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The utilisation of neoadjuvant immunotherapy has demonstrated promising

preliminary clinical outcomes for early-stage resectable non-small-cell lung

cancer (NSCLC). Nevertheless, it is imperative to develop novel neoadjuvant

combination therapy regimens incorporating immunotherapy to further

enhance the proportion of patients who derive benefit. Recent studies have

revealed that stereotactic body radiotherapy (SBRT) not only induces direct

tumour cell death but also stimulates local and systemic antitumour immune

responses. Numerous clinical trials have incorporated SBRT into immunotherapy

for advanced NSCLC, revealing that this combination therapy effectively inhibits

local tumour growth while simultaneously activating systemic antitumour

immune responses. Consequently, the integration of SBRT with neoadjuvant

immunotherapy has emerged as a promising strategy for treating resectable

NSCLC, as it can enhance the systemic immune response to eradicate

micrometastases and recurrent foci post-resection. This review aims to

elucidate the potential mechanism of combination of SBRT and

immunotherapy followed by surgery and identify optimal clinical treatment

strategies. Initially, we delineate the interplay between SBRT and the local

tumour immune microenvironment, as well as the systemic antitumour

immune response. We subsequently introduce the preclinical foundation and

preliminary clinical trials of neoadjuvant SBRT combined with immunotherapy

for treating resectable NSCLC. Finally, we discussed the optimal dosage,

schedule, and biomarkers for neoadjuvant combination therapy in its clinical

application. In conclusion, the elucidation of potential mechanism of

neoadjuvant SBRT combined immunotherapy not only offers a theoretical

basis for ongoing clinical trials but also contributes to determining the most

efficacious therapy scheme for future clinical application.

KEYWORDS

non-small cell cancer (NSCLC), stereotactic body radiation therapy (SBRT), neoadjuvant
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1 Introduction

Stereotactic body radiation therapy (SBRT) has demonstrated

promising outcomes in various solid tumours, particularly in early-

stage non-small-cell lung cancer (NSCLC) (1–4). Compared to

traditional radiotherapy, SBRT can significantly improve patient

prognosis while posing a low risk of toxicity by precisely targeting

local tumours and delivering high-dose, hypofractionated therapy

(5–8). It is noteworthy that SBRT has a significant advantage over

conventional radiotherapy due to its potent immune-activating

effect (9). Conventional radiotherapy was previously believed to

have immunosuppressive effects, as evidenced by bone marrow

myelosuppression and reduced peripheral blood count during

treatment (10). This notion was further supported by the use of

whole-body irradiation as a myeloablative conditioning before

haematopoietic stem cell transplantation (11). However, unlike

conventional radiotherapy, the advent of SBRT enables patients to

receive higher doses of precise radiotherapy in fewer fractions. The

advantage enables SBRT to minimise the potential persistent

immunosuppressive effects on the host when compared to

conventional radiotherapy (12). In fact, researchers are

increasingly recognizing the potent immunomodulatory effects of

SBRT, which can convert refractory “cold” tumours into

immunotherapy-responsive “hot” tumours (13). For instance, the

incorporation of SBRT with immunotherapy in advanced NSCLC

patients not only prolonged survival but also significantly increased

cytotoxic T cell infiltration within the tumour microenvironment

(TME) (14). Given the promising results of combing SBRT and

immunotherapy, it is worthwhile to explore whether this approach

can be applied to early-stage NSCLC for improved local tumour

control and prevention of postoperative recurrence and metastasis.

Clinically, neoadjuvant immunotherapy has demonstrated

promising potential in the treatment of early operable NSCLC (15,

16). Unlike traditional neoadjuvant chemotherapy, neoadjuvant

immunotherapy not only promotes local tumour control but also

activates the systemic antitumour immune response, which is

considered a crucial factor in preventing postoperative recurrence

and metastasis (17). Numerous clinical trials have confirmed that

combining neoadjuvant immunotherapy with chemotherapy can

significantly improve the pathological remission rate in patients

(16, 18). For example, the CheckMate-816 trial demonstrated that

neoadjuvant nivolumab combined with chemotherapy not only

significantly increased both pathological complete response (pCR)

(24% vs. 2.2%) and event-free survival (EFS) (31.6 months vs. 20.8

months), without increasing the risk of adverse events, compared to

neoadjuvant chemotherapy alone (19). Based in these promising

clinical trials, neoadjuvant immunotherapy combined with

chemotherapy has been approved as the first-line treatment for

early operable NSCLC (19). Given this success, it is worthwhile to

investigate whether SBRT can also be combined with

immunotherapy as neoadjuvant therapy for early operable NSCLC.

Indeed, there are ongoing preclinical and clinical trials exploring the

potential synergies between SBRT and immunotherapy in the

neoadjuvant setting (20–22). However, before conducting further

clinical trials and applications, it is important to fully understand the

mechanism of interaction between SBRT and antitumour immune
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response, as well as determine the optimal dosage and scheduling for

combination therapy.

Herein, we present an overview of the current status and

potential mechanism of neoadjuvant SBRT in combination with

immunotherapy, followed by surgery, for the treatment of NSCLC.

We also discuss the optimal therapy schedule and predictive

biomarkers for clinical application. Furthermore, we highlight

future research directions and challenges that require

further investigation.
2 The interplay between SBRT and
antitumour immune response

Several studies have suggested that SBRT can promote the

antitumour immune response through various pathways beyond

its direct DNA damage to tumour cells (23–25). Previous studies

have demonstrated that SBRT can induce the presentation of

antigens by promoting the release of major histocompatibility

complex 1 (MHC-1) and immunogenic cell death (ICD) of

tumour cells. Additionally, it can directly stimulate dendritic cell

(DC) maturation and CD8+ cytotoxic T lymphocyte infiltration in

the TME (12, 26, 27). Notably, conventional radiotherapy has been

demonstrated to mobilise several immunosuppressive cells,

including regulatory T cells (Tregs), M2 macrophages, and bone

marrow-derived suppressor cells (28). However, studies on SBRT-

related immunosuppressive modification are scarce. A recent study

compared the effects of SBRT (40 Gy/3 fractions) with conventional

radiotherapy (62 Gy/20 fractions or 66-69 Gy/30 fractions) on the

tumour immune microenvironment. The results showed that

conventional radiotherapy has a negative impact on systemic

immunity, resulting in an increase in neutrophils/lymphocytes

and a decrease in total lymphocyte count. In contrast, SBRT

increased B cell, central memory T cell, and effector CD8+ T cell

infiltration in the TME, as well as increased CD8/Treg ratio (29). In

summary, SBRT could activate the immune system through

multiple pathways and create an ideal TME for subsequent

immunotherapy (Figure 1).

When tumour cells are exposed to lethal stimuli such as

radiation or chemotherapy, a cascade of signaling molecules

known as damage-associated molecular patterns (DAMPs) is

released (30). These DAMPs include calreticulin, which is

exposed to the cell surface, high mobility group box 1 (HMGB1),

which is secreted by tumour cells as well as ATP molecules and heat

shock proteins (HSP70 and HSP90) (31). Studies have shown that

DAMPs induced by ICD could promote cytotoxic T lymphocyte

infiltration by facilitating dendritic cell maturation and antigen

presentation (32). Moreover, SBRT can stimulate the release of

various chemokines such as C-X-C motif chemokine ligand-9/10/16

and interferons (IFNs), which play a crucial role in recruiting

activated T cells to infiltrate the TME (33, 34). It has also been

reported that SBRT can trigger the exposure and release of

numerous tumour-associated antigens, which can be taken up by

DCs, transported to lymph nodes, and presented as antigens (35,

36). Overall, these SBRT-induced factors are critical for the

activation of local and systemic antitumour immune responses.
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SBRT can also enhance the immunogenicity and antigenicity of

tumour cells by regulating the expression of cell surface molecules and

receptors. For instance, in a dose-dependent manner, SBRT can up-

regulate cell surface markers such as intercellular adhesion molecule 1

(ICAM-1), MHC-1, and death receptor Fas (27, 37). It is widely

recognized that MHC-1 is an essential co-stimulatory molecule for

activating CD8+ T cells (38). ICAM-1 is the key adhesion molecule that

facilitates immune cell adhesion and migration into the TME (39). The

up-regulation of these surfacemolecules could enhance T cell-mediated

antitumour immune response and increase the sensitivity of cytotoxic

T lymphocytes to recognize and eliminate tumour cells (40). Notably,

SBRT could also increase immune checkpoint expression on the

surface of tumour cells. For example, the analysis of paired lung

cancer samples following SBRT revealed an increase in the diversity

of the T cell receptor repertoire and programmed cell death ligand 1

(PD-L1) expression, while no significant increase of CD8+ T cell and

IFN expression was observed within tumour tissues (33). In addition to

PD-L1, SBRT can also significantly up-regulate V-domain

immunoglobulin suppressor of T cell activation (VISTA) expression

in CD8+ T cells (29). It is worth noting that not all immune

checkpoints are elevated following SBRT. Studies have reported that

SBRT can significantly increase the frequency of Ki67+ programmed

cell death protein 1 (PD-1)+ T cells and natural killer cells in advanced

tumours without a significant increase in immune checkpoints such as

T cell immunoglobulin andmucin domain-containing protein 3 (TIM-

3) and Lymphocyte activation gene-3 (LAG-3) (41). In conclusion,

SBRT-induced up-regulation of certain immune checkpoints might

render patients more sensitive to subsequent immune checkpoint

inhibitors, resulting in higher response rates and prolonging overall

survival (OS).

Previous studies have demonstrated that SBRT can also transfer

immunosuppressive microenvironments into “hot” tumors by directly
Frontiers in Immunology 03
regulating the immune cell composition (42). Reprogramming of the

TME after SBRT is primarily induced by the production of chemokines

and cytokines to recruit specific immune cell subsets. In mouse

tumours, a single high-dose radiotherapy increased the influx of

CD8+ T cells and simultaneously decreased Treg cell invasion (43).

This change may attributed to the release of chemokine and vascular

morphological (44). The enhanced homing of immune cells creates an

ideal microenvironment for subsequent immunotherapy to effectively

elicit antitumour response. A phase 2 clinical trial was conducted to

evaluate the efficacy of combing pembrolizumab (a PD-1 inhibitor)

with SBRT in NSCLC patients and further studied the reprogramming

of TME. Results demonstrated a significant increase in the overall

response rate (4.87-fold vs. 2.56-fold) and CD103+cytotoxic T cell

infiltration after 6 weeks of SBRT plus pembrolizumab therapy, as

compared to pembrolizumab monotherapy (14).

In addition to its direct tumour-killing effect, SBRT can induce

tumour shrinkage in non-irradiated and distant metastatic tumours

through the abscopal effect (45). The current understanding is that

local immune activation triggered by SBRT can initiated a systemic

immune response that produces cytokines and circulating CD8+ T

cells. These molecules can then act on distant non-irradiated sites

and effectively inhibit metastatic tumour progression (46). While

this phenomenon is rare in SBRT monotherapy, combining it with

immunotherapy is expected to increase its incidence.

3 The preclinical foundation of
neoadjuvant SBRT combined with
immunotherapy

It is widely acknowledged that neoadjuvant immunotherapy has

the potential to not only control local tumours but also inhibit
FIGURE 1

Potential mechanisms of synergy with SBRT and immune checkpoint blockade. Stereotactic body radiation therapy (SBRT) can transfer treatment-
naive tumour microenvironment (TME) into “hot” tumour by producing immune-activating molecules and immune-related surface molecules, as
well as by directly regulating immune cells composition. Compared with treatment-naive TME, the synergy with SBRT and immune checkpoint
blockade could promote the infiltration of immune cells via up-regulation of adhesion molecules (ICAM-1) or chemokine (CXCL9/10/16). Notably,
SBRT can contribute to adaptive immune resistance via IFN-g mediated up-regulation of PD-L1 and VISTA expression on tumour cells. Blockade of
these checkpoints by inhibitors permits the activation of T cells in tumour-associated draining lymph node and TME.
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postoperative recurrence and metastasis through systemic

immunity (47). While the effects of SBRT on the local TME have

been studied, the impact of combining it with immunotherapy on

systemic immunity remains unclear. The activation of systemic

antitumour immune response is believed to be the mechanism

underlying the radiotherapy-induced abscopal effect (48, 49). In a

study with mice bearing breast cancer, combining radiotherapy

with immunotherapy resulted in significant tumour shrinkage at

both irradiated and non-irradiated sites. Notably, the abscopal effect

was abolished in T cell-deficient mice (nude mice), indicating that T

cells are essential for radiotherapy-induced distal tumour

suppression (50).

Tumour-draining lymph nodes (TDLNs) are acknowledged as

the primary sites for initiating antitumour immune responses,

where immune cells differentiate into progenitor cells upon

binding to antigens presented by DCs. These progenitor cells then

differentiate and migrate into the TME, contributing to systemic

immunity (51). Recently, Huang et al. proposed a novel concept

suggesting that the antitumour effects of immune checkpoint

inhibitors primarily occur in TDLNs rather than TME. The

research found that injecting PD-L1 inhibitors into TDLNs

significantly inhibited tumour growth, whereas injecting PD-L1

inhibitors directly into tumours had no effect. Furthermore, surgical

removal of TDLNs abrogated the antitumour effects of PD-L1

inhibitors. Further mechanistic studies demonstrated that

immune checkpoint inhibitor therapy initially promotes the

amplification of T cell factor 1 (TCF-1)+ thymocyte selection-

associated HMGB (TOX)- CD8+ T cells), which are tumour-

specific memory cells in TDLNs, These cells subsequently
Frontiers in Immunology 04
migrated to the TME and peripheral immunity where they

differentiate into effector T cells (52). This novel concept

highlights the importance of TDLNs and systemic immunity in

the antitumour response to immunotherapy (Figure 2).

According to research, SBRT has demonstrated a greater potential

than conventional radiotherapy in activating immune cells in TDLNs,

leading to a more robust systemic immune response capable of

eliminating potential metastases. Lee et al. were among the first to

report that high-dose radiotherapy (15-25 Gy×1) could enhance the

activation of immune cells in TDLNs of advanced tumours, resulting in

activated CD8+ T cells that not only targeted primary tumours but also

eliminated distant metastases in some cases. Moreover, the

incorporation of immunotherapy into high-dose radiotherapy

resulted in enhanced tumour eradication and systemic antitumour

immune response (53). Additionally, Walker et al. demonstrated that

the combination of high-dose radiotherapy with bempegaldesleukin (a

CD122-preferential interleukin-2 pathway agonist) not only impedes

the growth of irradiated tumours but also activated tumour-specific

CD8+ T cells in systemic immunity, leading to the elimination of non-

irradiated metastases (54). Additionally, in a preclinical model

featuring disseminated metastasis (4T1 and mouse oral carcinoma

2), researchers discovered that the addition immune checkpoint

inhibitors to radiotherapy plus bempegaldesin significantly prolonged

the survival of mice by preventing distant metastasis. The effect was

achieved by generating immune memory cells in TDLNs (55).

Collectively, these preclinical studies suggest that combining SBRT

with immunotherapy may enhance the incidence of the abscopal effect

by promoting immune cell activation in TDLNs, generating a systemic

immune response.
FIGURE 2

The interplay between SBRT and antitumour immune response. Stereotactic body radiation therapy (SBRT) could promote the activation of anti-
tumour immune system through multiple pathways. In turn, activated anti-tumour immune responses also play a key role in the radio-induced
abscopal effect. Specifically, SBRT can initiate antigen presentation by promoting the release of tumor-associated antigens (TAA) and major
histocompatibility complex I (MHC I), and induce immunogenic cell death (ICD) in tumour cells. Tumour draining lymph nodes (TDLNs) are the main
sites of anti-tumour immunity initiation where immune cells develop into progenitor cells after binding to antigens presented by dendritic cells
(DCs). The progenitor cells subsequently differentiate into TAA-specific cytotoxic T lymphocytes (CTLs) and migrate into the tumour
microenvironment (TME) and systemic immunity.
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The dose and fraction of SBRT have also been demonstrated to

impact the activation of TDLN-mediated systemic immune

response. However, there are conflicting data and divergent

opinions on the superiority of low-dose SBRT and single high-

dose SBRT. Lee et al. discovered that low-dose SBRT (5 Gy×4 over 2

weeks) was significantly less effective in inducing a systemic

antitumour immune response than a single dose of SBRT (20

Gy), possibly due to the gradual elimination of effector T cells

and subsequent early relapse (53). In contrast, other reports have

demonstrated that low-dose SBRT can elicit more favourable local

and systemic immune responses and synergize with

immunotherapy. For instance, Dewan et al. found that in a

bilateral preclinical model of breast cancer, low-dose radiotherapy

(8 Gy×3 or 6 Gy×5) combined with immunotherapy was more

effective than administering a single high dose of 20 Gy. This

combination not only slowed down tumour growth at the

irradiation site but also significantly inhibiting lung metastasis

and prolonging the survival of mice (56). Furthermore, Schaue

et al. demonstrated in a mouse model loaded with B16-OVA

melanoma cells that low-dose SBRT (7.5 Gy×2 and 5 Gy×3) was

generally superior to a single dose of radiotherapy (15 Gy) in

inducing peripheral tumour-specific immune responses (57).

A noteworthy finding from Savage et al. in a preclinical model

of lung cancer was the efficacy of a new radiotherapy regimen (22

Gy followed by 0.5 Gy × 4 days) in increasing the infiltration of

Granzyme B+CD8+ T cells within TME, while simultaneously

reducing immune suppression caused by Tregs and M2

macrophages when compared to standard SBRT. Further

immunoassay of secondary lymphoid organs indicated a

significant increase in Granzyme B+CD8+ T cells and IFN-

g+CD8+ T cells in TDLNs of mice treated with the new

radiotherapy regimen. These promising preclinical results offer a

potential new radiotherapy regimen for clinical application to

enhance its immunogenic potential (58). Overall, the above

preclinical studies provide a foundation for the use of

neoadjuvant SBRT combined with immunotherapy in early

NSCLC to prevent distant metastasis.

4 Advances in neoadjuvant SBRT
combined with immunotherapy
for NSCLC

The combination of SBRT and immunotherapy has exhibited

substantial potential in triggering a systematic antitumour immune

response, as evidenced by preclinical studies. Clinically, Shaverdian

et al. conducted a prospective analysis and demonstrated that

advanced NSCLC patients who received radiotherapy prior to

pembrolizumab treatment had significantly longer progression-

free survival and overall survival compared to those without

previous radiotherapy (59). As for neoadjuvant therapy,

preliminarily clinical trials have shown that neoadjuvant SBRT

combined with immunotherapy can prolong the survival of

patients in several tumours by inducing a systemic antitumour

immune response. For instance, in a study of 30 patients with

locally advanced oral cavity squamous cell carcinoma, the addition
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of SBRT to neoadjuvant nivolumab therapy resulted in significant

rates of major pathological response (MPR)(60.0%) and pCR

(33.3%) in the neoadjuvant therapy group. Additionally, the

group receiving combined treatment had an improved 24-month

disease-free survival rate (70.4%) and OS rates (76.4%) (60). In

another prospective study of locally advanced head and neck

squamous cell carcinoma, the combination of neoadjuvant

nivolumab and SBRT (40 Gy×5 or 24 Gy×3) significantly

improved pathological responses in patients, with 86% achieving

MPR and 67% achieving pCR (60).

Several phase II clinical trials have been initiated in resectable

early NSCLC to investigate the feasibility, toxicity, and optimal

schedule of neoadjuvant SBRT combined with immunotherapy

based on increasing preclinical and clinical evidence (Table 1).

For instance, a multicentre phase II trial (NCT04245514) evaluated

the safety and efficacy of adding immunotherapy to neoadjuvant

radiotherapy in patients with resectable stage III NSCLC.

Durvalumab was administered in combination with SBRT (5

Gy×5 and 8 Gy×3) or conventional radiotherapy (2 Gy×20) to

observe 12-month EFS after surgery, with recurrence-free survival

and OS as secondary outcomes. Notably, the timing of SBRT

initiation in neoadjuvant therapy remains inconsistent across

current clinical trials. For instance, in one clinical trial

(NCT05319574) for operable stage IB to III NSCLC, SBRT (8

Gy×3) was initiated 1-7 days before the first cycle of

immunochemotherapy, whereas another trial (NCT05500092)

started SBRT (8 Gy×3) therapy at the end of the first

immunotherapy cycle (three cycles of neoadjuvant nivolumab

plus chemotherapy). Additionally, in the clinical trial

(NCT03110978) conducted by chang et al., nivolumab was

administered either 36 hours before or after the initial fraction of

SBRT. Significantly, the recent report on this trial demonstrated

that combination therapy effectively enhances the 4-year EFS rate to

77%, compared to only 53% (95% CI 42–67%) achieved with SBRT

monotherapy (61). The variation in therapy schedules among these

clinical trials facilitates the exploration of optimal combination

therapy strategies and underscores the need for a thorough

understanding of the underlying mechanisms of neoadjuvant

combination therapy.
5 Future challenges and directions for
neoadjuvant combination therapy

Further research is needed to determine the optimal dosage,

fraction, and schedule of radiotherapy in neoadjuvant combination

therapy to enhance the systemic antitumour immune response,

which remains a challenging task (62).

Limited research has been conducted on the impact of varying

doses and fractions of radiotherapy on local and systemic immune

responses in NSCLC patients. A recent clinical trial investigated the

safety and efficacy of pembrolizumab combined with SBRT (50 Gy

in four fractions) or conventional radiotherapy (45 Gy in 15

fractions) for treating lung and liver metastases in metastatic

NSCLC. The results revealed that the group receiving

pembrolizumab plus SBRT had an objective response rate of 38%,
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while only 10% was observed in the group receiving pembrolizumab

plus conventional radiotherapy (63). This clinical trial

demonstrated the superiority of SBRT over conventional

radiotherapy in antitumour metastasis, no differences were

observed between different SBRT regimens. Therefore, a

convincing preclinical study is required to address this issue.

However, the challenge with current preclinical research is the

disparity between its findings and applicability in clinical practice

(64). The inconsistency maybe attributed to the absence of

preclinical models that can accurately replicate the immune

microenvironment of patients. Current preclinical models

primarily employ murine-derived cell lines in normal mice, and

their use of murine-derived immune system and immune

checkpoint inhibitors further undermines the reliability of

preclinical research outcomes (56). Therefore, the development of

a humanised mouse model, in which human immune cells are

transplanted into mice with severe combined immunodeficiency, is

anticipated to offer a solution to this challenge (65).

In addition to investigating the effects of radiotherapy dosage

and fraction on the immune system, determining the optimal

schedule is also critical in neoadjuvant therapy. To this end,

Dewan et al. conducted a preclinical study using a bilateral breast

cancer model to investigate the effect of combination therapy when

altering the timing of immunotherapy relative to radiotherapy. The

study aimed to investigate the impact of initiating immunotherapy
Frontiers in Immunology 06
2 days before, on that same day as, or 2 days after SBRT (8 Gy×3)

completion on tumour growth. Results showed that initiating

immunotherapy 2 days before or on the same day as radiotherapy

ended inhibited tumour growth at both irradiated and non-

irradiated sites. However, delaying immunotherapy until 2 days

after the completion of radiotherapy reduced therapeutic efficacy,

resulting in complete regression of only one of the six primary

tumours and reduced growth inhibition in the non-irradiated sites.

This indicates that the timing of immunotherapy vs. radiotherapy

might influence the efficacy of the combination therapy (56).

Similarly, Dovedi et al. investigated the optimal schedule for

combining immunotherapy with SBRT (10 Gy×5) by varying the

timing of treatment. The results showed that adding

immunotherapy at the beginning or end of SBRT did not

significantly affect the OS in mice. However, initiating

immunotherapy one week after the end of SBRT was entirely

ineffective in improving OS, similar to radiotherapy alone.

Furthermore, they analysed the dynamics of CD4+ T cells and

CD8+ T cells in the TME to explore the underlying mechanisms of

the optimal combination schedule. Results indicated a significant

increase in PD-1+CD4+ and PD-1+CD8+ T cell proportions within

the tumour one day after SBRT completion, but a significant

decrease in PD-1+CD8+ T cells seven days post-radiotherapy (66).

Collectively, these preclinical studies suggest that SBRT leads to an

acute increase in tumour-specific CD8+ T cells. Adding
TABLE 1 Clinical trials of neoadjuvant SBRT combined with immunotherapy in NSCLC.

NCT
number

Patient
tumour
stage

Radiotherapy
planning

Immunotherapy
planning Primary outcome Secondary Outcome Phase

NCT04245514
Resectable
Stage III
(N2)

Cohort A: 2Gy × 20
weekdaily Cohort B: 5Gy
× 5 weekdaily Cohort C:

8Gy × 3 q2d

1 cycle of durvalumab
Event-free survival (EFS) at

12 months

Event-free survival (EFS)
Recurrence-free survival
(RFS) Overall survival

(OS)

2

NCT05319574
Operable
stage IB to
III

8Gy in 3 daily fractions

2 cycles of tislelizumab
(200mg) with platinum-based
doublet chemotherapy
administered pre-surgery

Major Pathological Response
(MPR)

Pathologic Complete
response (PCR) Resected
rate
Disease-free survival

2

NCT05500092
Resectable
stage IIA
to IIIB

8Gy in 3 daily fractions
3 cycles of neoadjuvant

nivolumab and platinum-based
doublet chemotherapy

Complete pathological
response rate (CPR)

Major Pathological
Response (MPR) Event
Free Survival (EFS)

2

NCT04933903
Operable
stage IB -
III

7Gy × 1; 4Gy × 2 Ipilimumab + nivolumab
Number of Patients with a
Pathologic Response

Incidence of Treatment-
Emergent Adverse Events

2

NCT03217071
Resectable
stage I-
IIIA

Single 12 Gy
2 cycles of pembrolizumab

every 3 weeks

Change in number of
infiltrating CD3+ T cells/mm2

Proportion of achieving a
two-fold increase

Treatment-Related
Adverse Events (AEs)

Grade 3 immune-related
AEs Overall Survival

2

NCT04271384 Stage I
18 Gy × 3 or 10 Gy × 5
or 7.5 Gy × 8

3 cycles of nivolumab every 3
weeks

Pathologic complete response
(pCR)

Major pathological
response (MPR)
Treatment-related adverse
events
Objective response rate
(ORR)

2

NCT03110978
Stage I-IIA

or
Recurrent

SBRT over 1-2 weeks
3 cycles of nivolumab every 4

weeks
Event-free survival (EFS)

Overall survival (OS)
Incidence of treatment-
related adverse events

2
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immunotherapy after the completion of the radiotherapy cycle

might result in a significant decrease in the treatment’s efficacy

due to the anergy of these cells.

Identification of predictive biomarkers for neoadjuvant

combination therapy is crucial in determining the population that

will benefit and dynamically evaluating therapy efficacy (67).

Nevertheless, the biomarkers of neoadjuvant SBRT in combination

with immunotherapy remain unknown as classical immunotherapy

biomarkers such as PD-L1 and tumour mutation burden fail to

dynamically reflect the changes in the TME and systemic antitumour

immune response (68). Recent studies have focused on the kinetics of

specific immune cell subsets in systemic immunity and their

correlation with efficacy (69). For example, Huang et al. reported

that TCF-1+TOX-CD8+ T cells in TDLNs are bona fide memory T

cells that can migrate and differentiate into systemic immunity after

immune checkpoint inhibitor therapy (52). Therefore, the kinetics of

CD8+ T cell subsets in peripheral immunity after neoadjuvant

immunotherapy might be closely associated with efficacy. In

addition, Kamphorst et al. reported that increased Ki67+PD-

1+CD8+ T cells could be detected in the peripheral blood of

approximately 70% of patients with lung cancer 4 weeks after

receiving immunotherapy. These cells are considered to be tumour-

specific T cells, and their kinetics are correlated with positive clinical

outcomes (70). In summary, specific immune subpopulations in

systemic immunity might serve as potential biomarkers for

dynamically monitoring immune responses in patients with

NSCLC undergoing neoadjuvant combination therapy.
6 Discussion

Preliminary preclinical findings demonstrate the significant

potential of SBRT in combination with immunotherapy in

neoadjuvant setting for resectable NSCLC. Furthermore, several

ongoing clinical trials are investigating the feasibility and toxicity of
Frontiers in Immunology 07
this novel neoadjuvant combination therapy; however, it will take

some time for data to confirm its clinical efficacy. In addition, the

determination of optimal dosage and fractions, identification of

predictive biomarkers, and establishment of an optimal schedule for

combination therapy are all crucial factors that impact the efficacy

of neoadjuvant therapy. Therefore, further preclinical and clinical

studies are imperative to address these challenges prior to

widespread implementation it in clinical practice.
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