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Rationale and introduction: It is of significance to assess the severity and predict

the mortality of patients with connective tissue disease-associated interstitial

lung disease (CTD-ILD). In this double-center retrospective study, we developed

and validated a radiomics nomogram for clinical management by using the ILD-

GAP (gender, age, and pulmonary physiology) index system.

Materials and methods: Patients with CTD-ILD were staged using the ILD-GAP

index system. A clinical factor model was built by demographics and CT features,

and a radiomics signature was developed using radiomics features extracted

from CT images. Combined with the radiomics signature and independent

clinical factors, a radiomics nomogram was constructed and evaluated by the

area under the curve (AUC) from receiver operating characteristic (ROC)

analyses. The models were externally validated in dataset 2 to evaluate the

model generalization ability using ROC analysis.

Results: A total of 245 patients from two clinical centers (dataset 1, n = 202;

dataset 2, n = 43) were screened. Pack-years of smoking, traction bronchiectasis,

and nine radiomics features were used to build the radiomics nomogram, which

showed favorable calibration and discrimination in the training cohort {AUC,

0.887 [95% confidence interval (CI): 0.827–0.940]}, the internal validation cohort

[AUC, 0.885 (95% CI: 0.816–0.922)], and the external validation cohort [AUC,

0.85 (95% CI: 0.720–0.919)]. Decision curve analysis demonstrated that the

nomogram outperformed the clinical factor model and radiomics signature in

terms of clinical usefulness.

Conclusion: The CT-based radiomics nomogram showed favorable efficacy in

predicting individual ILD-GAP stages.

KEYWORDS

connective tissue diseases, interstitial lung diseases, radiomics, machine learning,
computed tomography
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Highlights
Fron
• Assessment of the severity of CTD-ILD is difficult by

conventional imaging modalities.

• Radiomics nomogram can predict the GAP stage with

improved efficacy in comparison to clinical factors.

• The CT-based radiomics nomogram might provide

treatment guidance for CTD-ILD.
Introduction

Interstitial lung diseases (ILDs) are spread parenchymal lung

disturbances frequently associated with connective tissue disease

(CTD) (1). All patients with CTD face the risk of ILD, which may

occur at any point during the period of CTD, even the first clinically

apparent manifestation of their CTD (2). ILDs are mostly seen in

systemic sclerosis (SSc), rheumatoid arthritis (RA), Sjögren’s

syndrome (SjS), systemic lupus erythematosus (SLE), idiopathic

inflammatory myosit is [ including polymyosit is (PM)/

dermatomyositis (DM) and anti-synthetase syndrome], and

mixed connective tissue disease (MCTD) (3).

On account of the shortage of randomized controlled trials and

recommendations, identifying which treatment to implement for

CTD-ILD is currently a predicament for clinicians (3–5). Although it

has been reported that ILD is associated with early mortality, which is

responsible for up to 35% of CTD-related deaths in some cohorts (6–

10), rushing into medical intervention may result in unnecessary drug

toxicant exposure on stable patients and opportunity of infection (11,

12). Thus, staging approaches across CTD-ILD for individual

treatment need to be developed to relieve impairments (3, 9).

The GAP (gender, age, and pulmonary physiology) index and

staging scale were proposed for predicting the mortality risk of

idiopathic pulmonary fibrosis (IPF) patients by Ley et al. (13) in

2012 and subsequently improved and validated to adapt non-IPF

ILDs by Ryerson et al. (14). The ILD-GAP index scale used gender,

age, predicted forced vital capacity (FVC), and diffusion capacity of

carbon monoxide (DLCO) to estimate the severity and predict the

mortality in patients with chronic ILD. It has been validated to be

accurate in various kinds of CTDs (15–19).

Computed tomography (CT) scan remains the main method for

ILD diagnosis at present because it is a noninvasive sensitive

technique for detecting lung involvement in CTD patients (20–23).

CT imaging together with PFT is the gold standard to assess and stage

the severity of ILD noninvasively at present (24). However, visual

analysis of ILDs on CT image presents difficulty in providing

prognosis information because different stages of ILD share

overlapping imaging features, conferring difficulty in diagnosing

and assessing the severity of ILD by conventional imaging

modalities. Radiomics technology can extract a large number of

high-dimensional features from CT images, which could make up

for the shortcomings of visual assessment. Radiomics has been

investigated for diagnosis and prognosis in many diseases, but
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mostly in different kinds of tumors (25, 26). Radiomics were able

to predict mortality and response to treatment in patients with CTD-

ILDs, exploring prognostic information hiding beneath CT images

that visual assessment has difficulty in acquiring (27, 28). There were

correlations between radiomics features and GAP stages, indicating

potentials in radiomics to stage patients in CTD-ILDs (29). In the

present study, we aimed to establish a CT-based radiomics

nomogram to differentiate and stage CTD-ILD phases.
Materials and methods

Patients

Authorization of the institutional review board was granted,

and informed consent was waived.

Patients who were clinically diagnosed with CTD (SSc, RA, SjS,

PM/DM, SLE, andMCTD) from June 2015 to June 2021 in Shandong

Provincial Hospital Affiliated to Shandong First Medical University

(dataset 1) and Qilu Hospital of Shandong University (dataset 2) were

screened consecutively. Patients were included when they satisfied all

of the following conditions: 1) diagnosed with CTD fulfilling the

American college of rheumatology/European league against

rheumatism (ACR/EULAR) or other acknowledged classification

criteria (30–35), 2) underwent CT scan with signs of ILD within 3

months after clinical diagnosis, and 3) underwent pulmonary

function tests (PFTs) and laboratory examination within 30 days

before or after the CT scan. Patients were ruled out when they fulfilled

any of the following conditions: 1) diagnosed with tumors in the lung;

2) diagnosed with idiopathic interstitial pneumonia, sarcoidosis, or

any disease other than CTD that may lead to ILD; 3) any surgical

history of the thorax; and 4) incomplete demographic or clinical data.

The PFT indices included the percentage predicted values (%

predicted) of forced expiratory volume in 1 s (FEV1), FVC, total

lung capacity (TLC), and diffusion capacity of carbon monoxide. The

ILD-GAP index was calculated according to Ryerson et al. (14). The

patients were divided into two groups where Group I included

patients with ILD-GAP index ≤1, and Group II included patients

with ILD-GAP index >1. All patients were followed up until October

2022 and all-cause mortality was the endpoint. The predictive

performance of the ILD-GAP index was evaluated by using

univariate variable Cox regression and Harrell’s C index. Patients

in dataset 1 were then randomly split into training and internal

validation cohorts at a ratio of 7:3. The external validation cohort was

composed of patients in dataset 2.
CT image acquisition and evaluation

All CT examinations were performed in supine position with

maximum inspiration. The detailed scanning parameters are shown

in Supplementary Table S1.

The CT images were reviewed by two radiologists (Qin S.N.

with 5 years and Wang X.M. with 20 years of thoracic imaging

experience) without awareness of any other characteristics of the
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patients, and divergences were unified by consensus. The presence

of visual characteristics of ILD (yes/no), including subpleural lines,

reticular changes, honeycombing, pulmonary emphysema, and

traction bronchiectasis, was evaluated case-by-case. All CT

characteristics mentioned met the Fleischner Society criteria

proposed in 2008 (36). The proportion (%) of the parenchymal

extent in total lung volume was calculated using the pneumonia

diagnosis module of Dr. Turing® artificial intelligence-assisted

diagnosis system (Huiying Medical Technology Co., Ltd.).
Three-dimensional lung segmentation and
extraction of texture features

All CT images were reprocessed by resampling into 1.0-mm-

thick slices and intensity normalization into a range of [–1, 1]. The

region of interest (ROI) segmentation within the borders of the

right lung (window width = 1,500; window level = -750) was

manually delineated using the 3D Slicer software (version 4.11,

www.slicer.org). The outline of the ROI was contoured avoiding the

hilar vessels. The left lung was not segmented, since the presence of

the heart may add to the difficulties of segmentation and potentially

lead to alterations in the results.

Extraction of the radiomics features was conducted through the

Radcloud platform (www.huiyihuiying.com, Huiying Medical

Technology Co., Ltd.). Compliant with the definitions of the

Imaging Biomarker Standardization Initiative (37), 1,409

radiomics features altogether were retrieved from each ROI,

whose information are in the Supplementary Results.

Interclass and intraclass correlation coefficients (ICCs) were

applied through the following steps: 20 cases containing 10 Group I

patients and 10 Group II patients were randomly selected to

perform ROI segmentation by the readers. Reader 1 repeated the

segmentation a month later. Segmentation was considered well

matched in terms of the interobserver reliability and intraobserver

reproducibility when the ICC value was greater than 0.75. Reader 1

then completed the rest of the segmentation procedures.
Construction of the clinical model

The clinical factor model comprised significant difference

variables between the two groups (p< 0.05) selected by univariate

logistic regression analysis, including clinical data, laboratory

examinations, and visual CT characteristics. Gender, age, and

PFT parameters were excluded to prevent data leakage of the

models. Then, the model was built using multivariable logistic

regression analysis. Odds ratios (ORs) with 95% confidence

intervals (CIs) were calculated for significantly correlated variables.
Construction of the radiomics model and
the combined model

To prevent model overfitting, dimensionality reduction of the

radiomics features was performed before the signature to be
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constructed. In the training cohort, the features for constructing

the radiomics model should satisfy the following conditions:

interobserver and intraobserver ICCs exceeding 0.75; remarkable

variant from one another as confirmed by analysis of variance; and

selected as major contributories for predicting by bringing into the

least absolute shrinkage and selection operator (LASSO) regression

model. Finally, the radiomics model was constructed using the

support vector machine (SVM) with selected features. The

radiomics score (Rad-score) representing the weighting coefficient

of the features for each patient was calculated.

Incorporating the significant clinical factors and the radiomics

signature, a radiomics nomogram was constructed using

multivariable logistic regression analysis. Variance inflation factors

(VIFs) of the predictors were calculated for multicollinearity. A

calibration curve was drawn to estimate the calibration of the

combined model. The goodness of fit of combined model was

estimated using the Hosmer–Lemeshow test.
Evaluation of model capabilities

The classification performance of the clinical factor model,

radiomics model, and combined model to differentiate Group II

CTD-ILD from Group I was represented by the area under the

curve (AUC) from receiver operating characteristic (ROC) curves.

The comparison between the three models was assessed using the

likelihood ratio test (LRT). The net benefits for a range of threshold

probabilities were calculated by applying decision curve analysis

(DCA) to measure the clinical benefit of the combined model. All

three models were externally validated based on dataset 2 to

evaluate the model generalization ability using ROC analysis.
Statistical analysis

SPSS (version 26.0) and R software (version 3.5.1) were used to

perform statistical tests and analyses. Significantly different clinical

characteristics were detected using chi-square test, Fisher exact test,

or Mann–Whitney U test, where appropriate. The DeLong test was

conducted to test whether the AUC of the models based on the same

cohort significantly varied. Categorical and continuous variables are

shown by form of frequency (percentages), mean ± standard

deviation, or median (interquartile range), where appropriate. The

regression analysis, nomogram development, calibration plots,

ROC analysis, and DCA were performed by the packages “rms,”

“glmnet,” “pROC,” and “dcurves” in R. A two-tailed p value of<0.05

was regarded as indicating significant variation.
Results

Patient characteristics and the
clinical model

Figure 1 showed the process of patients’ enrollment and model

construction. Eventually, a total of 245 patients (dataset 1, n = 202;
frontiersin.org
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dataset 2, n = 43) were enrolled in this study. Group I included 158

ILD-GAP stage I patients, while Group II included 40 ILD-GAP stage

II and four stage III patients. The distribution of their CTD subtypes

is detailed in Supplementary Table S2. Table 1 listed the baseline

patient characteristics in dataset 1. The ILD-GAP index exhibited

increasing mortality in patents with higher stages by univariate Cox

regression (Hazard Ratio, 5.364; 95% CI, 1.994–14.424; p = 0.01) and

showed acceptable mortality predictive performance (C-index 0.703)
Frontiers in Immunology 04
in some of the patients of dataset 1 (n = 74). More detailed follow-up

information was shown in the Supplementary Material. Table 2

exhibited the outputs of univariable and multivariable logistic

regression analyses, which suggested that pack-years of smoking

and traction bronchiectasis remained as independent predictors.

Patients with a larger number of cigarettes smoked (OR, 1.036;

95% CI, 1.010–1.063) or traction bronchiectasis on CT image (OR,

3.705; 95% CI, 1.222–11.239) tended to have a higher mortality. We
FIGURE 1

Flowchart of the study patients.
TABLE 1 Patients’ baseline clinical factors between group I with GAP stage I patients and group II with GAP stage II/III patients in dataset 1.

Variables
Training cohort (n=140) Internal-validation cohort (n=62)

Group I Group II p value Group I Group II p value

Demographics 1.000 0.000

Number (n) 110 30 48 14

Gender <0.001 0.430

Male 22 (20%) 17 (56.7%) 15 (31.3%) 2 (14.3%)

Female 88 (80%) 13 (43.3%) 33 (68.8%) 12 (85.7%)

Median age (range), years 52.5 (18-79) 66 (38-81) <0.001 50 (20-73) 64.5 (50-76) 0.022

BMI, kg/m2* 24.1 ± 3.7 24.6 ± 4.3 0.381 23.3 ± 3.7 22.7 ± 3.7 0.490

Pack-years of smoking 0.00 [0.00-0.00] 0.00 [0.00-17.50] 0.002 0.00 [0.00-0.00] 0.00 [0.00-0.75] 0.022

(Continued)
fron
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examined the two predictors in dataset 2, which showed parallel

results (Supplementary Table S4).
Development of the radiomics model

A total of 1,409 radiomics features were obtained from the CT

images; 1,367 of them were examined to be of promising
Frontiers in Immunology 05
interobserver and intraobserver accordance (intraclass correlation

coefficient >0.75). Seventy significantly different (p< 0.05) radiomics

features selected went through the LASSO logistic regression

analysis to choose the optimally related features (Figure 2).

Eventually, nine features were put into radiomics model

construction. Supplementary Table S5 listed elaborated

information of the features. The Rad-score was calculated

according to the following equation:
TABLE 1 Continued

Variables
Training cohort (n=140) Internal-validation cohort (n=62)

Group I Group II p value Group I Group II p value

Pulmonary arterial hypertension** 12 (10.9%) 3 (10%) 0.631 1 (2.08%) 2 (14.2%) 1.000

Symptoms

Fever (y/n) 22 (20%) 4 (13.3%) 0.405 12 (25%) 1 (7.14%) 0.284

Cough (y/n) 46 (41.8%) 10 (33.3%) 0.400 19 (39.6%) 8 (57.1%) 0.244

Cutaneous (y/n) 33 (30%) 10 (33.3%) 0.726 13 (27.1%) 2 (14.2%) 0.529

Joint tenderness and swelling (y/n) 67 (60.9%) 14 (46.7%) 0.161 29 (60.4%) 10 (71.4%) 0.453

Chest distress and dyspnea (y/n) 49 (44.5%) 15 (50%) 0.595 14 (29.2%) 10 (71.4%) 0.004

Pulmonary function

FVC% predicted* 85.2 ± 19.2 66.4 ± 15.6 <0.001 86.0 ± 17.5 58.0 ± 16.2 <0.001

FEV1% predicted* 86.9 ± 18.0 70.0 ± 16.7 <0.001 87.2 ± 18.4 61.5 ± 22.3 <0.001

TLC% predicted* 84.4 ± 16.0 51.2 ± 26.0 <0.001 84.0 ± 16.4 55.9 ± 14.7 <0.001

DLCO% predicted* 63.8 ± 14.4 28.9 ± 16.8 <0.001 61.3 ± 15.9 32.9 ± 15.0 <0.001

Laboratory Examinations

ESR 26.00 [14.00-58.00] 29.00 [13.25-58.00] 0.984 29.50 [20.00-73.00] 49.50 [25.50-75.25] 0.429

CRP 3.38 [1.09-15.16] 12.41 [1.27-29.65] 0.143 4.74 [1.81-32.74] 5.76 [2.70-12.62] 0.556

PCT 0.01 [0.01-0.01] 0.01 [0.01-0.02] 0.771 0.01 [0.01-0.03] 0.01 [0.01-0.04] 0.417

ASO 4 (3.6%) 1 (3.33%) 1.000 5 (10.4%) 0 (0%) 0.579

RF 44 (40%) 13 (43.3%) 0.742 21 (43.8%) 8 (57.1%) 0.377

CCP 24 (21.8%) 10 (33.3%) 0.192 10 (20.8%) 4 (28.6%) 0.806

APLA 27 (24.5%) 4 (13.3%) 0.190 13 (27.1%) 3 (21.4%) 0.938

ANA 102 (92.7%) 28 (93.3%) 1.000 41 (85.4%) 10 (71.4%) 0.419

ANCA 5 (4.5%) 2 (6.7%) 1.000 3 (6.3%) 1 (7.1%) 1.000

Features of ILD on HRCT

Subpleural lines (y/n) 101 (91.8%) 28 (93.3%) 1.000 43 (89.6%) 13 (92.9%) 1.000

Reticular changes (y/n) 92 (83.6%) 27 (90%) 0.564 40 (83.3%) 11 (78.6%) 0.990

Honeycombing (y/n) 37 (33.6%) 13 (43.3%) 0.326 18 (37.5%) 11 (78.6%) 0.007

Pulmonary emphysema (y/n) 41 (37.3%) 16 (53.3%) 0.112 20 (41.7%) 11 (78.6%) 0.015

Traction bronchiectasis (y/n) 9 (8.2%) 7 (23.3%) 0.047 5 (10.4%) 6 (42.9%) 0.016

Proportion of parenchymal extent (%) 5.96 [2.22-13.75] 16.47 [4.67-22.65] 0.045 7.41 [2.57-13.94] 13.93 [7.09-27.47] 0.046
fron
Categorical variables are presented as n (%). Continuous variables are listed as median (inter-quartile range, IQR) or *as mean ± standard deviation.
n number of patients, y/n yes/no, ESR erythrocyte sedimentation rate, PCT procalcitonin, ASO anti-streptolysin O, RF rheumatoid factor, CRP C-reactive protein, APLA anti-phospholipid
antibodies, ANA antinuclear antibodies, ANCA antineutrophil cytoplasmic antibodies, CCP anti-cyclic citrullinated peptide antibodies, ILD interstitial lung disease.
**Expert opinion by echocardiography.
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Rad-score = 0:052� original_shape_Flatness + 0:0158� wavelet-HHL_firstorder_Kurtosis + 0:0381

�wavelet-HLH_glcm_SumSquares + 0:0422� wavelet-LHH_firstorder_Kurtosis + 0:0244

�wavelet-LHH_glcm_Autocorrelation − 0:0167� wavelet-LHL_glrlm_GrayLevelVariance − 0:0037

�wavelet-LHL_glrlm_LowGrayLevelRunEmphasis − 0:0656

�wavelet-LHL_glszm_SizeZoneNonUniformityNormalized + 0:0271

�wavelet-LLL_glszm_SmallAreaEmphasis

The Rad-score was a tested statistically significant variant

between the two groups (p< 0.05; Supplementary Table S6) and

presented in Figure 3.
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Development of the combined model

By comprising the pack-years of smoking, traction bronchiectasis,

and Rad-score, a combined model was built in the training cohort

(Figure 4A). The VIFs of the predictors ranged from 1.04 to 1.08,

indicating that there was no multicollinearity. The calibration curve of

the radiomics nomogram is presented in Figures 4B–D, which

represented acceptable calibration in the training cohort (p = 0.089),

the internal validation cohort (p = 0.107), and the external validation
TABLE 2 Risk factors for Group II CTD-ILD in the training cohort.

Variables
Univariable analysis Multivariable analysis

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Gender 5.24 (2.21-12.35) <0.001

Age 1.08 (1.04-1.13) <0.001

BMI 1.04 (0.94-1.15) 0.475

Pack-years of smoking 1.04 (1.01-1.06) 0.010 1.04 (1.01-1.06) 0.007

Pulmonary arterial hypertension 1.93 (0.45-8.20) 0.375

Fever 0.62 (0.19-1.95) 0.409

Cough 0.70 (0.30-1.63) 0.402

Cutaneous 1.17 (0.49-2.76) 0.726

Joint tenderness and swelling 0.56 (0.25-1.27) 0.164

Chest distress and dyspnea 1.25 (0.56-2.79) 0.595

FVC% predicted 0.94 (0.91-0.96) <0.001

FEV1% predicted 0.94 (0.92-0.97) <0.001

TLC% predicted 0.87 (0.82-0.92) <0.001

DLCO% predicted 0.86 (0.80-0.91) <0.001

ESR 1.00 (0.99-1.01) 0.937

CRP 1.01 (1.00-1.02) 0.114

PCT 0.48 (0.13-18.29) 0.694

ASO 0.91 (0.10-8.49) 0.937

RF 1.15 (0.51-2.60) 0.742

CCP 1.79 (0.74-4.34) 0.196

APLA 0.47 (0.15-1.48) 0.197

ANA 1.10 (0.22-5.47) 0.909

ANCA 1.50 (0.28-8.15) 0.639

Consolidation 1.10 (0.22-5.47) 0.909

Subpleural lines 1.25 (0.26-6.11) 0.785

Reticular changes 1.76 (0.48-6.43) 0.392

Honeycombing 1.51 (0.66-3.44) 0.328

Pulmonary emphysema 1.92 (0.85-4.34) 0.116

Traction bronchiectasis 3.42 (1.15-10.12) 0.027 3.71 (1.22-11.24) 0.021

Proportion of parenchymal extent 1.04 (1.01-1.07) 0.021 1.03 (1.00-1.07) 0.053
fro
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cohort (p = 0.217) through the Hosmer–Lemeshow test. The

nomogram score was calculated according to the following equation:

Nomogram score = 142:5744   +   142:8572� Rad-score − 0:4698

� pack-year of smoking − 40:8917

� bronchiectasis
The validation of the capabilities of
the models

The capability of the diagnostic efficiency for each model is

presented in Table 3. The ROC curves of the clinical factor model

and combined model are presented in Figure 5.

In the training cohort, the AUC of the combined model [AUC,

0.887 (95% CI: 0.827–0.940)] was significantly better than that of

the radiomics model [AUC, 0.813 (95% CI: 0.743–0.877); p = 0.011]

but not significantly different from that of the clinical factor model

[AUC, 0.803 (95% CI: 0.723–0.876); p = 0.873]. The LRT indicated

that there was a statistically significant improvement after the

inclusion of Rad-score in the clinical factor model (p< 0.001) and

after the inclusion of the Independent clinical predictors in the

radiomics model (p = 0.036; Table 4). In the internal validation
Frontiers in Immunology 07
cohort, the combined model [AUC, 0.885 (95% CI: 0.816–0.922)]

presented higher predictive efficacy than both the clinical factor

model [AUC, 0.763 (95% CI: 0.603–0.841); p = 0.031] and the

radiomics signature [AUC, 0.787 (95% CI: 0.606–0.825); p = 0.011].

In the external validation cohort, the combined model achieved an

AUC of 0.851 (95% CI: 0.817–0.718) and showed similar predictive

performance with the internal validation cohort.

The DCA for the three models presented that the combined model

performed better than the clinical model and the radiomics model in

distinguishing between different stages of CTD-ILD across themajority

of the range of reasonable threshold probabilities (Figure 6).
Discussion

The present study showed that the combined model, which

incorporated the CT-based Rad-score and clinical variables, had

favorable predictive efficacy to distinguish different ILD-GAP stage

patients with an AUC of 0.887, 0.885, and 0.851 in the training,

internal validation, and external validation cohorts, respectively. In

the present study, clinical variables and visual characteristics on CT

image were enrolled. Multiple logistic regression analysis revealed

that a larger number of cigarettes smoked and traction bronchiectasis

on CT were independent predictors. Only 30 patients (14.85%) ever
A B

FIGURE 2

Feature selection and dimensionality reduction workflow. (A) Confirmation of the tuning parameter (l) in the least absolute shrinkage and selection
operator model. An optimal l value of 0.015 with (vertical dash line) was selected. (B) The feature coefficients varied according to log(l).
A B C

FIGURE 3

The radiomics scores for each patient in the training (A), internal validation (B), and external validation (C) cohorts.
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smoked in our dataset, and we believe it is because the number of

male patients is smaller (n = 55, 27.23%). This revealed not only

actual gender distribution of the CTDs but also the significant

influence that smoking exerted on the mortality of CTD-ILD

patients. A clinical factor model to classify ILD-GAP stages was
Frontiers in Immunology 08
then developed, incorporating pack-years of smoking and traction

bronchiectasis on CT image, and achieved a high AUC of 0.803,

0.763, and 0.817 in the training, internal validation, and external

validation cohorts, respectively. Honeycombing was proven not

associated with GAP stages in our study that, however, with
TABLE 3 Diagnostic performance of the clinical factor model, the radiomics signature, and the radiomics nomogram.

Model Group AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV
F1-

score

Clinical factor
model

Training cohort
0.803

(0.723–0.876)
0.891 (98/110) 0.633 (19/30)

0.836
(117/140)

0.899
(98/109)

0.613 (19/
31)

0.895

Internal validation
cohort

0.763
(0.603–0.841)

0.875 (42/48) 0.571 (8/14) 0.806 (50/62)
0.875
(42/48)

0.571 (8/14) 0.875

External validation
cohort

0.817
(0.690–0.833)

0.533 (16/30) 1 (13/13) 0.674 (29/43) 1 (16/16)
0.481 (13/

27)
0.696

Radiomics signature Training cohort
0.813

(0.743–0.877)
0.736 (81/110) 0.7 (21/30)

0.729
(102/140)

0.9 (81/
90)

0.42 (21/50) 0.81

Internal validation
cohort

0.787
(0.606–0.825)

0.667 (32/48) 0.786 (11/14) 0.694 (43/62)
0.914
(32/35)

0.407 (11/
27)

0.771

External validation
cohort

0.718
(0.531–0.778)

0.633 (19/30) 0.692 (9/13) 0.651 (28/43)
0.826
(19/23)

0.45 (9/20) 0.717

Radiomics
nomogram

Training cohort
0.887

(0.827–0.940)
0.818 (90/110) 0.8 (24/30)

0.814
(114/140)

0.938
(90/96)

0.545 (24/
44)

0.874

Internal validation
cohort

0.885
(0.816–0.922)

0.75 (36/48) 1 (14/14) 0.806 (50/62) 1 (36/36)
0.538 (14/

26)
0.857

　
External validation
cohort

0.851
(0.720–0.919)

0.8 (24/30) 0.846 (11/13) 0.814 (35/43)
0.923
(24/26)

0.647 (11/
17)

0.857
fr
PPV, positive predictive value; NPV, negative predictive value.
A

B DC

FIGURE 4

The radiomics nomogram (A) constructed combining pack-years of smoking, traction bronchiectasis, and Rad-score and the calibration curves of
the radiomics nomogram in the training (B), internal validation (C), and external validation (D) cohorts.
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traction bronchiectasis were both independent risk factors for

mortality in some research (38, 39). This was probably because of

some biases caused by the imbalance between the groups. Goh et al.

(40) established a staging system using the extent of disease with 20%

demarcation for predicting mortality. However, parenchymal extent

was not an independent predictor in the GAP index system by

multivariable logistic regression analysis (p = 0.053) in our study.

This was probably because Goh’s model built for SSc-ILD patients

might not be applicable for all kinds of CTD-ILDs. Another reason

might be that we did not find an optimal cutoff for

parenchymal extent.

Radiomics based on CT image is an objective technique that

provides a more reliable and comprehensive quantitative

assessment of the images, not hindered by inter-reader variability.

In the 1,409 radiomics features obtained from the CT images, eight

higher-order texture features extracted from wavelet transformed

images were acquired as remarkable elements to build the radiomics

model, resulting in an AUC of 0.813, 0.787, and 0.718 in the

training, internal validation, and external validation cohorts,

respectively. Texture features can quantify information that is

difficult to perceive visually, such as texture patterns or tissue

distribution (41). Wavelet transform can level it up by obtaining

multifrequency domain and multiscale image information after

turning original images into different frequency domains (42, 43).

For diseases that are difficult to be described by simple visual

features, high-dimensional abstract feature extracted from wavelet

transformed images can often provide different angles in capturing

hidden information that is not easily observed by visual assessment.
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Radiomics features have been proven to have potential for the

severity estimation of CTD-ILD and treatment decision guidance

(29). In recent years, rapidly developed radiomics provided large

quantities of radiomics features, enabling full-scale characterization

of the images beyond visual analysis. The clinical factor model

comprising visual assessment performed significantly poorer in

predicting GAP stage than the radiomics nomogram, indicating

that information gathered from clinical and radiologic practice

might be insufficient, and radiomics had the advantages of

capturing and identifying the subtle features of ILD on CT

images that were imperceptible to the radiologist but may imply

prognosis. At present, there are limited studies focusing on applying

radiomics in CTD-ILDs. Martini et al. (29) applied radiomics

methods to develop a multivariable model and differentiate GAP

stages in 60 patients with SSc, resulting in an AUC of 0.96. Instead

of focusing on one single type of CTD, we expanded our samples up

to 245 patients with different subtypes of CTD, which improved the

universality of our radiomics nomogram. Most of the studies

focused on predicting mortality of CTD-ILDs (27, 44); instead,

we aimed to stage patients using baseline data and reduce potential

unnecessary examinations. The promising results underlined the

great potential of radiomics in ILDs. In the future, radiomics could

be applied to support treatment decision. Previous studies have also

proven that quantitative analysis can be applied to patients with

ILDs. Kaya et al. (45) established a quantitative model with an AUC

of 0.80 to predict GAP stages in 40 patients with idiopathic

pulmonary fibrosis, proven to have the underlying possibility to

outperform subjective visual inspection. Jacob et al. (46) proved that

the volume of pulmonary blood vessels and surrounding fibrosis in

the lungs independently predicted outcome in patients with RA-

ILD. Radiomics methods provided much more information on the

CT images that cannot be obtained by regular quantitative methods.

In the present study, eight out of the nine features were high-order

features, which may cover and exceed the quantitative features that

previous studies have extracted.

Certain limitations of our study were as follows. First, cases in the

two groups of our study were not balanced, therefore reflecting the

prevalence of different GAP stages in our clinical population but may
TABLE 4 Comparison among the three models.

　
Clinical
model

Radiomics
model

Combined
model

Likelihood
ratio

13.49 27.66 34.31

p value <0.001* 0.036# 　
*Comparison of the performance of the clinical model and the combined model.
#Comparison of the performance of the radiomics model and the combined model.
A B C

FIGURE 5

Comparison of the ROC curves for the radiomics model, clinical model, and combined model in the training cohort (A), the internal validation
cohort (B), and the external validation cohort (C).
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have an impact on our results. Second, there is still a gap for the

assessment whether and which radiomics features were correlated with

pathological manifestations in ILD. Thus, a multidisciplinary method

combining clinical, radiological, and pathophysiological information

may be proposed to guide individual-based treatment and benefit the

prognosis. Third, there are certain holdbacks that radiomics could not

be applied to all medical centers regarding technical limitations. The

retrospective nature of this study may also hamper its reproducibility

and generalization. Therefore, well-designed prospective radiomics

trials as well as one-stop services that automatically segment images,

extract features, and calculate the Rad-score need to be developed.

Moreover, the result of this cross-sectional studymay be less precise for

using the verified ILD-GAP index system rather than actual mortality

of the patients. The exact mortality risk and follow-up results will be

investigated in our further research.

In conclusion, a CT-based radiomics nomogram was developed

in our study. It revealed better efficacy in staging the severity of

CTD-ILD on CT image than visual assessment, which implies that

this noninvasive and quantitative method may impact the clinical

decision-making process.
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