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Integrated bioinformatic analysis
and experimental validation for
exploring the key molecular of
brain inflammaging
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Yu Jiang1 and Zhenqiang Zhang2*

1School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China, 2Academy of Chinese
Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
Aims: Integrating bioinformatics and experimental validation to explore the

mechanisms of inflammaging in the Brain.

Method: After dividing the GSE11882 dataset into aged and young groups, we

identified co-expressed differentially expressed genes (DEGs) in different brain

regions. Enrichment analysis revealed that the co-expressed DEGs were mainly

associated with inflammatory responses. Subsequently, we identified 12 DEGs

that were related to the inflammatory response and used the DGIdb website for

drug prediction. By using both the least absolute shrinkage and selection

operator (LASSO) and random forest (RF), four biomarkers were screened and

an artificial neural network (ANN) was developed for diagnosis. Subsequently, the

biomarkers were validated through animal studies. Then we utilized AgeAnno to

investigate the roles of biomarkers at the single cell level. Next, a consensus

clustering approach was used to classify the aging samples and perform

differential analysis to identify inflammatory response-related genes. After

conducting a weighted gene co-expression network analysis (WGCNA), we

identified the genes that are correlated with both four brain regions and aging.

Wayne diagrams were used to identify seven inflammaging-related genes in

different brain regions. Finally, we performed immuno-infiltration analysis and

identified macrophage module genes.

Key findings: Inflammaging may be a major mechanism of brain aging, and the

regulation of macrophages by CX3CL1 may play a role in the development

of inflammaging.

Significance: In summary, targeting CX3CL1 can potentially delay inflammaging

and immunosenescence in the brain.
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GRAPHICAL ABSTRACT
1 Introduction

Aging refers to the gradual loss of physiological integrity and

functional decline in biological processes, leading to impaired

function and increased risk of death, often caused by dysregulated

mitochondrial metabolism, cellular function, tissue failure, and

overall body function (1, 2). In the adult brain, a balance between

pro- and anti-inflammatory factors must be maintained. However,

as we age, this balance tends to tip towards pro-inflammatory

cytokines (3). This imbalance makes the aging brain more

susceptible to stress and disease. And the low level of chronic

inflammation has become the sign and potential driving factor of

brain aging (4, 5). Typically, older brains have higher levels of
Frontiers in Immunology 02
inflammatory markers in their cells and tissues, resulting in ongoing

changes in cellular senescence (6). The immune system and

immune cells gradually age, resulting in disrupted activation and

elimination of inflammatory responses (7). Macrophages are a

crucial component of the innate immune system, and their

“polarization” phenomenon, which allows for a dynamic shift in

phenotype and function depending on the specific environment, is

critical for regulating inflammation development (8, 9).

Inflammation, immune system and aging are closely related and

are one of the important directions of anti-aging research.

Numerous studies indicate that aging of both the body and

brain can be delayed, and removing senescent cells from the brain

can significantly slow down brain aging (10, 11). Bioinformatics
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analysis has rapidly advanced and become a valuable tool for

identifying disease-related genes (12). In this study, we focused

on brain aging in different regions and aimed to identify potential

biomarkers and molecular mechanisms involved. By analyzing the

expression profile of GSE11882 from the gene expression omnibus

(GEO) database, we found that inflammaging plays a crucial role in

brain aging. By using the DGIdb website, we predicted drug targets

for 12 inflammatory response-related DEGs and developed an

artificial neural network (ANN) based on four biomarkers

selected by both LASSO and RF. The biomarkers were validated

through animal studies, and their roles in single cells were

investigated using AgeAnno. Subsequently, we performed

consensus clustering and weighted gene co-expression network

analysis (WGCNA) to further investigate the mechanisms of

inflammaging of the brain, with the ultimate goal of providing

insights to aid in slowing down brain aging treatments.

2 Materials and methods

2.1 Data collection and processing

GSE11882 and GSE1572 dataset were obtained from the in the

GEO database (http://www.ncbi.nlm.nih.gov/geo). GSE11882

dataset was used as the date set, comprising of 173 postmortem

brain tissue samples obtained from four distinct regions of the

brain: 43 from the hippocampus (HC), 39 from the entorhinal

cortex (EC), 48 from the superior frontal gyrus (SG), and 43 from

the postcentral gyrus (PCG) (12). We divided the sample into the

young group (age range: 20-59 years) and the aged group (age

range: 60-99 years). And GSE1572 dataset was used as the

validation set, included 22 aged samples and 24 young samples.
2.2 Identification of inflammatory
response-related differentially expressed
genes and functional enrichment analysis

The “limma” package was utilized to identify differentially

expressed genes (DEGs), which were selected based on a

threshold of |log2FC|>0.5 (where FC denotes fold change) and

P<0.05. Enrichment analysis of gene ontology (GO) and kyoto

encyclopedia of genes and genomes (KEGG) pathways was

performed with the R package “clusterProfiler”. The cutoff values

for q-value and p-value were set to 0.05.

The results of the enrichment analysis were visualized using R

software. Following that, inflammatory response related - DEGs

were identified through their intersection in the DEGs and 200

inflammatory response related genes from MsigDB (http://

www.broad.mit.edu/gsea/msigdb/). Then, GO terms and KEGG

pathway were also performed using the R cluster profiler package.
2.3 Screening for potential compounds

Drug gene interaction database (DGIdb) (https ://

www.dgidb.org/) provides information about drug and gene
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interactions. In this study, the DGIdb be used to identify

potential small-molecule substances targeting inflammatory

response-related DEGs.
2.4 Machine learning

We used twomachine learning algorithms to filter genes, including

support vector machine recursive feature elimination (SVM-RFE) and

least absolute shrinkage and selection operator (LASSO). LASSO is a

regression analysis method that combines feature selection and

regularization simultaneously. And SVM-RFE employ the inductive

principles of structural risk minimization. The genes screened by

LASSO and SVM-RFE were used for further analysis.
2.5 Artificial neural network construction

Using the “neuralnet” and “neuralnettools” packages in R

software, a model based on artificial neural network (ANN) was

constructed for the biomarkers. The model had five hidden nodes.

A classification model was created for aged utilizing the “gene

score” information. The ANN’s predictive performance was

assessed by analyzing the receiver operating characteristic (ROC)

curves on both the GSE11882 and GSE1572 datasets.
2.6 GSVA analysis

According to the median expression levels of biomarkers in the

GSE11882 dataset, the aged samples were divided into high and

low-expression group. The study employed single-gene set variation

analysis (GSVA) to clarify the enriched KEGG pathways, with the

gene set “c2.cp.kegg. v7.4. symbols. gmt” serving as the reference.

Gene sets with P < 0.05 were considered to be significantly enriched.
2.7 Animal experiments

MaleWister rats were assigned to two groups—the young group

(3 months; n=6) and the aged group (24 months; n=6), and housed

under constant environmental conditions (a temperature of 22 ±

2°C and a humidity of 50–70%) on a light/dark cycle of 12 h. All

animal experiments were approved by the experimental animals’

welfare and ethical inspection of beijing vital river laboratory

animal technology Co., Ltd. The procedures were approved by the

Animal Ethics Committee of Henan University of Chinese

Medicine (permit number: DWLL202108003).

2.8 Molecular validation

To measure the expression of ADM, APLNR, C3AR1 and

CX3CL1, we used Real time-quantitative PCR (RT-PCR). Total

RNA was extracted from hippocampal tissues using Trizol reagent

(Servicebio, G3013). The mRNA was reverse transcribed to cDNA

using the Servicebio®RT First Strand cDNA Synthesis Kit

(Servicebio, G3337), followed by qPCR using the SYBR Green
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qPCR Master Mix (None ROX) (Servicebio, G3320). We used the

2–DDCt method to determine the relative changes in mRNA levels

among the groups. Thermal cycling conditions for RT-PCR were

95°C for 30 s, followed by 40 cycles of 95°C for 15 s and 60°C for 30

s, and finally 60°C for 60 s to 95°C for 15 s. We used GAPDH as the

housekeeping gene to normalize the expressions of the target genes.

The following primers were used for amplification in Table 1.
2.9 Single-cell RNA sequencing analysis

AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/) is a powerful

tool that leverages scRNA data to comprehensively characterize

aging-associated genes across various human tissue cell types (13).

AgeAnno allowing us to visualize cells from different age groups and

identify the specific cell types that are involved in the aging process.

We utilized AgeAnno to investigate the roles of biomarkers.
2.10 Consensus clustering

We performed unsupervised clustering analysis on the aged

samples using the “ConsensusClusterPlus” software package based

on the expression profiles of 12 inflammatory response related -

DEGs. As a result, we classified the aged samples into two distinct

clusters. We set the parameters as follows: the maximum number of

clusters is 10 and the distance metric used was Pearson. The

empirical cumulative distribution function plot was utilized to

determine the optimal number of clusters. To determine the

significance of the clusters, principal component analysis (PCA)

was used. The DEGs between the two clusters were analyzed using

the “limma” package, with thresholds of |log2FC|≥ 1 and P < 0.05.
2.11 GSEA analysis

We conducted enrichment analyses of GO terms and KEGG

pathways using gene set enrichment analysis (GSEA), which was

carried out with the R package and the MSigDB database. The cutoff

criteria were set at False discovery rate (FDR) < 0.25 and P < 0.05.
2.12 WGCNA analysis

We constructed a co-expression network using the WGCNA

package in order to identify the hub module that is most relevant to
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the aged. We used the R software package “WGCNA” to analyze

gene correlations. Genes with variances exceeding 50% were

selected as inputs for the analysis. To ensure that the resulting

network followed a scale-free topology, we applied a soft threshold.

We used hierarchical clustering and dynamic tree cutting functions

to identify modules. To determine the significance of module

eigengenes (MEs), we calculated their p-value and Pearson’s

correlation coefficient with the disease trait. This helped us to

identify the most relevant module for aging. Subsequently, we

constructed a co-expression network for aged samples using the

WGCNA package to identify the module most relevant to the four

brain regions. We used a Venn diagram to identify genes that were

associated with both aged and the brain regions.
2.13 Identification of macrophage-related
module genes

Using the single-sample gene set enrichment analysis (ssGSEA)

method from the R package, we compared the immune landscape of

aged and young samples. A violin plot was generated using the

“vioplot” package to visualize the 28 immune cell between 2 groups.

To examine the correlations between immune cells and biomarkers,

we performed Spearman’s correlation analysis. We also generated

the module-macrophage correlation heat map based on the results

of WGCNA analysis and immune infiltration. We then identified

the macrophage-related module genes.
3 Result

3.1 Identification of DEGs

We created a corresponding heat map (Figure 1A) and found

126 DEGs in four brain regions (Figure 1B). Our subsequent

functional enrichment analysis revealed that GO terms related to

cytokine production, immune system regulation, regulation of

inflammatory response, macrophage activation, and cytokine

binding were significantly enriched. KEGG pathway analysis

identified cytokine-cytokine receptor interaction, FoxO signaling

pathway, TNF signaling pathway, and phagosome as the most

enriched pathways. These results indicate a strong correlation

between aging and inflammatory response (Figure 1C).
TABLE 1 The primer sets for associated mRNA.

Rat Forward Primer (5′-3′) Reverse Prime (5′-3′) Fragment length (bp)

ADM CTGGTTTCCATCGCCCTGAT GTAGCTGCTGGACGCTTGTA 150

APLNR CCTACCGGGAGTTTGACTGG GCAGCCTTAGTCGAGCGTTA 162

C3AR1 ACCAAGAAAGCGCCTTGAGA AACTGGTAGAGTGCGTGAGC 192

CX3CL1 GGCCGCGTTCTTTCATCTGT GGATTGGCGAGGTCATCTTGT 95

GAPDH CTGGAGAAACCTGCCAAGTATG GGTGGAAGAATGGGAGTTGCT 138
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3.2 Identification of inflammatory response
- related DEGs

A total of 12 inflammatory response - related DEGs were identified

(Figures 1D, E), and GO analysis indicated that the biological processes

were focused on the regulation of inflammatory response, positive

regulation of cytosolic and neutrophil chemotaxis. The cellular
Frontiers in Immunology 05
composition was focused on secretory granule membrane, anchored

component of external side of plasma membrane and membrane raft.

The molecular functions were mainly focused on CXCR chemokine

receptor binding, cytokine activity and G protein-coupled receptor

binding. And KEGG analysis showed that Toll-like receptor signaling

pathway, TNF signaling pathway and B cell receptor signaling pathway

were significantly enriched (Figure 1F).
B C

D E

F

A

FIGURE 1

Identification of inflammatory response-related DEGs. (A) Heat maps of DEGs between aged and young groups in HC, SG, EC and PCG. (B) Venn
diagrams of DEGs. (C) GO and KEGG pathways enriched by the DEGs. (D) Venn diagrams of inflammatory response-related DEGs. (E) Box plot of 12
inflammatory response-related DEGs , ***P <0.001. (F) GO and KEGG pathways enriched by the inflammatory response-related DEGs. HC,
hippocampus; PCG; postcentral gyrus; SG, superior frontal gyrus; EC, entorhinal cortex.
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3.3 Identification of the potential drugs

In Figure 2, A total of 59 gene-related compounds or medications

were discovered. Notably, celecoxib and insulin can target multiple genes

at the same time, indicating their potential efficacy as drugs in the future.
3.4 Identification of biomarkers

The RF algorithm identified seven diagnostic genes (Figure 3A),

while the LASSO regression algorithm identified seven potential

diagnostic biomarkers (Figure 3B). A Venn diagram was used to

identify the four genes (ADM, APLNR, C3AR1, and CX3CL1) that

overlapped and were deemed robust diagnostic biomarkers

(Figure 3C). Then, an ANN diagnostic model was developed

based on gene weight (Figure 3D). When tested on the dataset

(GSE11882), the model achieved an AUC of 0.865, while for the

validation set (GSE1572) the AUC was 0.696 (Figure 3E), indicating

high performance in diagnosing aged individuals. These results

demonstrate the successful development of a robust diagnostic

model capable of distinguishing between aged and young samples.
Frontiers in Immunology 06
3.5 Single-gene GSVA analysis

After that, we performed a single-gene GSVA analysis (Figure 3F).

The results showed that the high expression of CX3CL1 was associated

with the enrichment of the notch signaling pathway, while the low

expression of CX3CL1 was linked to Parkinson’s disease. The low

expression of APLNR was associated with ECM receptor interaction,

whereas the high expression of APLNR was associated with

Parkinson’s disease. Moreover, the high expression of C3AR1 was

found to be highly enriched in Parkinson’s disease, while the low

expression of C3AR1 was associated with the notch signaling pathway.

Finally, the high expression of ADMwasmainly enriched in aminoacyl

tRNA biosynthesis, while the low expression of ADM was associated

with ECM receptor interaction.
3.6 Experimental validation

Following RT-PCR analysis, it was discovered that the aged group

exhibited significantly lower expression of CX3CL1 mRNA compared

to the young group, as demonstrated in Figure 4A. In addition, the
FIGURE 2

The drug and genes interaction network. Circles represent drug, and lozenges represent inflammatory response-related DEGs.
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expression levels of ADM, C3AR1, and APLNR mRNA in the aged

group were higher, in line with the findings from GSE11882.
3.7 Single-cell expression of biomarkers

Biomarkers were employed to differentiate six distinct cell types

in brain tissue, which include excitatory neurons, inhibitory

neurons, oligodendrocytes, endothelial cells, oligodendrocyte
Frontiers in Immunology 07
progenitor cells (OPCs), and astrocytes (Figure 4B). It was

observed that in the aged group, the population of excitatory

neurons, oligodendrocytes, and OPCs were increased, while the

numbers of endothelial cells and astrocytes were decreased

(Figure 4C). Research revealed a significant decrease in CX3CL1

expression across three cell types: inhibitory neurons (Figure 4D),

excitatory neurons (Figure 4E), and astrocytes (Figure 4F). Notably,

CX3CL1 expression was found to be most significantly reduced in

excitatory neurons. Transcriptional noise refers to the molecular
B

C D E

F

A

FIGURE 3

Identification and validation of the biomarkers. (A) RF algorithm analysis. (B) LASSO regression analysis. (C) Venn plot exhibiting the biomarkers.
(D) The visualization of the ANN diagnostic model. (E) The assessment result of the GSE11882 and the testification result of the GSE1572. (F) GSVA
analysis of CX3CL1, APLNR, C3AR1 and ADM.
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fluctuations that cause variations in gene expression among cells in

a population. Figure 4G presents a radar plot that illustrates the

coefficient of variation of CX3CL1 in six brain cell types, along with

a table that shows how the coefficient of variation of CX3CL1

increases with aging in all cell types (Figure 4H). This finding

suggests that dysregulation of transcriptional regulation may

underlie age-related changes in CX3CL1 gene expression.
Frontiers in Immunology 08
3.8 Cluster analysis

In GSE11882, we conducted cluster analysis to categorize the aged

samples into distinct molecular subtypes (Figure 5A). To explore the

subtypes further, we performed PCA based on the expression levels of

the 12 inflammatory response - related DEGs (Figure 5B). The resulting

analysis revealed two clusters, which we named Clusters C1 and C2.
B C

D E F

G H

A

FIGURE 4

Animal experiment validation and single cell analysis. (A) The expression of ADM, APLNR, C3AR1 and CX3CL1 in hippocampal tissue of aged and
young rat , *P <0.05 , **P <0.01. (B) The tSNE and UMAP plots of different cell clusters in the brain. (C) The tSNE and UMAP plots of cells of different
age groups in the brain. (D) CX3CL1 expression is downregulated in inhibitory neurons after brain aging. (E) CX3CL1 expression is downregulated in
excitatory neurons after brain aging. (F) CX3CL1 expression is downregulated in astrocytes after brain aging. (G) Radar plot of variation coefficient of
CX3CL1 in six cell type. (H) Comparison of CX3CL1 variation coefficient.
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3.9 GSEA analysis
We identified DEGs between cluster C1 and cluster C2. The

volcanic and thermal diagrams are shown in Figures 5C, D. Then we

ran GSEA to identify molecular activities that are different between the

two clusters. As shown in Figure 5E, GO terms were mainly enriched

in response to cytokine, regulation of immune response and cell

surface. And the KEGG terms were mainly enriched in innate

immune system, cytokine signaling in immune system and

neutrophil degranulation (Figure 5F).
Frontiers in Immunology 09
3.10 WGCNA analysis

We conducted WGCNA analysis to identify gene modules

associated with specific features. Using a soft threshold of b = 10,

we constructed a scale-free network (Figure 6A) and merged similar

modules to generate a dynamic cut tree (Figure 6B). And 18

modules have been generated, which can be seen in Figure 6C in

different colors. Among the 18 modules, we found that the midnight

lightcyan module was closely related to aged features (Figure 6D).

Similarly, we performed WGCNA analysis on the aged sample

using b = 5, we constructed a scale-free network (Figure 6E) and
B

C D

E F

A

FIGURE 5

Consensus clustering analysis. (A) Defined two clusters and the consensus matrix heat map of their related regions. (B) PCA analysis showed
transcriptome differences between the two subtypes. (C, D) The heat map and volcano map between cluster C1 and cluster C2. (E, F) Five
representative enriched GO gene sets and KEGG pathways from GSEA.
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merged similar modules to generate a dynamic cut tree (Figure 6F).

We obtained 14 modules, which are depicted in Figure 6G with

distinct colors. We discovered that the lightgreen module was

significantly correlated with four brain regions and most closely

associated with the hippocampus (Figure 6H).
Frontiers in Immunology 10
We then analyzed the intersection of the lightcyan module

genes, lightgreen module genes, and inflammatory response

related genes to identify seven inflammaging-related genes in

different brain regions (Figure 6I). We then performed a

functional enrichment analysis and the results showed that GO
B

C D

E F

G H

I J

A

FIGURE 6

WGCNA analysis. (A) b =10 is selected as the soft threshold in the combined analysis of scale independence and average connectivity. (B) Gene co-
expression modules represented by different colors under the gene tree. (C) Correlation heat map of modules. (D) Heat map of the association
between modules and phenotypes. Numbers at the top and bottom brackets represent the correlation coefficient and p-value, respectively. (E) b =5
is selected as the soft threshold. (F) Gene co-expression modules represented by different colors under the gene tree. (G) Correlation heat map of
modules. (H) Heat map of the association between modules and brain regions. (I) Venn plot exhibiting the seven inflammaging-related genes in
different brain regions. (J) GO and KEGG pathways enriched by the inflammaging genes in different brain regions.
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terms were mainly enriched in macrophage activation involved in

immune response, regulation of granulocyte macrophage

colony-stimulating factor production and granulacyte

macrophage colony- stimulating factor production. And the

KEGG terms were mainly enriched in nicotine addiction, Fc

epsilon RI signaling pathway and B cell receptor signaling

pathway (Figure 6J).
3.11 Identification of macrophage
module genes

The results of ssGSEA showed that macrophages were altered in

the aged group (Figure 7A). We demonstrated the immune cell heat

map (Figure 7B), and exhibited the correlations between biomarkers

and immune cells (Figure 7C). We then integrated the results of

WGCNA and immuno-infiltration analyses to identify themacrophage

module genes. Interestingly, our findings revealed a significant

association between macrophages and the lightcyan module and

lightgreen module (Figure 7D). we then identified 21 genes that are

associated with macrophages (Figure 7E). To further understand their

function, we conducted functional enrichment analysis on these genes

(Figure 7F). GO terms were mainly enriched in regulation of leukocyte

mediated immunity, regulation of mononuclear cell proliferation and

regulation of leukocyte proliferation. And the KEGG terms were

mainly enriched in B cell receptor signaling pathway, Osteoclast

differentiation and GABAergic synapse.
4 Discussion

Brain aging is a crucial aspect of organism aging that involves

the gradual decline of the brain’s morphological structure and

physiological function due to aging (14). This decline manifests as

varying degrees of damage and impairment to brain function, and

some elderly individuals may develop mild cognitive dysfunction or

even dementia, creating significant pressure for families and society

and becoming a severe medical and social issue (15). Therefore,

exploring the mechanisms of brain aging, identifying new

therapeutic targets, and slowing down the process of brain aging

are of significant social importance (16). Our study conducted a

bioinformatics analysis to explore the key mechanisms of brain

aging across different brain regions. The results showed that the

DEGs shared by four brain regions were significantly enriched in

terms related to inflammatory response. During the natural aging

process, an imbalance between pro- and anti-inflammatory factors

leads to a state of low-grade, chronic, systemic inflammatory

response, which progressively increases and is referred to as

inflammaging (17). Studies have shown that inflammaging can

have a significant impact on brain function, primarily through

increased expression of inflammatory factors, elevated levels of

oxidative stress, and disruption of the blood-brain barrier (18).

These mechanisms can lead to neuronal and glial cell death or

impaired function, ultimately resulting in brain atrophy and

decreased function.
Frontiers in Immunology 11
We performed drug prediction for inflammatory response -

related DEGs and found that insulin and celecoxib can target

multiple inflammaging genes simultaneously and is closely

associated with inflammaging in the brain. Aging is associated

with a sustained decrease in insulin release (19). In brain, insulin

can promote cell survival and regulates learning and memory. But

the brain can become insulin-resistant during aging due to reduced

insulin expression, delivery, and binding affinity to its receptors

(20). Improving insulin resistance in the brain may delay the brain

aging process (21, 22). Celecoxib, a nonsteroidal drug used to treat

pain and inflammation, has been found to extend life span and

delay aging (23). Its mechanism of action may be related to its

ability to prevent inflammaging-induced cell senescence (24).

Multiple machine learning techniques were utilized to identify

four biomarkers. CX3CL1, being the exclusive member of the CX3C

family of chemokines, plays a vital role in the maintenance of

cognitive function (25). Exogenous administration of CX3CL1 to

aged rats was found to reverse the decrease in neuroregenerative

function induced by aging (26). Adrenomedullin (ADM) is involved

in various physiological functions such as vasodilation, hormone

regulation, and angiogenesis, and its neuroprotective properties

have been demonstrated. Studies have also shown that ADM is an

important biomarker of cardiovascular aging (27, 28). The C3a

receptor encoded by the C3AR1 gene is a G protein-coupled

receptor that is mainly distributed in neurons and glial cells of

the central nervous system. The complement C3a/C3a receptor

(C3a/C3aR) axis has been found to influence normal brain aging

and disease progression (29). The expression of APLNR mRNA is

notably high in various regions of the human brain tissue, including

the cortex, caudate nucleus, corpus callosum, and hippocampus,

suggesting that APLNR performs crucial functions in these brain

regions (30). Mounting evidence indicates that the Apelin/APLNR

system can impede cell death and facilitate neovascularization, thus

enhancing brain function (31).

Single-gene GSVA analysis identified four biomarkers primarily

enriched in Parkinson’s disease and the Notch signaling pathway. In

the aging process, the brain is among the first organs to show signs

of aging, and inflammaging of the brain can lead to various

neurodegenerative diseases, including Alzheimer’s disease,

Parkinson’s disease, and Huntington’s disease (32–34). Recent

research suggests a close relationship between the Notch signaling

pathway and cellular senescence. Inhibition of this pathway has

been shown to trigger the onset of cellular senescence (35). Such as,

decreased Notch signaling pathway activity is thought to be a key

factor in the aging of skeletal muscle cells in older individuals (36).

Cellular senescence is the root cause of human body aging, and

through analysis of single cell sequencing data, it has been found

that endothelial cells are significantly reduced in older individuals

compared to younger individuals. Endothelial cells are crucial for

maintaining brain function by supporting neurons, preserving the

blood-brain barrier, and participating in immune and inflammatory

responses within the brain. Studies by Nation et al. have suggested

that blood-brain barrier damage is an early indicator of cognitive

decline during aging (37). Additionally, Montagne et al. have shown

that blood-brain barrier damage begins to appear at the age of 55
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1213351
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Du et al. 10.3389/fimmu.2023.1213351
and gradually increases with age, indicating a positive correlation

between the severity of blood-brain barrier damage and age (38).

Several studies have confirmed that a large portion of blood-brain

barrier damage is caused by inflammation. Specifically,

inflammatory factors can lead to endothelial cell damage in the

brain, which increases the permeability of the blood-brain barrier.

We subsequently examine the roles of biomarkers at the single-cell

level. And only the levels of CX3CL1 were found to decline in

inhibitory neurons, excitatory neurons, and astrocytes in older
Frontiers in Immunology 12
brains, while the coefficient of variation of CX3CL1 increased

with advancing age. These findings suggest that CX3CL1 could

serve as a critical biomarker of inflammaging in the brain.

We subsequently conducted consensus clustering analysis to

divide the aged samples into two groups and performed GSEA

analysis, which revealed significant enrichment of genes in

immune-related pathways between the two groups. The aging of

the immune system is one of the causes of inflammaging, and innate

immune cells drive inflammaging by increasing pro-inflammatory
B C

D E

F

A

FIGURE 7

Immune infiltration analysis and identification of macrophage-related modular genes. (A) The ssGSEA algorithm was used to analyze the content of
immune cells , *P <0.05; **P <0.01; ***P <0.001. (B) Correlation analysis was performed on all immune cells in the ssGSEA algorithm. (C) The
correlations between biomarkers and immune cells. (D) The correlation between gene modules and macrophage. (E) Macrophage-related module
genes. (F) GO and KEGG pathways enriched by the macrophage-related module genes.
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subpopulations and generating pro-inflammatory responses (17).

And, macrophages, which are important players in immune

surveillance and clearance of aging cells during immunosenescence,

are highly susceptible to aging (39).

To further investigate the mechanisms of Inflammaging in

different brain regions, we identified seven inflammaging-related

genes in different brain regions. These genes were significantly

enriched in macrophage immunity. Subsequently, we performed

immune infiltration analysis and found that the number of

macrophages was significantly increased in the aged group. The

analysis showed that macrophages had a significant negative

correlation with CX3CL1 and a significant positive correlation

with ADM, APLNR, and C3AR1. In the brain, CX3CL1 inhibits

microglial polarization towards the M1 phenotype and promotes

polarization towards the M2 phenotype, thereby participating in

neuroprotective effects. And low expression of CX3CL1 leads to

increased migration of M1-polarized macrophages, and enhanced

inflammatory response (40). Recent studies have demonstrated that

exposure of macrophages to aging-associated secretory phenotypes

can induce polarization towards the M1 type (41). Our study

observed a decrease in CX3CL1 expression and an increase in

macrophage expression in the elderly group, indicating a potential

shift towards M1 polarization of macrophages.

Based on the results of immuno-infiltration analysis and the

results of WGCNA analysis, we identified 21 macrophage module

genes. Functional enrichment analysis suggested that macrophage

module genes were significantly enriched on B-cell receptor

signaling pathways and GABAergic synapse. During aging, the

function and number of B cells as well as humoral immunity are

altered accordingly. It was found that senescent B-cell function is

also significantly reduced in the elderly population and therefore

fails to produce an effective humoral immune response. In addition,

different types of immune cells interact with each other, such as

macrophages that can influence B-cell recruitment (42). As an

inhibitory neurotransmitter in the brain, GABA has physiological

functions such as anti-aging, diuretic, immune enhancement and

obesity prevention. Existing studies have demonstrated that

neurotransmitters can influence the fate of immune cells. GABA

attenuates the macrophage-mediated inflammatory response in

vivo, and this mechanism may be related to the fact that GABA

affects macrophage differentiation (43).

Our study highlights the significant role of inflammaging and

immunosenescence in brain aging, which exhibit synergistic effects.

Specifically, we found that inflammaging can impact macrophages in

the brain, thereby aggravating the aging process. Moreover, we

identified CX3CL1 as a crucial biomarker of inflammaging in the

brain, which can modulate macrophage polarization. Therefore, we

propose that CX3CL1-mediated macrophage polarization can

exacerbate inflammaging and immunosenescence of the brain, and

targeting CX3CL1may delay brain aging by inhibiting these processes.

While our study provides valuable insights into brain aging

across different regions, there are some limitations that need to be

addressed. Firstly, increasing the sample size could improve the

accuracy of brain aging evaluation and prediction. Secondly, the

biomarkers of brain inflammaging identified in our study could be

further verified in vitro using different cell lines, providing practical
Frontiers in Immunology 13
evidence for clinical targeted therapy. Thirdly, the use of animal

models that knock down or overexpress CX3CL1 or in vitro cell

molecular experiments could provide substantial evidence.

Although recent progress has been made in understanding the

relationship between brain inflammaging and CX3CL1 levels,

further exploration is necessary. Furthermore, exploring the

correlation between macrophage polarization and brain

inflammaging warrants further investigation. In addition,

exploring the key molecular characteristics of longevity

populations is essential as it can offer valuable insights into the

biological processes and mechanisms associated with longevity.

Hence, more comprehensive in vivo and in vitro studies will be

necessary to validate these findings in the future.
5 Conclusion

This study offers significant insights into the potential

mechanisms involved in the onset and progression of

inflammaging in the brain. Specifically, our findings highlight the

potential of CX3CL1 as a target for delaying brain inflammation

and immune senescence, which may be related to its ability to

influence macrophage polarization. Although additional research is

required to validate these findings, our study provides novel

molecular perspectives that could contribute to the advancement

of strategies aimed at slowing down the aging process in the brain.
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