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lifetime imaging microscopy of
NADH metabolism in HIV-1
infected cells and tissues
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and Krishanu Ray1,3*

1Division of Vaccine Research, Institute of Human Virology, University of Maryland School of
Medicine, Baltimore, MD, United States, 2Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, United States, 3Department of Biochemistry and
Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
Rapid detection of microbial-induced cellular changes during the course of an

infection is critical to understanding pathogenesis and immunological homeostasis.

In the last two decades, fluorescence imaging has received significant attention for

its ability to helpcharacterizemicrobial inducedcellular and tissuechanges in in vitro

and in vivo settings. However, most of these methods rely on the covalent

conjugation of large exogenous probes and detection methods based on

intensity-based imaging. Here, we report a quantitative, intrinsic, label-free, and

minimally invasive method based on two-photon fluorescence lifetime (FLT)

imaging microscopy (2p-FLIM) for imaging 1,4-dihydro-nicotinamide adenine

dinucleotide (NADH) metabolism of virally infected cells and tissue sections. To

better understand virally induced cellular and tissue changes inmetabolismwehave

used 2p-FLIM to study differences in NADH intensity and fluorescence lifetimes in

HIV-1 infected cells and tissues. Differences in NADH fluorescence lifetimes are

associated with cellular changes in metabolism and changes in cellular metabolism

are associated with HIV-1 infection. NADH is a critical co-enzyme and redox

regulator and an essential biomarker in the metabolic processes. Label-free 2p-

FLIM application and detection of NADH fluorescence using viral infection systems

are in their infancy. In this study, the application of the 2p-FLIM assay and

quantitative analyses of HIV-1 infected cells and tissue sections reveal increased

fluorescence lifetime and higher enzyme-bound NADH fraction suggesting

oxidative phosphorylation (OxPhos) compared to uninfected cells and tissues. 2p-

FLIM measurements improve signal to background, fluorescence specificity,

provide spatial and temporal resolution of intracellular structures, and thus, are

suitable for quantitative studies of cellular functions and tissue morphology.

Furthermore, 2p-FLIM allows distinguishing free and bound populations of NADH

by their different fluorescence lifetimes within single infected cells. Accordingly,

NADH fluorescence measurements of individual single cells should provide

necessary insight into the heterogeneity of metabolic activity of infected cells.

Implementing 2p-FLIM to viral infection systemsmeasuring NADH fluorescence at

the singleor subcellular levelwithin a tissue canprovide visual evidence, localization,

and information in a real-time diagnostic or therapeutic metabolic workflow.

KEYWORDS

NADH metabolism, HIV-1, infected cells and tissues, oxidative phosphorylation, two-
photon fluorescence lifetime imaging microscopy
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Introduction

The increasing prevalence of antimicrobial resistance, including

seasonal, past, and present global viral infections and co-infections

(HIV, Ebola, H1N1, Zika, and the recent COVID-19 pandemic)

underscores an urgent medical and scientific need for improved and

versatile imaging modalities of affected cells and tissues (1).

Accordingly, there is an unmet scientific need for developing a

rapid, quantitative, intrinsic, minimally invasive, and label-free

imaging of virally infected cells and tissues. In particular, HIV-1-

infected individuals have increased morbidity-related inflammation

and metabolic dysfunction despite having well-controlled viral

loads. To address this need, we have employed a quantitative,

minimally invasive 2p-FLIM method to detect changes in NADH

metabolism of HIV-1 infected host cells and tissues. NADH is used

as a sensor for metabolic events (2). 2p-FLIM utilizes the

autofluorescence of NADH and NADPH molecules to measure

cellular metabolism changes in contrast to oxidized forms

NAD+/NADP+, which are not fluorescent (3, 4). Fluorescence

lifetime imaging allows quantifying free and protein-bound NAD

(P)H independent of intensity (3, 5–8). Cytoplasmic and nuclear

NAD+/NADH ratios are estimated at ~700:1 (2). Therefore,

discrete alterations in cellular NAD+ are likely to be reflected as

significant changes in NADH. Implementing 2p-FLIM for

measuring NADH fluorescence of single infected cells and tissue

can quantitatively image and assess cellular, subcellular, and tissue-

specific localization during viral infection and affected surrounding

tissue in a minimally invasive near real-time workflow.

Fluorescence imaging spectroscopy is a central technology used

throughout analytical chemistry, clinical chemistry, drug discovery,

proteomics, genomics, and biochemical research. Fluorescence

detection is accomplished almost without exception using

extrinsic fluorophores to label the biomolecules. Fluorescence has

received significant attention in the last two decades for in vitro and

in vivo imaging; however, most of these relied on bulky and

hydrophobic exogenous probes and intensity-based imaging. In

contrast, two-photon imaging excitation inherently illuminates a

very small sample volume, improves axial resolution, clearly

separates excitation and emission wavelengths, reduces

photobleaching, and provides depth discrimination and good

signal-to-noise ratio (9–13). Moreover, biological samples are

more tolerant to > 750 nm near-infrared (NIR) illumination, and

there is a reduction in autofluorescence and scattering. Accordingly,

multiphoton excitation is becoming increasingly popular (14).

Standard methods used in biosciences are steady-state

techniques based on analyzing the total fluorescence signal

originating from the sample. FLIM is an advanced quantitative

optical method valuable for biological and biomedical applications

(15–22) and offers contrast on images corresponding to the

fluorescence decay times. It is becoming more widely used for

quantitative studies of cellular processes and biomedical

applications, including tissue morphology and high-density

protein arrays (7, 23–26). Fluorescence lifetime is an inherent

parameter that depends on the molecular environment of the

fluorescent probe but is independent of probe concentration,
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excitation intensity, and light scattering. The fluorescence decay

rates reflect the molecular interactions of a probe with its biological

environment. The fluorescence decay rates of the probe may be

affected after its interaction with a target, thus the FLT of the probe

in cells or tissues can reflect when the probe is free or bound to a

target. Further, FLIM mitigates the background signals of cellular

imaging as the lifetime of the fluorophore can be differentiated from

the background signal. Moreover, in case of two-photon excitation,

the fluorescence intensity is proportion to the square of the peak

excitation intensity, which is highest at the focal plane, and thus the

off-axis signal and background are reduced substantially as

demonstrated by many studies over two decades (5, 12, 27). The

spatial resolution of intracellular structures is possible in images

that provide temporal and spatial information on changes in the

FLT of fluorescently labeled components. The structural and

biochemical processes can be observed and quantitatively

analyzed. The image contrast in FLIM is not dependent on

fluorophore concentration.

Our studies distinguish free and bound populations of NADH

by their different fluorescence lifetimes (3, 5–8). Moreover, the

fraction of NADH bound to protein has a higher intensity (2, 4).

Here, we have extracted profiles of NADH binding within HIV-1

infected cells or isolated tissues. It is challenging to distinguish

NADH and its phosphorylated form NADPH based on their

overlapping spectral properties (13, 27); we refer to it as NADH

for brevity. We expect 2p-FLIM methodology to be uniquely

sensitive to cellular changes in NADH levels resulting from either

pathogen-mediated perturbations or expected differences in

glycolysis or respiration under aerobic and oxidative

phosphorylation (6-NADH) versus anaerobic respiration

(4NADH) or those resulting from metabolic disruptions,

syndromes or diseases (1, 28). Microbial infections induce

alterations in both host innate immune and metabolic (Glycolytic

and OxPhos) signaling pathways (1, 29–32). NAD+ is released into

the cytoplasm as a sensor of pathogen infection (33, 34). The ability

to quickly and with limited intervention assess cells and tissue

exhibiting changing or perturbed levels of NADH under various

aerobic and anaerobic environmental, microbial, metabolic, and

disease conditions represents a broad platform for diagnostic and

therapeutic development.

The label-free 2p-FLIM imaging technique at a single infected

cell level will have broad applicability in understanding the

metabolism in the innate microbial system (Figure 1). It will help

elucidate the connection between HIV-1 infection and observed

metabolism changes. The ability to quantitate and directly monitor

NADH metabolism in real-time in HIV-1 infected cells and tissues

offers a facile method for understanding microbial pathogenesis

that can be applied to other infection models. Two different cell

lines (THP-1 and MOLT-4/CCR5), four different types of HIV-1

viruses were used for this study: 1) HIV-1 BaL, a “tier 1b” virus

which has a relatively “open” Env structure, more sensitive to

neutralization by a wider variety of anti-envelope monoclonal

antibodies, 2) A tier 2 envelope pseudovirus, HIV-1 JRFL which

is hard to neutralize, 3) The transmitted/founder isolate AD-17 is

replication-competent infectious molecular clone and express
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unmodified native trimers, and 4) An eGFP HIV-1 reporter virus

that can infect cells by which infection (p24 content) and eGFP

levels can be correlated. To complement the in vitro cellular studies,

2p-FLIM analyses approaches were applied to perform NADH

metabolic imaging within infected tissues from spleen and lymph

node of HIV-1 infected humanized NSG mice and compared with

tissue sections from uninfected NSG mice. Overall, the label-free

imaging approaches described in this paper have the distinctive

potential to address biomedical research needs and technical

problems that occur broadly across multiple biological systems

or diseases.
Materials and methods

Cell lines and HIV-1 virions

Commercial cell lines THP-1 and MOLT-4/CCR5 obtained

from ATCC are provided with certification that they are

Mycoplasma-free. Stock cultures are grown up, and aliquots are

frozen down to enable the use of the same cell lines throughout the

study. The cell line was maintained in the respective cell-culture

media at 37°C/5% CO2/125 rpm shaker.
Construction of HIV-1/eGFP
(pSF345-02-gfp)

To produce the R5 tropic HIV-1/eGFP pBR43IeG-nef+/EGFP

(AIDS Research and Reagents Program #ARP-11100) was used as a

parental plasmid construct. The pBR43IeG-nef+-EGFP V3-Env

region was removed by digestion with StuI/BsaBI restriction

enzymes (NEB, Ipswich, MA) following the treatment with Calf

Intestinal (CIP) Alkaline Phosphatase (NEB, Ipswich, MA) to

prevent self-ligation. Next, gel purification was performed to

remove the pBR43IeG-nef+-EGFP V3 Env region. DNA synthesis

(Blue Heron Bio, Bothell, WA) was used to recreate the excised

pBR43IeG-nef+-EGFP V3-Env sequence containing a BaL V3 DNA

sequence. Synthesized DNA was digested with StuI/BsaBI (NEB)

and then gel purified. DNA fragments were ligated with T4 DNA

ligase (NEB) and used to transform STBL2 cells (Invitrogen,
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Waltham, MA). Clones were screened by restriction mapping,

(EcoRI/StuI, NEB) with two correct restriction digest pattern

clones selected for sequence confirmation (CIBR, Baltimore, MD).
HIV-1 virion production

HIV-1 JRFL pseudoviruses were generated by co-transfection of

HEK293T cells with an Env-deficient HIV-1 backbone plasmid

pNL4-3-DE-EGFP along with Env-expression plasmids (35, 36) and

pCAGGS-JRFL (kindly provided by J. Binley, Torrey Pines Institute

of Molecular Studies, San Diego, CA). Transfections were

accomplished using FuGENE 6 (Roche, Indianapolis, IN)

transfection reagent at a 3:1 reagent-DNA ratio. To produce the

infectious molecular clone of HIV-1 BaL or transmitted/founder

(T/F) HIV-1 AD17 virus (37) or HIV-1/eGFP, HEK293T cells were

transfected with the BaL (obtained through the AIDS Research and

Reference Reagent Program, Division of AIDS, NIAID) or AD17

plasmid (kindly provided by B. Hahn, University of Pennsylvania)

or pSF345-02-gfp plasmid at a FuGENE-to-DNA ratio of 3:1.

Virions-containing supernatant was harvested after three days,

and concentrated about 10-fold by incubating with PEG-it™

virus precipitation solution (System Biosciences, Mountain View,

CA) for 18 hours at 4°C as recommended by vendor. The antigen

content of all virion preparations was quantified using p24 and

gp120 antigen capture ELISAs. Infectivity was established using

standardized procedures (38) and quantified as a function of

TCID50 in TZM-bl cells. HIV-1 BaL and HIV-1 JRFL

pseudoviruses with gp120 to p24 ratio of 1:10-1:50, and 200,000 –

500,000 TCID50/mL; HIV-1 AD17 T/F with gp120 to p24 ratio of

1:200, and 600,000 to 1,000,000 TCID50/mL; were used.
HIV-1 infection assay

MOLT4/CCR5 cells were infected using MOI 1 of HIV-1/eGFP

via spinoculation at 2000 rpm for 2 hours at 7°C. Cells were washed

and seeded at a concentration of 2×106/mL. After 48 hours, 10 µL of

cell suspension was incubated in poly-lysine coated slides for 30

mins at room temperature and washed two times before imaging

under a 2p-FLIM microscope.
FIGURE 1

Experimental setup of label-free live 2p-FLIM imaging of NADH in HIV-1 infected cells and mouse tissue sections. HIV-1 infected cells and animal
model organ tissue are cryo-sectioned and imaged using 2p-FLIM. 2p-FLIM analyses are used to image and quantitate NADH levels and lifetimes for
infected cells and tissue types (see methods). The graphical illustration is generated using Biorender.
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Evaluating viral infection on NADH
metabolism in mouse tissues

To parallel the results of the in vitro studies in the previous

section and complement the outcome allowing cross-comparisons

of in vivo and in vitro data and the generation of a comprehensive

picture of NADHmetabolism in tissues, we have performed NADH

fluorescence in HIV-1 infected humanized mouse tissues.

Furthermore, HIV-infected tissues allow us to survey the host-

pathogen interaction and determine the tissue level response to

infection. Accordingly, the 2p-FLIM method investigated NADH

metabolism in cryo-sectioned p24 confirmed HIV-1 infected

tissues. NADH levels in HIV-infected mouse tissues (specifically

spleen and lymph nodes) were quantified using 2p-FLIM and

compared with the uninfected tissues. NSG mice reconstituted

with human PBMCs (hu-PBMC-NSG-SGM3) (39) were used for

the current study investigating HIV-1 infection in a humanized

mouse model. These strains/models do not suffer significantly from

graft versus host (GVH) effects. This is a robust humanized mouse

model, which unavoidably enhances HIV replication via developing

GVH immune activation.
Humanized NSG mice tissue sectioning
and staining

Fixed, frozen 7µm thick tissue sections of lymph-node and

spleen from HIV-1 BaL-infected humanized NSG mice or

controlled humanized NSG mice (39) were made on a Leica

CM1860 UV - Cryostat. Cryo-sectioned tissues were mounted on

a glass slide with Invitrogen prolong antifade reagent. HIV-1 p24

monoclonal antibody D45F tagged with FITC (Invitrogen catalog #

MA1-7378) was used to stain the 7µm thick lymph node tissue

section from HIV-1 infected mice.
Microscope setup

A customized confocal microscope (based on ISS Q2 laser

scanning nanoscope) with single-molecule detection sensitivity

was used for performing 2p-FLIM. The excitation source is a

pulsed femtosecond laser (Calmar, 780nm, 90 fsec pulse width,

and 50MHz repetition rate) equipped with an ISS excitation power

control unit. An incident wavelength of 780 nm was used for

exciting NADH in cells or tissue samples (27). The excitation

light was reflected by a dichroic mirror to a high-numerical-

aperture (NA) water objective (60X; 1.2 NA) and focused onto

the sample. The fluorescence was collected by single photon

counting avalanche photodiodes (SPAD) through a dichroic beam

splitter, Chroma short pass (750SP), and 460/55 bandpass filters,

thus eliminating the scattered excitation light and collecting

fluorescence from the NADH in the region of interest. Using the

780nm two-photon excitation, eGFP fluorescence intensity and

lifetime were recorded in the 500 to 529nm spectral window with

a narrow bandpass filter (514/30, Chroma). We used one excitation

wavelength for simultaneous detection of both NADH and eGFP in
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two separate detection channels that included high quality bandpass

emission filters without spectral bleed through. NAD(P)H

fluorescence detection has been reported in the literature using

780nm excitation (3, 27). The imaging in our Q2 setup was

performed with Galvo-controlled mirrors with related electronics

and optics controlled through the 3X-DAC control card. The

software module in ISS VistaVision for data acquisition and

processing and the time-correlated single photon counting

(TCSPC) module from Becker & Hickl (SPC-150) facilitate FLIM

measurements and analyses. Each image included 512x512 pixels

with a dwell time of 200 µsec for each pixel translating to an image

acquisition time of ~53sec. The decay sampling resolution was 19.5

psec which was determined from the number of the decay time bins

and the total time length of the decay. The FWHM of the measured

IRF by directly recording the laser scatter light was ~ 300psec. The

intensity decays were fitted with a bi-exponential model: I(t) =

a1exp(-t/t1) + a2exp(-t/t2), where t1 and t2 are the short and long

decay times; a1 and a2 are the amplitudes for the short and long

decay times respectively (Figure 1). The sum of the amplitude

fractions (a1 + a2) in the observed biexponential are normalized to

unity. The fractional contributions of short and long components to

the steady-state intensity are denoted as f1=a1t1/(a1t1+a2t2) and
f2=a2t2/(a1t1+a2t2). The average (intensity-weighted) lifetime is

described by f1t1+f2t2. The values of FLTs (t1 and t2) were obtained
using the ISS vistavision software with the deconvolution of

instrument response function and nonlinear least-squares fitting.

For the decay analyses we used the estimated IRF generated by the

ISS VistaVision software. Three different fields of view per

independent experiment were used to compute the average of

different metrics. For the HIV-1 infected cell samples at least 20

cells were used for calculating various metrics.

All time-resolved fluorescence data were analyzed using ISS

VistaVision software. TCSPC histograms of individual pixels are

depicted as usual as the logarithm of the time resolved intensity as a

function of time. TCSPC histograms were mostly fitted by a

standard method to a bi-exponential decay model using the

Marquardt algorithm, by minimizing the sum of the squares of

differences between the measured and calculated values of time-

dependent intensity and calculating a reduced c2. Two components

were usually chosen for NADH decay analyses because the raw data

indicate there is more than one component (the decay lines aren’t

linear), with multiple fluorescent lifetimes present. For determining

the FLTs (t1, t2, and average lifetime), pre-exponential factors a1,

a2 and fractional contributions from each measurement, the

regional average of the time-resolved fluorescence decays were

fitted with a bi-exponential model as described before. However,

the intensity decay for the eGFP channel could be fitted using a

single-exponential decay model. The difference (residuals) between

the actual measured intensity and the calculated value from the fit at

that time point were evaluated. The standard deviations of the

residuals were evaluated to assess the quality of the fit. A good fit is

characterized by residuals that are mostly small (90% are less than 2

standard deviations) and randomly distributed around zero. The

derived c2 value is expected to be close to 1.0.

We have avoided the crosstalk between NADH and eGFP

channels using high quality narrow bandpass emission filters
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(Chroma) which minimize the spectral overlap in the spectral

region of 435-485nm for the detection of NADH signal and 500-

529nm for the detection of fluorescence from eGFP. The quantum

yield of eGFP is significantly (over 10-fold) higher than NADH

(4, 40). Furthermore, fluorescence recorded in the detection

channel using a high quality 514/30 bandpass emission filter

showed a single exponential decay with a fluorescence lifetime of

2.6 nsec confirming that the fluorescence emanated from eGFP only

in 500 to 529 nm spectral range (15). Moreover, detection of NADH

fluorescence with a narrow bandpass filter in the spectral region of

interest alleviated the issue of fluorescence contributions from other

structural proteins (collagen or elastin) (4). We have avoided any

emission spectral overlap between flavins and NADH using high

quality narrow bandpass filters in the spectral region of 435-485nm

for detection of NADH signal. For each experimental FLIM

measurement with the HIV-infected tissue samples, we included

control mouse tissue samples detected under identical settings

(same excitation wavelength, incident laser power, detection

emission filter, image acquisition parameters). We have used

tissues from three HIV-1 BaL infected mice for FLIM studies,

correspondingly tissues were collected from uninfected controlled

mice. In all HIV infected tissue section, either from spleen or lymph

nodes, we consistently observed higher NADH signals in infected

tissues compared with the control mouse tissues. Furthermore, the

quantum yield of collagen and elastin fluorescence is lower than

NADH either free or protein bound form. The emission spectra of

collagen (emission maximum at 400nm) and elastin (emission

maximum at 415nm) are ~50nm blue-shifted compared to

NADH emission spectra (4).

Statistical analysis of data was performed using GraphPad Prism

8.0 and Origin 2021 software. A two-tailed test evaluated the

statistical differences between control and infected cells or tissues.

A p-value of less than 0.05 was considered statistically significant.
Results

2p-FLIM studies were performed to determine and characterize

cellular metabolism utilizing the NADH fluorescence spectral

window in HIV-1 virus-infected cells. The model systems for

studying in-vitro viral infections in cell lines include HIV-1

pseudoviruses and infectious molecular clones (IMC) with THP-1

and MOLT-4/CCR5 cells. Quantitative 2p-FLIM analyses

distinguish free and bound populations of NADH by their

different fluorescence lifetimes within single infected cells. NADH

fluorescence measurements in a single cell could provide necessary

insight into the heterogeneity of metabolic activity in viral-infected

cells. It is important to note that viruses do not have any NADH

fluorescence alone. Accordingly, any changes in NADH signal level

upon virus infection to the host cells could be related to the changes

in metabolic activity in the infected cells. Separate vertical scale bars

were used for each intensity image (kilo counts per sec, KCPS) and

fluorescence lifetime image (nanosecond, nsec). A linear red-green-

blue (RGB) colored scale bars indicating changes in fluorescence

lifetimes (FLTs) from 0 to 5 nsec range are displayed for each FLIM

image panel. The present study and experiments focus on
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determining the changes in protein bound NADH with metabolic

perturbations (27) in HIV-1 infected cells and tissues. For clarity,

the lifetime of free NADH (t1) is not displayed as a FLIM image.

However, average fluorescence lifetime images containing both fast

and slow lifetime components are shown.
Quantitative determination of NADH
fluorescence in HIV-1 infected cells

The test panel includes HIV-1 virus phenotypes and

neutralization sensitivities (tiers) (41, 42). We examined

pseudoviruses expressing neutralization-resistant tier-2 CCR5-

tropic HIV-1 JRFL, tier-1 HIV-1 BaL infectious molecular clones

(IMC) (43–46), and transmitted/founder (T/F) (47, 48) HIV-1

subtype B AD17 viruses, which are replication-competent IMC

and express unmodified, native trimers (45, 46). The pseudoviruses

have only a single round of infection, whereas the T/F or IMC

virions are replication-competent and have multiple rounds of

infection. All virion preparations are characterized for Env

protein content, p24 protein content, and viral RNA copies by in-

house quantitative PCR. We emphasize that there is no further

genetic or chemical manipulation of the envelopes on these viruses.

The monocytic THP-1 cell line has been used to investigate the

mechanisms by which HIV-1 infects and replicates in monocytes

and macrophages, as well as the factors that influence the latency of

HIV-1 in these cells (49, 50). Label-free live 2p-FLIM imaging of

NADH in THP-1 cells upon infection with HIV-1 JRFL

pseudovirions after 90 mins at different virion concentrations are

illustrated in Figure 2 (A-C: NADH intensity, D-F: average FLT and

G-I: t2, bound form of NADH FLT). Figure 2 display the time-

resolved intensity decays of NADH from control THP-1 (panels J)

and HIV JRFL pseudovirus (p24 values of 6µg/ml and 12µg/ml)

infected THP-1 cells (panels K and L). A significant change in

NADH intensity and FLT in the bound form of NADH in THP-1

cells upon incubation with JRFL compared to THP-1 control is

observed and quantified in bar graphs (Figures 2M, N). It is

important to note that the FLT is independent of probe (NADH

in this case) concentration, so any FLT changes observed in the

bound form of NADH (t2) represent the inherent changes in

molecular properties. To further investigate if the changes in

NADH levels in infected cells are associated with multiple rounds

of infections, we have used T/F AD17 and BaL-IMC infected THP-1

cells as shown in (Figures 3A–C: NADH intensity, D-F: average FLT

and G-I: t2 bound form of NADH FLT). Using a bi-exponential

fit (see methods), the intensity decay of NADH from uninfected

THP-1 cells yielded a t1 value of 0.8 nsec (f1 = 0.58) and t2 value of
3.2 nsec (f2 = 0.42) with a c2 value of 1.19. In contrast, the bi-

exponential fit with the intensity decay of NADH from HIV-1 JRFL

infected THP-1 cells exhibited a t1 value of 1.0 nsec (f1 = 0.27) and

t2 value of 4.25 nsec (f2 = 0.73) with a c2 value of 1.16. Likewise, the
fit to the intensity decay of NADH from HIV-1 AD17 infected

THP-1 cells exhibited a t1 value of 0.95 nsec (f1 = 0.32) and t2 value
of 4.1 nsec (f2 = 0.68) with a c2 value of 0.96. Similarly, the two-

component fit to the intensity decay of NADH from HIV-1 BaL-

IMC infected THP-1 cells displayed a t1 value of 0.98 nsec
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(f1 = 0.33) and t2 value of 4.25 nsec (f2 = 0.67) with a c2 value of
1.10. The c2 values for all the fits to the different intensity decay data
sets were in the range of 0.96 to 1.19, indicating overall good fit to

the experimental data. Interestingly, more HIV-1 infected THP-1

cells were attached to the poly-lysine coated coverslips compared to

the uninfected THP-1 cells. Similar to JRFL-infected THP-1 cells,

the enhanced fluorescence intensity of NADH and long FLT

associated with the bound form of NADH was observed for both

BaL and AD17 virion-infected THP-1 cells compared to uninfected

THP-1 cells as displayed in Figure 3. The two-tailed t-test showed a

significant difference in both intensity and FLT of NADH between

infected and uninfected cells (Figures 3J–L). Similarly, we observed

enhanced fluorescence intensity of NADH and longer FLT signaling

bound form of NADH on HIV-1 BaL infected T lymphoblast

MOLT-4/CCR5 cells (not shown). These experiments revealed

how the virus phenotypes and doses affect cellular NADH levels.

The MOLT-4/CCR5 cells are highly permissive for infection by

HIV-1. A recent study (51) reported that HIV-1 selectively infects

metabolically active CD4+ T cells with high oxidative

phosphorylation and glycolysis. Blocking metabolic pathways in

HIV-1 infected cells can stop the virus replication process early on

and kill the cells. This suggests that HIV-1 is vulnerable to metabolic

disruptions, which could be exploited for therapeutic purposes.

Accordingly, we have set out to identify and evaluate the

relationship between HIV-1 infection and altered metabolism

using an indicator of metabolic activity (NADH levels) and
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MOLT-4/CCR5 cells during HIV-1 infection. Toward this

objective, eGFP expressing HIV-1 BaL was incorporated to assess

HIV-1 infection correlated with NADH levels. The MOLT-4/CCR5

cells showed a positive eGFP signal upon being infected with eGFP

expressing HIV-1 BaL pseudovirus (Figure 4B). Figures 4D, F, H

showed a noticeable increase in the level of NADH intensity, average

FLT of NADH, and longer FLT corresponding to the bound form of

NADH for the HIV-1/eGFP infected MOLT-4/CCR5 cells at 48

hours post-infection. Next, HIV-1/eGFP infected MOLT-4/CCR5

cells expressing eGFP fluorescence were analyzed using ImageJ and

compared with the corresponding NADH signal. (Figures 4I, J). A

positive correlation between eGFP and NADH fluorescence is

observed, indicating that higher infection of MOLT-4/CCR5 cells

leads to an increased level of NADH signal (Figure 4K). The intensity

decay of NADH from HIV infected cells is shown in Figure 4L. A bi-

exponential fit was used to analyze the intensity decay, which yielded

two decay times: 0.9 nsec (32%) and 4.1 nsec (68%). The fit had a c2

value of 1.06, indicating a good fit to the data. In contrast, a mono-

exponential fit to the intensity decay of eGFP signal from the HIV

infected cell recorded using a separate detection channel (see

methods) exhibited a fluorescent lifetime of 2.6 nsec with a c2

value of 1.29. A single fluorescence lifetime of 2.6 nsec observed for

eGFP expressed THP-1 cells detected in the 500 to 529 nm spectral

window (which is the optimal emission spectral region for eGFP)

confirms that the fluorescence signals emanated from eGFP

molecules (15). The changes in NADH’s average FLT and NADH’s
FIGURE 2

2p-FLIM identifies differences in NADH fluorescence intensity and lifetimes of infected cells. Label-free live 2p-FLIM imaging of NADH with THP-1
cells upon infection with HIV JRFL pseudovirions at different virion concentrations. Differences in NADH fluorescence intensity (kilo counts per
second: KPCS) (A–C), average FLT of NADH (D–F), and bound NADH FLT (G–I) with THP-1cells infected with HIV JRFL pseudovirus compared to
THP-1 control. (J–L) show the time-resolved intensity decays of NADH from uninfected and HIV JRFL pseudovirus (p24 values of 6µg/ml and 12µg/
ml) infected cells. The dots represent the experimental data and solid line is the bi-exponential fit to the intensity decay (see methods). Residuals are
plotted below each graph in (J–L) showing the residual values are randomly distributed around zero. Image intensity and bound form of NADH FLTs
are quantified in bar graphs (M, N). All experiments were repeated with the average values shown. Error bars indicate standard deviations. Two-tailed
test was performed for statistical analysis in panels (M) and (N), P values; * <0.05, ** <0.01.
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bound form for the HIV-1/eGFP infected MOLT-4/CCR5 cells

compared to uninfected cells are quantitated (Figures 4M, N).
2p-FLIM defines HIV-1 infection
profile in tissues

HIV-1 utilizes metabolically active cellular environments for

establishing productive and latent HIV-1 infection in CD4+ T cells

(51). Consequently, it is important to identify infected cells and

tissues to study the relationship between metabolic activity and T

cells in different tissues where HIV-1 replicates. Towards this goal,

2p-FLIM was applied to extract NADH binding profiles within

infected tissues from spleen and lymph nodes of humanized NSG

mice. 2p-FLIM studies with cryo-sectioned tissues from HIV-1

BaL-infected humanized NSG mice (39) are presented (Figures 5,

6). These experiments also include control spleen and lymph node

sections. For each FLIM measurement with the HIV-infected tissue

samples, we used a corresponding control uninfected mouse tissue
Frontiers in Immunology 07
section sample detected under identical settings (same excitation

wavelength, incident laser power, detection emission filter, and

image acquisition parameters). Label-free 2p-FLIM measurements

with humanized NSG mouse spleen tissue display a substantially

lower NADH level than the HIV-1 BaL-infected NSG mouse

(Figures 5A–C). The average FLT and bound form of NADH

FLT showed a longer lifetime with a higher fractional amount for

the infected tissues, implying a consistent qualitative and

quantitative approach to distinguish between uninfected versus

HIV-1 infected tissues. The significant difference in NADH signal

level is more evident for the HIV-1 BaL infected lymph node tissue

section (Figures 6B, G). Quantitative analyses evaluating changes in

NADH intensity and FLT are presented for infected versus control

tissue samples. The two-tailed t-test showed a significant difference

in both intensity and FLT of NADH between infected and control

tissue sections (Figures 6G–I). A likely explanation of the

significantly higher levels of NADH including the protein bound

form of NADH observed in the infected lymph nodes compared to

uninfected control is due to the fact that HIV-1 virions is harbored
FIGURE 3

Virion-specific differences in NADH fluorescence intensity and lifetimes. Label-free live 2p-FLIM imaging of NADH with THP-1 cells upon infection
with HIV-1 transmitted founder AD17, BaL virions. Differences in NADH fluorescence intensity (A–C), average FLT of NADH (D–F), and bound NADH
FLT (G–I) for THP-1 cells infected with virions compared to THP-1 control. Image intensity, average FLT, and bound form of NADH FLTs are
quantified in bar graphs (J–L). All experiments were repeated with the mean values shown. Error bars indicate standard deviations. Two-tailed test
was performed for statistical analysis in (J–L), P values; * <0.05.
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at these sites. This is a noteworthy observation from this study. A

two-tailed test was performed for statistical analysis in panels (G, H

& I) of Figure 6 yielded P values of * <0.05, and *** <0.001.
2p-FLIM correlates HIV-1 infection and
metabolic disruption

FLIM can be used to determine whether there are differences in

NADH signal distribution in tissues (lymph node and spleen) in

control versus HIV-1 BaL infected mice. The method is also useful

to establish the correlation between infection sites versus metabolic

distribution around the infectious sites. For determining the

infection sites in the tissue, the antigen in the infected cryo-

sectioned tissues is detected by a FITC-labeled p24 detection

antibody. Our 2p-FLIM setup allows for the simultaneous

detection of FITC and NADH in two different detection channels

with a single excitation wavelength at 780nm and detection with an

appropriate dichroic, short pass, and band pass filters. An example

of two-photon imaging of p24-FITC and NADH with HIV-1 BaL
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infected NSG mouse lymph node (cells in the mesenteric lymph

nodes of CD34+ hematopoietic stem cell reconstituted mice) tissue

is shown in Figure 7. Consequently, it creates a microscopic

framework for contextualizing the “snapshot” tissue images of

localized infection with metabolic information, as can be

visualized in Figures 7A (p24-FITC), 7B (NADH intensity), and

7C (merged intensity images of p24-FITC and NADH). Thus, 2p-

FLIM can be used to determine the correlation between the

infection locus and the overall change in metabolic signature via

NADH. Figures 7D, E represent NADH’s average FLT and NADH’s

longer FLT (bound form) in the HIV-1 infected mouse lymph node

tissue. The substantial increase and fraction of longer FLT of

NADH correspond with an enzyme-bound fraction is consistent

with an increase in oxidative phosphorylation (OxPhos) (4, 52, 53).

Indeed, CD4+ T cells with elevated oxidative phosphorylation are

selectively infected by HIV-1 (51). Furthermore, the label-free

quantitation of endogenous NADH fluorescence by high-spatial

and temporal imaging of virally infected systems at single organism,

sub-cellular, cellular, and tissue levels provides a mechanistic view

of the microbial-host interface involving perturbations in cellular
FIGURE 4

Correlating changes in NADH and eGFP expressing HIV-1 infection. 2p-FLIM imaging of eGFP and NADH with MOLT-4/CCR5 cells upon infection with
HIV-1 eGFP virions. Differences in eGFP fluorescence intensity (A, B), NADH fluorescence intensity (C, D), average FLT of NADH (E, F), and bound NADH
FLT (G, H) for MOLT-4/CCR5 cells infected with virions compared to MOLT-4/CCR5 control. Close-up views of infected cells are shown in the panels
adjacent to (B, D, F, H). Intensity histograms from corresponding images from cells with eGFP (I) and NADH (J) are shown. (K) shows the correlation plot
between eGFP and NADH from individual cells. (L) shows the intensity decay of NADH from HIV-1 infected cells. The dots represent the experimental
data and solid line is the bi-exponential fit to the intensity decay (see methods). Average FLT and bound form of NADH FLTs are quantified in bar graphs
(M, N). All experiments were repeated, with the average values shown. Error bars indicate standard deviations. Two-tailed test was performed for
statistical analysis in panels (M) and (N), P values; * <0.05, ** <0.01.
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metabolism for future studies (Figure 8). The ability to determine

discrete and quantitative changes of NADH lifetimes, label-free and

with minimal invasion in cells and tissues, presents an excellent

opportunity to evaluate virally induced shifts in metabolism

throughout the infection life cycle.
Discussion

HIV-1 adapts to the host’s metabolic environment in order to

complete its replication cycle. This adaptation may help the virus

evade the immune system by making it difficult for the immune

system to detect and attack the virus. Interestingly, the close

relationship between HIV-1 infection and cell metabolism can be

used to develop new treatments that impair HIV-1 replication (51).

To better understand how cellular processes are affected by HIV-1

infection, we have employed a label-free 2p-FLIM method for

identifying, characterizing, and quantitating HIV-1-induced

metabolic changes in cells and tissues. The intrinsic fluorescence

of NADH used by 2p-FLIM provides a distinctive label-free spectral

window for monitoring shifts in the metabolism of HIV-1 infection

systems (54). Experiments using multiple viral phenotypes, doses,

and incubation times reveal how the virus phenotypes and amounts
Frontiers in Immunology 09
affect cellular NADH levels. Increases in the NADH levels of

infected tissues mirror what we observe in an in vitro infection

system. Moreover, the label-free quantitation of endogenous

NADH fluorescence by high-spatial and temporal imaging of

virally infected systems at single organism, sub-cellular, cellular,

and tissue level could provide a mechanistic view of the microbial-

host interface involving perturbations in cellular metabolism for

future studies.

Both fluorescence intensity and lifetime based NADH analyses

show the dependence of the number of virus particles (p24) in cells

with the changes in NADH fluorescence (intensity and FLT),

providing important information about the changes in NADH

metabolism corresponding with the relative amounts of virus

particles (Figure 4). FLT is an inherent parameter that depends

on the molecular environment of the fluorescent probe (NADH free

or bound) and is independent of the probe concentration, excitation

intensity, and light scattering. Thus, fluorescence decay rates can

reflect the interactions of a molecular probe with its biological

environment. Consequently, the NADH fluorescence decay rates

quantified within tissues reflect the extent to which a probe

(NADH) is either free or bound to a target. Moreover, 2p-FLIM

mitigates background signals for tissue imaging as the fluorescent

lifetime of the NADH can be differentiated from non-specific
FIGURE 5

2p-FLIM identifies differences in HIV-1 infected spleen. Label-free 2p-FLIM measurements with humanized NSG mouse spleen tissue section of 6 µm thick.
Un-infected control (left column), HIV BaL infected mouse for six months (middle and right columns). (A–C): NADH intensity; Middle (D–F): average FLT;
(G–I): bound NADH FLT. Triplicate measurements from different areas were performed. Representative images are shown. Image intensity, average FLT, and
bound form of NADH FLTs are quantified in bar graphs (J–L). Two-tailed test was performed for statistical analysis in (J–L), P values; * <0.05.
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fluorescence. This is identified by differences in FLTs for p24

confirmed HIV-1 infected tissues (Figure 7). Accordingly, the

presented label-free approach allows for comparing different

populations of cellular and subcellular features regardless of the

concentration of NADH and, more importantly, can be correlated

between the relative amounts of viruses in cryo-sectioned tissues in

comparison to the NADH signal level. Our results indicate 2p-

FLIM’s sensitivity in assessing and quantitating acutely infected

cells and their cell-mediated effects on nearby surrounding cells

and tissue.

Label-free live 2p-FLIM imaging of cells exposed to infectious

virus particles can potentially establish temporal kinetics of epitope

exposure during infection. Accordingly, 2p-FLIM could be applied

to reveal conditions of epitope presentations via single cells versus

cell-cell contacts or cell clustering events. Using FLTs, these studies

also allow for comparing subcellular features of different

populations of single cells independent of the concentration of

NADH in each cell. The relative amount of virus internalized per
Frontiers in Immunology 10
cell is linked with the NADH signal level (intensity and FLT), thus

establishing a correlation of viral infection with associated changes

in cellular metabolism, as measured by NADH fluorescence.

Indeed, one particularly exciting application of 2p-FLIM NADH

analysis is the ability to identify differences in the metabolic state of

virally infected (p24 positive) cells and their effect on neighboring

non-infected (p24 negative) cells and tissue by quantitating

differences in NADH fluorescence intensities and lifetimes. Our

experiments indicate increased aerobic metabolism for HIV-1

infected cells, tissues, and close neighboring cells. This increase is

illustrated by changes in both free and bound forms of NADH as

well as corresponding changes in FLTs. Discrete changes in FLTs

can be correlative with changes in the metabolic states of cells and

tissues. These studies support a previous observation of HIV-1

infection susceptibility, cell metabolism, and identification of HIV-1

latent reservoirs (51).

We observe significant HIV-1-induced differences in metabolic

states as measured by NADH fluorescence intensities and lifetimes
FIGURE 6

2p-FLIM characterizes differences in an HIV-1 infected lymph node. Label-free 2p-FLIM imaging of NADH with uninfected (left panels) and HIV BaL
virus-infected (right panels) NSG mouse lymph node tissue section of 7 µm thick. (A, B) Intensity; (C, D) Average FLT; (E, F) bound NADH FLT.
Triplicate measurements from different areas were performed. Representative images are shown. Image intensity, average FLT, and bound form of
NADH FLTs are quantified in bar graphs (G–I). Two-tailed test was performed for statistical analysis in (G–I), P values; * <0.05, ** <0.01, *** <0.001.
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for in vitro and in vivo studies. The higher NADH signal intensity

for infected cells or tissues is significant since the bound form of

NADH has a 5-times higher quantum yield than the free form of

NADH (2, 4, 55). Therefore, discrete cellular NADH intensities and

lifetimes associated with oxidative phosphorylation and infection

can be quantitated, monitored, and compared with cells exhibiting

glycolysis. Since FLIM provides a way to extract different

fluorescence lifetimes and contributions for each species using

multi-component fitting routine and thereby determining free-

versus protein-bound NADH in the present study, free NADH

relates to a shift towards glycolysis pathway (4, 7, 52, 54, 56).

Furthermore, NADH lifetime is varied significantly depending on

the enzyme it is bound with. This has been precisely displayed in a

phasor plot (53). Based on this study (53) and others (4, 52), we

imply that long FLT observed for NADH in infected cells and

tissues is due to the bound form of NADH. Specifically, the long

fluorescence lifetimes of NADH observed in the HIV infected cells

and tissue section in the current study are due to the bound form of

NADH to NOX (NADH oxidase family) enzymes. Related studies

reported that inflammatory monocytes, activated microglia, and

astrocytes expressing NOX1 as major cellular sources of oxidative

stress (57).

In summary, graphical representations of NADH intensities

and FLTs provide unique signatures for monitoring, plotting, and
Frontiers in Immunology 11
comparing cellular and tissue metabolism changes with the longer

FLTs (bound NADH) associated with oxidative phosphorylation

and shorter FLTs related to glycolysis (free NADH). These studies

also provide a framework using label-free 2p-FLIM for quantitating

metabolic changes induced by HIV-1 infection. Experiments using

multiple viral phenotypes, doses, and incubation times reveal how

the virus phenotypes and amounts affect cellular NADH levels.

Increases in the NADH levels of infected tissues mirror what we

observe in an in vitro infection system. The ability to actively

monitor and quantitatively track HIV-1-induced metabolic

differences throughout infection using 2p-FLIM could provide an

excellent label-free detection approach for visualizing and recording

acute, chronic, and viral latency throughout an infection cycle.

Determining whether observed metabolic differences of

neighboring non-p24 cells and tissues by label-free 2p-FLIM will

help identify and monitor early, acute, chronic, and latent viral

reservoirs will be interesting. Implementing the 2p-FLIM method

for label-free quantitative monitoring of microbial infection systems

has a distinctive potential to address biomedical research needs and

technical problems that occur broadly across multiple biological

systems or diseases. Moreover, the label-free quantitation of

endogenous NADH fluorescence by high-spatial and temporal

imaging of viral infected systems at single organism, sub-cellular,

cellular, and tissue level could provide a mechanistic view of the
FIGURE 7

2p-FLIM identifies metabolic differences in HIV-1 infected tissue. Fluorescence intensity images of (A) p24-FITC and (B) NADH with HIV BaL infected
NSG mouse lymph node tissue section of 7µm thick by 2p-FLIM. Panel (C) shows the overlay of p24-FITC and NADH fluorescence. (D, E) show
NADH’s average FLT and NADH’s bound form (t2), respectively.
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microbial-host interface involving perturbations in cellular

metabolism for future studies. A schematic demonstrating the

link between NADH fluorescence lifetime and metabolic

phenotype in HIV-infected cells and tissues is displayed in Figure 8.
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