitary PRL promoter

activity in human decidual cells through the transcription factors

CREB and C/EBP (25, 26). The transcription factors HoxA-11 and
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FOXO1A also physically and functionally interact to upregulate

PRL gene expression in the decidualized endometrium (27, 28).

Also, Ets-1 transcription factor is critical for basal expression of

decidual PRL. In contrast, PRL expression is not affected by this

factor in non-decidualized endometrial stromal or fibroblast cells

(29, 30), indicating tissue-dependent control mechanisms.
3 Dynamics of PRL production
during human pregnancy and
its compartmentalized effects
on the decidua, placenta, and
fetal membranes

During pregnancy, the major sources of PRL are the maternal

pituitary gland, decidua, and fetal pituitary gland, in which PRL is

independently regulated. PRL detected in maternal serum originates

from her pituitary gland; on the other hand, the increase of PRL

begins in the 10th week of gestation (31). However, PRL

accumulated in the amniotic fluid (AF) is mainly attributed to the

decidual cells (32–34). After synthesis and secretion, decidual PRL

is transported through fetal membranes into the amniotic cavity,

where it accumulates significantly (7, 35, 36) (Figure 3A).

The observed changes in the PRL release profile in the three

independent compartments suggest an immunomodulatory role of

this hormone at different stages of pregnancy (Figure 3B), which

will be discussed in the following sections with emphasis on the

fetoplacental unit. The specific secretion of PRL by the decidua and
A

B

FIGURE 2

Representation of the extra pituitary promoter of the human PRL gene. (A) The extra pituitary and proximal promoters and the coding region are
shown; exons are represented by black boxes with corresponding exon numbers (1a, 1b, 2-5), and transcription start sites are indicated by arrows.
(B) Diagram of the alternative human PRL promoter. This superdistal promoter is over 2.0 kb long and contains two enhancer regions shown in blue.
The consensus sequences for the transcription factors are shown in different colors.
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the changes in its concentration in the amniotic cavity and maternal

serum support its role as an essential modulator of tolerance and are

relevant to the onset of labor.
3.1 Circulating PRL level in maternal serum

In nonpregnant women, serum PRL levels are below 23 ng/mL,

whereas a hyperprolactinemic state characterizes pregnancy. PRL

increases 3- to 8-fold in the first trimester and is continuously

released until it reaches 250 ng/mL in the third trimester (7, 37).

Before the onset of labor, maternal serum PRL levels gradually

decrease to about 60 ng/mL; this low concentration has been

clinically associated with the first signs of labor and complete

cervical dilatation (6). After delivery, PRL levels remain elevated,

allowing lactotrophic hyperplasia and breast development for

breastfeeding (38).
3.2 Decidual PRL and its
autocrine functions

The human decidua synthesizes and secretes a PRL

immunologically, chemically, and biologically indistinguishable

from the pituitary gland (32, 39).

In the past four decades, P4 stimulus for decidualization of

endometrial stromal cells during the luteal phase of the menstrual

cycle has been shown to be an essential step to initiate PRL production

by the decidua (40, 41). Kinoshita et al. reported a 2-fold higher

content of PRL in the decidua before labor (370.3 ± 67.7 ng/mg wet

weight) than at labor (196.8 ± 47.2 ng/mg wet weight) (42).
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During pregnancy, the expression of PRLR isoforms in various

female reproductive tissues, including the ovary, corpus luteum, and

decidua, is hormonally and temporally regulated (43–45). The major

PRLR isoforms in the decidua are short and long (PRLR-L and

PRLR-S). They have also been observed in the amniotic epithelium,

chorionic cytotrophoblasts, and syncytiotrophoblasts (45–48). Jak-2

is autophosphorylated after PRLR-L activation and generates

coupling sites for other substrates containing Src homology

domain 2 (SH2), such as the STAT proteins (STAT5a and 5b),

through tyrosine phosphorylation, dimerization, and subsequent

translocation to the nucleus to regulate transcription of various

target genes [for a detailed review of PRL signaling pathways, see

Kavarthapu and Dufau (49)]. Although PRLR-S cannot activate

Jak2/Stat signaling pathways, it can trigger MAPK-dependent

PI3K signaling pathways that contribute to normal follicular

development via activation of the phosphatase DUPD1 in the

ovary and decidua (44) Because MAPK is a key factor in follicular

development and normal decidua formation, PRLR-S appears to

play an essential role in these stages of reproduction.

Decidual PRL has an autocrine effect and regulates the decidua’s

hormonal, immunological, and surveillance functions. For example,

PRL significantly affects decidua regression, a fundamental event

that occurs through apoptosis at the end of gestation (50). Animal

models have helped clarify that PRL has antiapoptotic effects

via PRLR-L, which downregulates caspase-3 mRNA levels

independently of Jak2 activation (51). Thus, the loss of PRLR-L

that occurs in the mesometrial and antimesometrial decidua

correlates temporally with the cell death that occurs in this tissue

during late gestation (51). Consistent with this, PRLR-KO mice

exhibit high levels of apoptosis, further supporting the potent

antiapoptotic effect of PRL (52).
A B

FIGURE 3

Compartmental release of PRL during human pregnancy. (A) The figure shows the three compartments: maternal, fetal, and decidual compartments,
which are independently regulated during pregnancy, and the transport of PRL from the decidua to the amniotic cavity through fetal membranes.
(B) The graph shows the patterns of PRL secretion in the three independent compartments. Maternal serum and amniotic fluid show the increase in PRL
concentration during the second trimester of pregnancy and the subsequent decrease in concentration at the onset of labor. Finally, the relationship
between the pattern of PRL secretion and the three stages of pregnancy, as well as the immune response at each of these stages, supports the role of
PRL as a regulator of the immune environment during a successful gestation. AMN, amnion-fetal side; CHD, choriodecidua-maternal side; D, decidual
cells; T, trophoblast cells; AE, amniotic epithelium. The graph is taken from references 6, 47-49. Created in BioRender.com.
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As the diameter of the chorionic sac increases, the capsular

decidua degenerates focally so that the outer surface of the smooth

chorion is adjacent to the uterine cavity at these sites. Between

weeks 15 and 20 after conception, the chorion, along with the

remainder of the capsular decidua, fuses locally with the parietal

decidua, thereby largely obliterating the uterine cavity. From this

point on, the chorionic leaflet is in contact with the decidua of the

uterine wall over almost its entire area and can function as a

paraplacental exchange organ (4).

The decidua basalis contributes to the formation of the

placental base plate, and this rigid part of the decidua directs the

interstitial invasion of trophoblasts to form the anchoring columnar

villi. In contrast, the capsular decidua is laxer and, because of its

location, represents the major source of PRL in the amniotic fluid

before it fuses with the parietal decidua (53).

There is no evidence of differential PRL secretion between the

three decidua types, but increased in vitro PRL production and

secretion by 2nd trimester decidua explants (1450 ng/g of tissue)

compared with 1st and 3rd trimester explants (992 and 728 ng/g of

tissue respectively) has been described (54).

Similar to the pituitary gland, the decidua can secrete

glycosylated PRL, such that 30-50% of PRL in amniotic fluid is

glycosylated (55, 56). Glycosylation of PRL enhances or decreases

its activity in a tissue-specific manner (57–59). The effects of

glycosylation directly on placental and fetal membranes remain to

be elucidated.

The cDNA sequence of decidual PRL has four silent changes in

its nucleotides, two of these changes are in the third position of the

amino acid codons and the other two are in the 3’-untranslated

region, resulting in an amino acid sequence identified in decidual

and pituitary PRL (60, 61). Decidual PRL has also been found to

have the same biological and immunological activity as pituitary

prolactin (61, 62).

Moreover, this hormone inhibits the production of decidual IL-

6, a critical pro-inflammatory signal at the feto-maternal interface,

and the production of 20a-hydroxysteroid dehydrogenase (20a-
HSD), preventing P4 catabolism (63); the control of the

inflammatory environment by PRL contributes to the

maintenance of fetal development in an immunotolerant scenario

(64, 65).

Finally, decidual PRL is intimately involved in the control of

angiogenesis. On the one hand, PRL can directly stimulate

endothelial cell proliferation and migration in an autocrine and

paracrine manner (66). Moreover, in an in vivo model of chick

embryo chorioallantoic membrane, PRL stimulated vascular density

and column formation characteristic of intussusceptive

angiogenesis in embryogenesis (67). This allows speculation about

a direct role of PRL in the regulation of placental angiogenesis.

However, PRL may stimulate angiogenesis indirectly by promoting

the synthesis of other angiogenic factors such as fibroblast growth

factor (bFGF) and vascular endothelial growth factor (VEGF) in the

decidua and immune cells (68–70).

On the other hand, PRL can also acquire antiangiogenic

properties after proteolysis by generating PRL fragments (5.6-18

kDa) called vasoinhibins (15, 71). During pregnancy, decidual PRL

can be cleaved by captesin-D produced by the placenta (72).
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Vasoinhibins do not compete for binding to PRL-R. In vitro

studies show that these peptides bind to the fibrinolytic inhibitor

plasminogen activator inhibitor-1 (PAI-1), the urokinase-type

plasminogen activator PAI-1 (uPA) and the uPA receptor (uPAR)

to form a ternary complex on the surface of endothelial cells. By

forming this complex, vasoinhibins regulate ERK1/2 and NFkB

signaling to exert their profibrinolytic and antiangiogenic

functions (73).
3.3 Biological functions of PRL in the
human placenta

The placenta is a temporary organ that grows and develops

during pregnancy and disappears after delivery. This extraembryonic

tissue is in constant cellular communication with the maternal

decidua and blood, as well as with the fetal membranes, AF, and

fetus. This bidirectional feto-maternal communication is critical for

the regulation of several essential placental functions for growth and

monitoring of the developing fetus, as well as for the placental

establishment and protection of the fetus from microbial challenges

(74). PRL levels detected in the intervillous space are similar to

maternal plasma levels (131.6 ± 64.3 ng/mL); in the umbilical cord,

PRL levels are higher than in the placenta (243.8 ± 86.1 ng/

mL) (75).

Considering that the placenta is an essential site for the

synthesis and action of this hormone (mainly in villous and

extravillous cytotrophoblasts (76, 77) two main axes of placental

development are now studied: trophoblast migration and invasion

and control of fetal inflammatory responses.

In the first trimester of gestation, various decidual factors

stimulate the differentiation of extravillous trophoblasts (EVT) into

invasive trophoblasts, leading to the migration of columnar EVTs

into the maternal spiral arteries and decidua (78). Among the factors

produced by the decidua, PRL triggered an invasive trophoblast

phenotype in vitro, highlighting its involvement in placental

angiogenesis, trophoblast growth, and migration (77). Even in the

early stages of the blastocyst, PRL promotes trophoblast cell

migration in vitro (79). Immunohistochemical analysis revealed

that columnar cytotrophoblasts abundantly express PRLR and

respond to its ligand with increased expression of integrins a1 and

a5, and galectin-1, all markers of endovascular and interstitial EVTs

(77). Therefore, PRL is an additional factor to consider in controlling

the epithelial-mesenchymal transition of EVTs, and in regulating

early trophoblast invasion into the decidua (Figure 4).

Regarding the immunomodulatory properties of PRL, our

research group has demonstrated that PRL can attenuate several

markers of the inflammatory response in human fetal membranes

stimulated with lipopolysaccharides (LPS) from E. coli (48, 80–82).

In addition, we have investigated the immunological properties of

PRL in the human placenta, particularly in villous trees at birth. As

in human fetal membranes, PRL reduced the inflammatory

response of placental villi explants stimulated with LPS.

Moreover, we found that the anti-inflammatory mechanism of

PRL in the placenta is mediated by a minor activation of the

Toll-like receptor 4 (TLR4)/NFkB pathway and, consequently, a
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decreased secretion of TNF- a, IL-1b, and IL-6 by the villi (83). In

addition, mononuclear cells isolated from the umbilical cord,

placenta, and maternal blood respond to PRL with a reduction in

IL-1b secretion under inflammatory conditions (84). Interestingly,

this attenuation of the inflammatory milieu by PRL is observed

mainly in feto-maternal tissues. In contrast, in other peripheral

cells, such as macrophages and T lymphocytes, this hormone

promotes the synthesis of a large battery of pro-inflammatory

cytokines (85–87). Therefore, tissue-specific downregulation of

pro-inflammatory cytokines by PRL in the maternal-placental-

fetal unit may benefit fetal membrane integrity and maintenance

of immune privilege during pregnancy (Figure 5A).
3.4 PRL accumulation in AF and its effects
on human fetal membranes

PRL reaches a peak of 3,000 – 4,000 ng/mL in the AF at about 22

weeks of gestation; this concentration is the highest reached in life.

After that, the PRL concentration begins to decline, reaching 350-

500 ng/mL at 37 weeks gestation, when the pregnancy is considered

almost complete, and these low levels are associated with the first

signs of labor (7).

Fetal membranes are a transient tissue composed of two

adjacent tissues: the amnion, which is in contact with the fetus

and AF, and the chorion, which fuses with the maternal decidua.

They are connected by several layers of connective tissue that give

them strength and resistance (88).

The fetal membranes form a selective barrier with mechanical

and immunological properties that ensure fetal protection
Frontiers in Immunology 06
throughout pregnancy: 1) They regulate the influx of water,

electrolytes, and molecules into the amniotic cavity to maintain a

homeostatic environment; 2) They support the mechanical stress of

fetal movements and the volume of AF, and have a cellular and

collagen remodeling mechanism to maintain their structure and

function; 3) They produce signals (anti-inflammatory cytokines,

immunomodulators, and antimicrobial peptides) to maintain

immunological tolerance; 4) They act as a physical barrier to

prevent pathogens from entering the amniotic cavity; 5) These

tissues monitor the environment to detect potential signs of danger

(pathogens or harmful endogenous molecules), and 6) They may

also secrete cytokines, chemokines, and antimicrobial peptides as a

defense mechanism (89).

Fetal membranes are a target organ for PRL because they

express PRLR (46, 48). The most extensive effect described for

decidual PRL is osmoregulation in fetal membranes. This hormone

controls the exchange of electrolytes and modulates the

permeability of fetal membranes to maintain the proper volume

of AF. PRL decreases water flux from the maternal to the fetal

compartment to allow the increase of Na+ and Cl- ions in AF (90,

91). Clinically, low expression of PRLR in fetal membranes is

associated with excessive AF volume in the amniotic cavity. This

obstetric problem is known as polyhydramnios.

Consequently, the osmotic imbalance leads to greater

mechanical stress on the membranes and increases the risk of

fetal-membrane rupture, which may alter the normal course of

pregnancy (92). In addition, in vitro studies have shown that PRL

regulates basal production of inflammatory modulators associated

with fetal membranes rupture at birth. Exposure of human fetal

membranes to PRL decreased the production of prostaglandin E2 in
FIGURE 4

Biological effects of PRL at the maternal-fetal interface during normal pregnancy. (1) PRL inhibits decidual production of IL-6, maintains P4 production,
regulates endometrial vascularization, and stimulates proliferation of endothelial cells to support implantation; additionally, it has antiapoptotic properties.
(2) In the placenta, this hormone stimulates the differentiation of EVTs into trophoblasts with an invasive profile, also PRL leads migration of columnar
EVTs into the maternal spiral arteries. (3) PRL modulates fetal membrane permeability to maintain the water-electrolyte balance and adequate amniotic
fluid volume in the amniotic cavity. In addition, PRL downregulates the expression of TNF-a, IL-1b, and MMP-9 to maintain the immune privilege of the
amniotic cavity. Created in BioRender.com.
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fetal membranes (91). Furthermore, our research group

demonstrated that PRL decreased basal mRNA expression and

secretion of TNF-a, IL-1b, and matrix metalloproteinase (MMP)

-9 by human fetal membranes in culture (80). This evidence

suggests that high concentrations of PRL in AF are essential for

maintaining an anti-inflammatory environment in the amniotic

cavity where the fetus develops. These data support the hypothesis

that decreasing PRL levels in the last weeks of gestation causes a

switch from an anti-inflammatory environment to a pro-

inflammatory milieu in the amniotic cavity. In this context, the

onset of labor is considered a pro-inflammatory process. In
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addition, recent evidence suggests that inflammatory signals from

fetal membranes act as alarm signals that spread to the uterus,

decidua, and placenta and contribute significantly to the

inflammatory cascade that initiates labor (93, 94).

3.4.1 The role of PRL in preterm labor and
preterm premature rupture of membranes
(pPROM)

pPROM is a disease of fetal membranes that occurs as rupture of

membranes before 37 weeks of gestation in the absence of another

labor mechanism. This pathologic condition precedes 40-50% of
B

A

FIGURE 5

The immunomodulatory effects of PRL on the placenta and fetal membranes during immune challenge. (A) In the placenta, we show that the
immunomodulatory effects of PRL are mediated in part by downregulation of TLR-4 expression in the trophoblast and subsequent phosphorylation
of NFkB, thereby reducing the synthesis and secretion of pro-inflammatory factors. (B) Fetal membrane response during the ascending immune
challenge. (1) Recognition of PAPMs such as LPS by TLR-4 expressed by trophoblasts in the choriodecidual region triggers an inflammatory response
leading to secretion of pro-inflammatory cytokines and chemokines, which trigger infiltration of leukocytes into the site of inflammation/infection.
(2) These chemoattractant cells release pro-inflammatory factors, including cytokines, chemokines, and ROS, which exacerbate the inflammatory
process. (3) Additionally, these cells release MMPs, whose collagen activity causes structural changes in the connective tissue of fetal membranes,
leading to their weakening and eventual rupture. These processes are part of the mechanisms leading to PTL and pPROM. Interestingly, experimental
data from our group demonstrated that PRL attenuates the innate immune response of fetal membranes during this pathological scenario. These
results support the hypothesis that PRL compartmentalization at the maternal-fetal interface is a critical factor in maintaining immune privilege
during intrauterine infection, one of the major risk factors compromising pregnancy continuity. Created in BioRender.com.
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cases of preterm labor (PTL) (95, 96), which in turn is the leading

cause of neonatal morbidity and mortality (97).

Several clinical and experimental studies indicate that ascending

lower genital tract infections and sterile inflammation in the

amniotic cavity are risk factors for developing pPROM (98, 99).

The amnion and choriodecidua express Toll Like Receptors (TLRs),

innate immunity receptors that enable them to recognize Pathogen

Associated Molecular Patterns (PAMPs) or Danger Associated

Molecular Patterns (DAMPs), also known as alarmins. Activation

of TLRs by PAMPs or DAMPs initiates the NF-kB signaling

pathway, which upregulates the synthesis and secretion of pro-

inflammatory cytokines and chemokines (100–105). This

asynchronous inflammatory response disrupts the continuity of

normal pregnancy (106, 107).

Our recent research demonstrated that PRL modulates the innate

immune response deployed by fetal membranes during a pathological

inflammatory process. Using an ex vivomodel recreating the scenario

of an ascending infection, we demonstrated that only high

concentrations of PRL, corresponding to those in AF, selectively

reduce LPS-induced TNF-a and IL-1b release in the choriodecidual

region but have no effect on IL-6 and IL-10 (48).

This selective regulation is interesting because IL-10 is among

the anti-inflammatory factors that promote the induction and

maintenance of allograft tolerance at the maternal-fetal interface

(108, 109). In contrast, TNF-a and IL-1b are pro-inflammatory

cytokines that induce preterm labor (110). These cytokines also

induce secretion and activity of MMP-2 and MMP-9 in fetal

membranes, critical factors in collagenolytic processes leading to

the weakening of fetal membrane and pPROM (111).

We also examined the effect of PRL on these collagenolytic

enzymes. We found that PRL decreased the release of MMP-1,

MMP-2, and MMP-9 and the collagenolytic activity of MMP-2 and

MMP-9 in tissue extracts of fetal membranes induced by LPS (82).

Collagen type IV is the main substrate of MMP-2 and MMP-9 and

forms the scaffold for the interstitial collagen fibers (type I, II, and

III), which are the substrates of MMP-1 (111). These collagen fibers

are the major components of the basal lamina that supports the

amniotic epithelium. The increased secretion and activity of these

MMPs due to the inflammatory response leads to an irreversible

change in the structure of the membranes and impairs their

function as a physical and immunological barrier (112–114). At

the histological level, PRL prevents the structural changes induced

by LPS in the inner layers of the amnion and preserves the

structural integrity of the tissue (82).

Finally, considering the infiltration of leukocytes into this tissue

as part of the defense mechanisms, we investigated the effect of PRL

on chemotactic factors released from fetal membranes. Our results

showed that PRL decreased the release of Monocyte Chemoattractant

Protein-1 (MCP-1), Macrophage Inflammatory Protein-1 Alpha

(MIP1-a), and Regulated upon Activation, Normal T Cell

Expressed and Presumably Secreted (RANTES), which are induced

by LPS in fetal membranes (81). These chemokines selectively attract
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monocytes, macrophages, T cells, and NKs, potential sources of pro-

inflammatory and degradative modulators that exacerbate

the deleterious environment in the amniotic cavity (115, 116).

Moreover, PRL reduced T-cell migration in chemotaxis assays

in response to media conditioned by the amnion and

choriodecidua (117).

In summary, PRL selectively regulates the first wave of

inflammatory factors (cytokines and chemokines), decreases the

second wave of degradative factors, favors an environment

compatible with immune privilege, and partially controls the

deleterious response during infection (Figure 5B). These results

provide further evidence for the role of PRL as an immunomodulator

in these extraembryonic tissues, whose functions are also essential for

pregnancy health. It would be interesting to explore the mechanistic

aspects of PRL that influence membrane functions in different contexts,

such as senescence and oxidative stress, which are involved in the sterile

inflammation of fetal membranes.
3.5 Serum levels of fetal PRL

In the fetal pituitary, PRL levels greater than 2 ng per total

pituitary protein content are detectable around week 10 (31). Fetal

PRL serum levels remain low (19 ng/mL) until 30 weeks gestation

and then increase rapidly to reach 300 - 500 ng/mL by the end of

pregnancy (18). Fetal PRL is associated with early chondrogenesis

and central nervous system development; it is also involved in

insulin production before and after birth (31, 118).
3.6 Conclusions and future perspectives

This review summarizes the regulation of decidual PRL

production and its central role in the complex immune-endocrine

responses at the maternal-fetal interface. PRL levels fluctuate

throughout pregnancy in the different compartments of the feto-

maternal interface and show the highest concentration around the

second trimester of pregnancy, which coincides with the period of

the anti-inflammatory response. Then, a decrease in PRL

concentration coincides with the environmental shift toward a

pro-inflammatory response, coinciding with the lowest PRL levels

and the onset of labor.

PRL promotes maternal-fetal tolerance throughout pregnancy

and regulates trophoblast growth and placental metabolism,

amniotic cavity osmotic pressure, and fetal membrane innate

immune responses. PRL is thus an essential component of the

endocrine clock that controls the adaptations required at each stage

of pregnancy and ultimately drives the activation of the decidua and

fetal membranes to ensure successful delivery.

The immunomodulatory role of PRL in the mechanisms of fetal

membrane senescence and its role in adverse events such as pPROM

and PTLmay be part of the next experimental approaches in this field.
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Calcitriol stimulates prolactin expression in non-activated human peripheral blood
mononuclear cells: breaking paradigms. Cytokine (2011) 55:188–94. doi: 10.1016/
J.CYTO.2011.04.013

21. Delvin EE, Gagnon L, Arabian A, Gibb W. Influence of calcitriol on prolactin
and prostaglandin production by human decidua. Mol Cell Endocrinol (1990) 71:177–
83. doi: 10.1016/0303-7207(90)90023-2

22. Jikihara H, Handwerger S, Jikihara H. Tumor necrosis factor-alpha inhibits the
synthesis and release of human decidual prolactin. Endocrinology (1994) 134:353–7.
doi: 10.1210/ENDO.134.1.8275950

23. Kanda Y, Jikihara H, Markoff E, Handwerger S. Interleukin-2 inhibits the
synthesis and release of prolactin from human decidual cells. J Clin Endocrinol Metab
(1999) 84:677–81. doi: 10.1210/JCEM.84.2.5450

24. Kane NM, Jones M, Brosens JJ, Kelly RW, Saunders PTK, Critchley HOD.
TGFb1 attenuates expression of prolactin and IGFBP-1 in decidualized endometrial
stromal cells by both SMAD-dependent and SMAD-independent pathways. PloS One
(2010) 5:e12970. doi: 10.1371/JOURNAL.PONE.0012970

25. Christian M, Zhang X, Schneider-Merck T, Unterman TG, Gellersen B, White
JO, et al. Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with
CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal
cells. J Biol Chem (2002) 277:20825–32. doi: 10.1074/JBC.M201018200

26. Pohnke Y, Kempf R, Gellersen B. CCAAT/enhancer-binding proteins are
mediators in the protein kinase a-dependent activation of the decidual prolactin
promoter. J Biol Chem (1999) 274:24808–18. doi: 10.1074/JBC.274.35.24808

27. Lynch VJ, Brayer K, Gellersen B, Wagner GP. HoxA-11 and FOXO1A cooperate
to regulate decidual prolactin expression: towards inferring the core transcriptional
regulators of decidual genes. PloS One (2009) 4:e6845. doi: 10.1371/
JOURNAL.PONE.0006845

28. Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for
endometrial remodeling and homeostasis during menstrual cycle and early pregnancy.
Hum Reprod Update (2021) 27:570–83. doi: 10.1093/HUMUPD/DMAA060

29. Brar AK, Kessler CA, Handwerger S. An ets motif in the proximal decidual
prolactin promoter is essential for basal gene expression. J Mol Endocrinol (2002)
29:99–112. doi: 10.1677/JME.0.0290099
frontiersin.org

https://doi.org/10.3390/ijms20153654
https://doi.org/10.1038/nri.2017.64
https://doi.org/10.3389/FIMMU.2020.575197
https://doi.org/10.3389/FIMMU.2020.575197
https://doi.org/10.1016/0002-9378(72)90446-2
https://doi.org/10.1016/0002-9378(72)90446-2
https://doi.org/10.1016/0002-9378(77)90594-4
https://doi.org/10.1016/0002-9378(77)90594-4
https://doi.org/10.1016/0002-9378(85)90665-9
https://doi.org/10.1152/PHYSREV.2000.80.4.1523
https://doi.org/10.1152/PHYSREV.2000.80.4.1523
https://doi.org/10.1210/endo.141.5.7464
https://doi.org/10.1210/endo.141.5.7464
https://doi.org/10.1159/000516939
https://doi.org/10.1111/JNE.12223
https://doi.org/10.3389/FENDO.2022.883092
https://doi.org/10.1016/0306-4530(83)90047-1
https://doi.org/10.1210/ENDO-95-1-260
https://doi.org/10.1210/ENDO-95-1-260
https://doi.org/10.1007/978-3-319-12114-7_4
https://doi.org/10.1093/EMBOJ/16.23.6926
https://doi.org/10.1093/EMBOJ/16.23.6926
https://doi.org/10.1101/GAD.11.2.167
https://doi.org/10.1210/ME.2013-1349
https://doi.org/10.1210/JC.2002-021255
https://doi.org/10.1016/J.CYTO.2011.04.013
https://doi.org/10.1016/J.CYTO.2011.04.013
https://doi.org/10.1016/0303-7207(90)90023-2
https://doi.org/10.1210/ENDO.134.1.8275950
https://doi.org/10.1210/JCEM.84.2.5450
https://doi.org/10.1371/JOURNAL.PONE.0012970
https://doi.org/10.1074/JBC.M201018200
https://doi.org/10.1074/JBC.274.35.24808
https://doi.org/10.1371/JOURNAL.PONE.0006845
https://doi.org/10.1371/JOURNAL.PONE.0006845
https://doi.org/10.1093/HUMUPD/DMAA060
https://doi.org/10.1677/JME.0.0290099
https://doi.org/10.3389/fimmu.2023.1212736
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Flores-Espinosa et al. 10.3389/fimmu.2023.1212736
30. Bradford AP, Brodsky KS, Diamond SE, Kuhn LC, Liu Y, Gutierrez-Hartmann
A. The pit-1 homeodomain and beta-domain interact with ets-1 and modulate
synergistic activation of the rat prolactin promoter. J Biol Chem (2000) 275:3100–6.
doi: 10.1074/JBC.275.5.3100

31. Freemark M. Ontogenesis of prolactin receptors in the human fetus: roles in fetal
development. Biochem Soc Trans (2001) 29:38. doi: 10.1042/0300-5127:0290038

32. Golander A, Hurley T, Hizi A. Prolactin synthesis by human chorion-decidual
tissue: a possible source of prolactin in the amniotic fluid. Sci (1979) (1978) 202:311–3.
doi: 10.1126/science.694535

33. Riddick DH, Kusmik WF. Decidua: a possible source of amniotic fluid prolactin.
Am J Obstet Gynecol (1977) 127:187–90. doi: 10.1016/S0002-9378(16)33248-3

34. Rosenberg SM, Maslar IA, Riddick DH. Decidual production of prolactin in late
gestation: further evidence for a decidual source of amniotic fluid prolactin. Am J Obstet
Gynecol (1980) 138:681–5. doi: 10.1016/0002-9378(80)90088-5

35. Ben-Jonathan N, Munsick RA. Dopamine and prolactin in human pregnancy. J
Clin Endocrinol Metab (1980) 51:1019–25. doi: 10.1210/JCEM-51-5-1019

36. Wathen NC, Campbell DJ, Patel B, Touzel R, Chard T. Dynamics of prolactin in
amniotic fluid and extraembryonic coelomic fluid in early human pregnancy. Early
Hum Dev (1993) 35:167–72. doi: 10.1016/0378-3782(93)90103-2

37. Hu Y, Ding Y, Yang M, Xiang Z. Serum prolactin levels across pregnancy and
the establishment of reference intervals. Clin Chem Lab Med (2018) 56:838–42.
doi: 10.1515/cclm-2017-0644

38. Stefos T, Sotiriadis A, Tsirkas P, Messinis I, Lolis D. Maternal prolactin secretion
during labor. the role of dopamine. Acta Obstet Gynecol Scand (2001) 80:34–8.
doi: 10.1034/j.1600-0412.2001.800107.x

39. Riddick DH, Luciano AA, Kusmik WF, Maslar IA. De novo synthesis of
prolactin by human decidua in vitro. Life Sci (1978) 23:1913–21. doi: 10.1016/0024-
3205(78)90557-X

40. Maslar IA, Kaplan BM, Luciano AA, Riddick DH. Prolactin production by the
endometrium of early human pregnancy. J Clin Endocrinol Metab (1980) 51:78–83.
doi: 10.1210/JCEM-51-1-78

41. Maslar IA, Ansbacher R. Effect of short-duration progesterone treatment on
decidual prolactin production by cultures of proliferative human endometrium. Fertil
Steril (1988) 50:250–4. doi: 10.1016/s0015-0282(16)60068-7

42. Kinoshita T, Taketani Y, Mizuno M. A decline in prolactin levels in amniotic
fluid and decidua at term pregnancy after the initiation of labour. J Endocrinol (1991)
130:151–3. doi: 10.1677/joe.0.1300151

43. Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, et al. Generation of
mice expressing only the long form of the prolactin receptor reveals that both isoforms
of the receptor are required for normal ovarian function. Biol Reprod (2012) 86.
doi: 10.1095/BIOLREPROD.111.095927

44. Telleria CM, Parmer TG, Zhong L, Clark DL, Albarracin CCT, Duan WR, et al.
The different forms of the prolactin receptor in the rat corpus luteum: developmental
expression and hormonal regulation in pregnancy. Endocrinology (1997) 138:4812–20.
doi: 10.1210/ENDO.138.11.5479

45. Jones RL, Critchley HOD, Brooks J, Jabbour HN, Mcneilly AS. Localization and
temporal expression of prolactin receptor in human endometrium. J Clin Endocrinol
Metab (1998) 83:258–62. doi: 10.1210/JCEM.83.1.4506

46. Maaskant RA, Bogic LV, Gilger S, Kelly PA, Bryant-Greenwood GD. The human
prolactin receptor in the fetal membranes, decidua, and placenta. J Clin Endocrinol
Metab (1996) 81:396–405. doi: 10.1210/JCEM.81.1.8550784

47. Gu Y, Srivastava RK, Clarke DL, Linzer DIH, Gibori G. The decidual prolactin
receptor and its regulation by decidua-derived factors. Endocrinology (1996) 137:4878–
85. doi: 10.1210/ENDO.137.11.8895360
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