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Thrombocytopenia, characterized by a decrease in platelet count, is commonly

observed in sepsis and COVID-19. In sepsis, thrombocytopenia can result from

various mechanisms, including impaired platelet production in the bonemarrow,

accelerated platelet destruction due to increased inflammation, sequestration of

platelets in the spleen, immune-mediated platelet destruction, or dysregulated

host responses. Similarly, thrombocytopenia has been reported in COVID-19

patients, but the immune-related mechanisms underlying this association

remain unclear. Notably, interventions targeting thrombocytopenia have

shown potential for improving outcomes in both sepsis and COVID-19

patients. Understanding these mechanisms is crucial for developing

effective treatments.
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1 Introduction

Thrombocytopenia refers to a condition characterized by abnormally low levels of

blood platelets—a vital component of the body’s clotting system. It can be triggered by

various factors such as medications, infections, autoimmune diseases, and other health

conditions (1). Thrombocytopenia can lead to symptoms like excessive bruising and

bleeding and may result in severe complications such as an increased risk of stroke, heart

attack, or death (1). Investigating the causes and exploring effective treatments for

thrombocytopenia are essential for improving patient prognosis and quality of life.

Sepsis is a life-threatening condition characterized by excessive inflammation caused by

infection. It has seen a significant increase in incidence—8.7% over recent decades—due to

the body’s exaggerated response to infections (2). Coagulation disorders play a major role

in sepsis-related mortality ranging from mild thrombocytopenia to fatal conditions like

disseminated intravascular coagulation (DIC) (3). Platelets are crucial in sepsis, and

thrombocytopenia serves as both a prognostic marker and an independent predictor of

worse outcomes (4, 5). Notably, thrombocytopenia during sepsis is associated with

increased overall 30-day mortality (6). Furthermore, platelets have the potential to be
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therapeutic targets and modulators of sepsis (7), highlighting the

significance of understanding thrombocytopenia in sepsis.

In recent years, the COVID-19 pandemic has profoundly

impacted healthcare systems and individuals’ health. Extensive

research has shown that SARS-CoV-2—the virus causing COVID-

19—affects various tissues and organs beyond the respiratory system.

Studies have revealed that SARS-CoV-2 can directly or indirectly

affect blood cells such as hematopoietic stem cells, megakaryocytes,

and platelets (8, 9). Approximately one-quarter of COVID-19

patients develop thrombocytopenia Ashwell-Morell receptor,

particularly within the first week after admission (8, 9).

Thrombocytopenia in ICU-admitted COVID-19 patients has been

associated with a significantly worse prognosis for severe cases (10),

and even patients with normal platelet count at admission but

developing thrombocytopenia during ICU stay exhibited lower

survival rates compared to those without thrombocytopenia (11).

Despite these observations, the mechanisms underlying COVID-19-

associated thrombocytopenia remain poorly understood.

Therefore, this review aims to summarize the current

knowledge regarding thrombocytopenia in sepsis and its

association with COVID-19.
2 Mechanisms of thrombocytopenia
in sepsis

Several complex mechanisms contribute to thrombocytopenia

during sepsis. Dysregulated host responses, interactions with

platelet receptors and complexes, and immune-mediated

thrombocytopenia are among the identified mechanisms (12–14).

However, the precise mechanisms behind these phenomena require

further elucidation. Understanding these mechanisms is crucial for

developing appropriate treatment strategies (15, 16).
2.1 Dysregulated host response

Thrombocytopenia can exacerbate the disturbed host response

observed in sepsis, as evidenced by animal models and functional

data (17). Disease severity strongly influences host response

biomarkers in sepsis (12, 18). Interleukin mediators play a role in

the host response, with elevated plasma levels of IL-6, IL-8, and IL-

10 indicating cytokine network activation. Additionally, vascular

endothelial activation (elevated soluble E-selectin and soluble

ICAM-1) and compromised vascular integrity are observed.

Coagulation abnormalities—prolonged aPTT and PT, increased

plasma D-dimer levels, decreased antithrombin and protein C

levels—contribute to thrombocytopenia in sepsis (12, 17, 18).
2.2 The interaction between platelet
receptors and complexes

Platelet-receptor glycoprotein Ibalpha (GpIbalpha), part of the

GP Ib-IX-V complex, and plasma von Willebrand factor (VWF)

proteins play a role in hemostasis and the process of platelet
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attachment to the vascular endothelium (19). In septic shock,

platelet inhibition prevents clotting, preserves endothelial

function, and reduces tissue damage, potentially leading to

improved outcomes (20).

The Toll-like receptors (TLRs) of the innate immune system

recognize molecules of microbial origin by interacting with their

transmembrane domains (21). TLR2, TLR4, and TLR9 are

expressed on the surface of platelets. During sepsis, TLRs are

activated, with TLR4 being involved in endotoxemia by

recognizing lipopolysaccharide (LPS) proteins. Furthermore, LPS-

induced thrombocytopenia is reduced because the expression of

TLR4 is significantly decreased in activated platelets (13, 14).

Studies have shown that the increase in cGMP in an LPS-induced

TLR knockout model is also mediated through the TLR4 pathway

and inhibited by anti-TLR4 blocking antibodies. TLR4 interacts

with LPS to promote platelet secretion and enhance platelet

aggregation (22).

Matrix metalloproteinases (MMPs) are enzymes that modulate

extracellular matrix recycling. MMP-2 is a platelet agonist, while

MMP-9 is a platelet activation inhibitor (Figure 1). Limited

evidence suggests that toll-like receptor 4 (TLR-4) formation and

platelet-leukocyte aggregates (PLA) may be associated with the

development of sepsis-associated thrombocytopenia. However,

current studies have found no difference in levels of MMP-2,

MMP-9, and TLR-4 between donors with non-thrombotic and

thrombotic sepsis. PLA formation is also increased in patients

with thrombocytopenia. MMP-9 in platelets was detected using

flow cytometry, gelatin enzyme spectrometry, and ELISA (23).

Platelet consumption into the plasma may be the cause of

thrombocytopenia in septic shock. The expression of MMP-9 in

platelets increases during septic shock, suggesting that MMP-9

could be a potential therapeutic target for thrombocytopenia in

sepsis (23).
2.3 Immune-mediated thrombocytopenia

The mechanism of immune-mediated thrombocytopenia is

complex and still under exploration. The classical explanation is

that platelets bound to autoantibodies on their surfaces are

destroyed in the spleen or liver through interaction with Fcg
receptors (24). Autoantibodies can mediate platelet destruction

through complement activation or desialylation (25–27). Aged

desialylated platelets are cleared by the liver Ashwell-Morell

receptor (AMR) (28). Recent studies have shown that

conditioning platelets with anti-GPIB antibodies activate platelets,

leading to the translocation of neuraminidase-1 to the surface,

which desialylated platelets for Fc-independent hepatic clearance

via AMR in the liver (26) (Figure 2). Studies have demonstrated that

abnormal T cells, including T-helper (Th) cell differentiation into

Th1 and Th17 phenotypes and reduced regulatory T cells,

contribute to varying degrees of platelet destruction (24).

Additionally, CD8+ T cells, especially cytotoxic CD8+ T cells,

cause thrombocytopenia through phagocytosis of splenic

macrophages or dendritic cells. Activation of CD8+ T cells in the

bone marrow can also lead to damage to megakaryocytes and
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inhibit platelet production (24). Liver macrophages clear sialic acid-

free platelets through macrophage galactolectin (29). Whether

macrophage clearance of platelet aggregates affects antibody-

induced hepatocellular-mediated platelet clearance remains

unclear. Further research is still needed to understand the

mechanism of immune-mediated thrombocytopenia.

It has been demonstrated that platelet levels of CD63 (LIMP-1),

CD62P (P-selectin), and CD31 (platelet-endothelial cell adhesion

molecule) are increased, while CD36 (GP IV) levels are significantly

decreased during septic shock (30, 31). This suggests that platelet

activation is mediated by interactions between platelets and

leukocytes, endothelium, and activated endothelium, with platelet

adhesion and aggregation being facilitated by these surface

antigens (31).

Additionally, heparin-induced thrombocytopenia (HIT) is

typically an immune-mediated thrombocytopenia (32) and is

mediated by IgG antibodies that have specificity for platelet factor

4 antigen complexes (33). The consensus view is that these immune

complexes activate platelets through Fc gamma RIIa receptors,

leading to thrombocytopenia and thrombosis (34). Neutrophil

extracellular traps (NETs) are complex structures composed of

DNA and various proteins, including histones, neutrophil
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elastase, myeloperoxidase, and antimicrobial proteins. They have

been increasingly reported in patients with infections and

thrombosis associated with autoimmune and non-immune

diseases (35, 36). When activated neutrophils release NETs, they

form a mesh-like structure that traps and prevents platelets from

binding to their receptors, resulting in thrombocytopenia. HIT

immune complexes also activate neutrophils and induce the

formation of NETs through MMP (33) (Figure 3).

Additionally, activated platelet/neutrophil interactions

mediated by P-selectin and PSGL-1 also induce NETosis (37).

Research has shown that neutropenia eliminates thrombosis.

Conversely, neutrophil reconstitution restores thrombus

deposition and leads to thrombocytopenia (33). Furthermore,

NETs can activate the complement system (38), leading to the

generation of anaphylatoxins that can directly lyse platelets and

further contribute to the development of thrombocytopenia.

Moreover, studies have found elevated levels of platelet-related

IgG in sepsis with thrombocytopenia. Anti-platelet autoantibodies

(anti-GP IIb/IX) have also been detected in a small number of

patients, such as idiopathic thrombocytopenic purpura, suggesting

a potential immune-related process for thrombocytopenia in sepsis

(15). In mouse models of immune thrombocytopenia (ITP),

monoclonal antibodies IgG, which bind to cell surface-associated

antigens, prevent the development of immune thrombocytopenia

(39, 40). It has been suggested that phagocytosis of

reticuloendothelial cells in the bone marrow may also cause

thrombocytopenia (41).
2.4 Disseminated intravascular coagulation

Disseminated intravascular coagulation (DIC) often occurs in

patients with sepsis. It is mediated by pathogen-related molecules,
FIGURE 1

MMP-2 is a platelet agonist, and MMP-9 is a platelet activation
inhibitor. In sepsis, the pathogen interacts with the body to produce
a large number of antibodies, some of which can destroy activated
platelets through complement or desialylation.
FIGURE 2

After the pathogen invades the liver and kidney, it clears aged
desialic platelets and autoantibody-bound platelets by activating the
Ashwell-Morell receptor and Fcg-receptor, respectively, causing
thrombocytopenia.
FIGURE 3

Heparin-induced thrombocytopenia (HIT) immune complexes via
FcgRIIa-receptor active neutrophil, and further promotes the release
of neutrophil extracellular trap, causing it to seize platelets, causing
thrombocytopenia. HIT immune complexes attack plates through
FcgRIIa-receptor, causing thrombocytopenia.
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leading to upregulated expression of tissue factors and inhibition of

anticoagulation and fibrinolysis mechanisms (42). Platelet

activation and white blood cell involvement are widely reported

(43). The underlying disease process, such as trauma-induced

mechanical endothelial injury, sepsis-related inflammation,

obstetric complications, or cancer, results in excessive release of

tissue factor, leading to overproduction of thrombin. Thrombin

increases its production by converting soluble fibrinogen into

insoluble fibrin chains and activating other thrombin and factors.

Thrombin activates platelets as a key component of the primary

hemostatic mechanism through the TF/VIIa axis and the

involvement of Factor XIIa. Additionally, complement-mediated

responses can affect lytic cells and/or bacterial pathogens through

the release of damage-associated molecular patterns (DAMPs) or

pathogen-associated molecular patterns (PAMPs) and other cellular

components that promote blood coagulation (3).

Once a fibrinolytic clot begins to form, the fibrinolytic cascade is

activated to counteract increased fibrin deposition and aggregation in

microvessels. However, this fibrinolytic activity is impaired by anti-

fibrinolytic components such as thrombin-activated fibrinolytic

inhibitors (TAFI), plasminogen activator inhibitors (PAI-1), and

other prethrombotic mediators (44, 45). Similarly, damage to the

physiological anticoagulant pathway, including tissue factor pathway

inhibitors (TFPI), antithrombin (AT), and activated protein C (APC),

fails to inhibit the progressive procoagulant state to some extent.

Currently, there is a bidirectional cross-talk between abnormal

coagulation and inflammatory mediators, where inflammation

effectively induces the coagulation cascade while abnormal

coagulation profoundly alters and perpetuates inflammation (46,

47). In sepsis, major pro-inflammatory factors include IL-1, IL-6,

TNF-a, elastase, and cathepsin (48). Recent research has elucidated

the role of other thrombogenic inflammatory response factors such as

NETs, extracellular vesicles, and shedding of endothelial calyx (49).

DIC involves various mechanisms, including endothelial dysfunction

and vascular endothelial injury, initiation of the coagulation pathway,

platelet aggregation, dysfunction of the anticoagulation system,

impaired fibrinolysis, activation of the complement system,

upregulation of the inflammatory response, and many other factors

that contribute to thrombocytopenia. Furthermore, it is assumed that

all patients with sepsis have certain disorders of coagulation and clot

activation regardless of obvious symptoms of disseminated

intravascular coagulation (DIC). Moreover, DIC also correlates

with disease severity (50).
2.5 Increased destruction of platelets

There are specific diseases that, when they cause sepsis, are also

accompanied by thrombocytopenia. The mechanisms underlying

this increased platelet destruction are not well understood. One

example is hemolytic uremic syndrome, a thrombotic

microvascular disease primarily caused by endothelial cell injury,

leading to a series of syndromes (51). These factors collectively

contribute to peripheral thrombocytopenia (51). Additionally, there

are articles describing other causes of thrombocytopenia in sepsis,

such as hypersplenism, bone marrow failure, heparin-induced
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thrombocytopenia (HIT), drug-induced thrombocytopenia (DIT),

and blood dilution (42, 52, 53). Further research is needed to

elucidate the mechanisms underlying these specific diseases.
3 Mechanisms of thrombocytopenia
in COVID-19

Based on previous studies, thrombocytopenia has been

identified as one of the most common symptoms of COVID-19

(54). Furthermore, it has been observed that thrombocytopenia is

associated with a threefold increased risk for severe COVID-19 and

an elevated risk of mortality (55). Although the exact mechanisms

of thrombocytopenia in COVID-19 are still being researched,

several potential causes have been suggested. One prominent

cause is the cytokine storm, which occurs when the immune

system produces an excessive amount of cytokines that can

destroy platelets and contribute to thrombocytopenia.

Additionally, other causes include direct viral-induced cytopenias

and immune-mediated destruction of platelets (56–58) (Figure 4).
3.1 Thrombocytopenia by affecting platelet
production in COVID-19

Platelets are produced from megakaryocytes (MK), which derive

from hematopoietic stem cells (59, 60). Hematopoietic tissue

expresses ACE2 receptors, which are utilized by SARS-CoV-2 and

SARS-CoV to invade host cells and tissues (61). CD34+ stem cells,

platelets, and MK cell lines express CD13 and EACAM1a (CD66a)

(62, 63). Studies have shown that SARS-CoV infects human MK

progenitor cells and CD34+ cells (58), exhibiting similar antigenic

characteristics to human HCoV-229E (64, 65). HCoV-229E enters

monocytes and macrophages via CD13 and CEACAM1a (CD66a)

receptors, inducing cell apoptosis (62, 66, 67). Therefore, CD13 and

CD66a are potential receptors for viral entry. The interaction between

viruses and host cells in the production of specific antibodies (68) can

trigger autoimmune antibodies that lead to specific cell death.

Consequently, SARS-CoV-2 infection may induce the production

of autoantibodies and immune complexes or directly attack

hematopoietic stem cells (HSCs) or hematopoietic progenitor cells,

resulting in thrombocytopenia. For instance, individuals with

thrombocytopenia infected with HIV-1 produce antibodies that

cross-react with HIV-1 gp160/120 antigen, leading to increased

levels of circulating immune complexes (69, 70). The immune

system identifies and targets platelets packaged by antibodies and

immune complexes via cells of the reticuloendothelial system, thereby

attacking platelets. Hematopoietic cells expressing similar antigens

are also vulnerable to damage (63). In summary, viral infections

generate antibodies and immune complexes that are recognized by

the body’s immune system, causing thrombocytopenia by attacking

blood-forming cells. Thus, it is plausible that SARS-CoV-2 might

induce the production of autoantibodies and immune complexes or

directly target HSCs or hematopoietic progenitor cells, ultimately

resulting in thrombocytopenia.
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In addition, dysfunction of the local renin-angiotensin system

can result in an abnormal bone marrow microenvironment (71, 72).

SARS-CoV granules and inflammatory cytokines such as IL-1b and

TNF-a promote ACE2 removal from the cell surface. This weakens

ACE2 function, leading to renin-angiotensin system dysfunction

and increased inflammation (68). Megakaryocytes are also present

in the blood vessels of lung tissue, where they contribute to platelet

release (73). When the virus attacks lung tissue, it damages lung

epithelial cells and endothelial cells, causing vascular leakage and

releasing large amounts of pro-inflammatory cytokines and

chemokines (68). SARS patients often exhibit diffuse alveolar

injury characterized by pulmonary tissue congestion, pulmonary

edema, alveolar hyaline membrane formation, and fibrosis (62, 64).

Extensive damage to the alveoli leads to the destruction of lung

capillaries and subsequent lysis of megakaryocytes, resulting in

thrombocytopenia (73, 74). Consequently, elevated levels of

chemokines, inflammatory factors, growth factors, and anti-

inflammatory factors affect the hematopoietic microenvironment.

Moreover, an imbalance in the bone marrow microenvironment

may impair thrombopoietin production as well as megakaryocyte

differentiation and maturation to some extent, thereby contributing

to thrombocytopenia.
3.2 Cytokine storm and immune system-
mediated thrombocytopenia in COVID-19

During the COVID-19 pandemic, it has been observed that

COVID-19 is a highly coagulant disorder associated with

inflammation commonly seen in ICU settings. This phenomenon

is often referred to as “thromboinflammation” and is linked to
Frontiers in Immunology 05
cytokine storms (75). In the case of COVID-19, the cytokines

involved in cytokine storm mainly include tumor necrosis factor-

alpha (TNF-a), interleukin 1b (IL-1b), interleukin 6 (IL-6),

interleukin 8 (IL-8), interleukin 10 (IL-10), interferon alpha (IFN-

a), and granulocyte-macrophage colony-stimulating factor (GM-

CSF) (56). When these cytokines are stimulated and activated, they

cause inflammation, damage tissues, and lead to organ dysfunction.

Additionally, many cytokines such as IL-3, IL-6, IL-9, IL-1, and stem

cell factors can stimulate MK production (76–79). However, tumor

growth factor-beta (TGF-b), platelet factor 4, and interferon-alpha

(IFN-a) inhibit MK production (80). Elevated TGF-b levels have

been observed in SARS patients. Plasma from active SARS patients

inhibited the formation of MK colony-forming units, which could be

neutralized by anti-TGF-b antibodies. This suggests that virus-

induced TGF-b-mediated cytokine storms inhibit megakaryocyte

generation, resulting in thrombocytopenia (58). IFN-a induces the

production of cytokine signal transduction inhibitors that inhibit the

expression of megakaryocyte-regulating transcription factors to

some extent. This directly inhibits thrombopoietin (TPO)-

mediated MK growth. Ultrastructural research supports this

mechani sm (81 , 82) , fur ther ind ica t ing insuffic ient

platelet production.

In summary, the specific mechanism of cytokine storm causing

thrombocytopenia in COVID-19 is still being investigated.

However, it is evident that when infected with COVID-19, a

cytokine storm can lead to platelet disorders or thrombocytopenia

by either directly destroying platelets or stimulating the production

of antibodies that bind and destroy platelets.

Additionally, cases of thrombus formation with thrombocytopenia

have been reported following administration of the AstraZeneca

recombinant adenovirus vector vaccine (ChAdOx1 nCov-19) (83).
FIGURE 4

Mechanisms of thrombocytopenia caused by COVID-19. Viruses invade the body, cause liver and lung damage, and then damage megakaryocytes,
causing thrombocytopenia. Viruses affect bone marrow hematopoietic function, affect hematopoietic stem cells and megakaryocyte generation, and
cause thrombocytopenia. Thrombocytopenia is induced by CD13, ACE-2, and CD66a on hematopoietic stem cells or megakaryocytes. Inflammatory
factors such as TGF-b, IFN-a, IL-3, IL-6, and IL-9 are activated, thus affecting the generation of megakaryocytes and the production of platelets. The
virus enters the body and forms antibodies or compounds, and damages the body again. (figure by figdraw).
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This phenomenon is referred to as vaccine-induced immune

thrombotic thrombocytopenia (VITT) or thrombosis with

thrombocytopenia syndrome (TTS) (84). Studies have shown that

some mechanisms of VITT are similar to those of heparin-induced

thrombocytopenia (HIT), particularly involving platelet-activating

anti-platelet factor 4 (anti-PF4) antibodies (85). Although pathogenic

platelet-activating antibodies in VITT caused by vaccination are not

common (86), it is important to actively explore the relevant

mechanisms and implement effective prevention measures.

In conclusion, there are multiple mechanisms contributing to

thrombocytopenia in critically ill patients and those infected with

COVID-19, often involving a combination of several factors. It is

crucial to consider different pathophysiological mechanisms when

treating thrombocytopenia to effectively address the condition.
4 Treatments

4.1 Treatments of thrombocytopenia
in sepsis

In the context of sepsis, several potential therapeutic targets

have been identified for managing thrombocytopenia. Interleukin-

11 (IL-11) has been shown to effectively prevent and treat

chemotherapy-associated thrombocytopenia by increasing the

production and differentiation of megakaryocytes. Studies have

demonstrated that sepsis patients treated with IL-11 have a lower

mortality rate (87). However, the use of IL-11 is limited due to

serious side effects and is no longer used in clinical practice.

Another potential treatment option is recombinant human

thrombopoietin, which has shown promising results in improving

platelet counts more rapidly to normal levels and reducing the need

for platelet transfusions in sepsis patients (88).

An animal study revealed that platelet granase B-mediated

apoptosis occurs in the spleen and lung during sepsis. The

progression of sepsis was found to be slowed down by inhibiting

granase B using the platelet GPIIb/IIIa receptor inhibitor etibatitide

both in vitro and in vivo. Inhibitors of GPIIb/IIIa receptors and

other antiplatelet drugs delayed survival in mice with sepsis (89).

TAK-242, a compound that binds to TLR4 and inhibits

lipopolysaccharide (LPS) activation, has shown potential as a toll-

like receptor 4 (TLR4) inhibitor for treating immune factor-induced

thrombocytopenia in sepsis (90, 91). Clinical studies using anti-

TLR4 antibodies have demonstrated increased survival rates in mice

with LPS endotoxemia (92). Additionally, TLR3, TLR5 antagonists,

or TLR9 agonists have also improved survival rates in mice with

LPS endotoxemia, suggesting their potential use in treating sepsis-

associated thrombocytopenia (93, 94).
4.2 Treatments of thrombocytopenia
in COVID-19

In the context of COVID-19, several treatment options have

shown promise for managing thrombocytopenia. Tocilizumab

(TCZ), a recombinant humanized monoclonal antibody against
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the interleukin-6 (IL-6) receptor, has demonstrated significant

efficacy in treating cytokine release syndrome in COVID-19

patients. It binds to membranous IL-6R (mIL-6R) and soluble IL-

6R (sIL-6R) (95). An Italian study reported that intravenous

tocilizumab significantly improved the prognosis of ICU patients

(96). Anakinra, an antagonist of IL-1R, has been suggested to block

the secretion of IL-1b by macrophages, preventing tissue damage

and inhibiting excessive platelet accumulation by blocking

endothelial cell exposure and coagulation cascade propagation.

Notably, patients treated with IL-1R inhibitors have shown better

outcomes compared to those treated with IL-6R inhibitors (97).

Complement inhibitors have also shown potential for managing

thrombocytopenia in COVID-19. Inhibition of the complement system

can help inhibit abnormal activation of the complement cascade and

thrombotic microangiopathies. Studies using eculizumab, a C5-

blocking agent, demonstrated a rapid reduction in lactic acid levels,

improvement in hypoxia, restoration of platelet counts, and improved

prothrombin time (PT) within 15 days (98, 99). AMY-101 has been

suggested as another complement inhibitor that follows a similar action

to eculizumab in inhibiting hyperinflammatory states (100).

Inhibiting chemokines and chemokine receptors may contribute to

the recovery of platelet numbers in COVID-19 patients. The anti-

CCR5 antibody leronlimab has shown efficacy in reducing IL-6 levels,

restoring T cell populations, reducing inflammatory responses, and

indirectly mitigating virus-induced damage (101). Further exploration

is needed to determine if leronlimab can effectively treat

thrombocytopenia caused by COVID-19.

Thrombopoietin receptor agonists (TPO-RAs) are often used to

treat COVID-19-related immune thrombocytopenias (ITPs). However,

their use carries a risk of thrombosis (102, 103). Steroids, such as

corticosteroids, have been used to treat COVID-19-related ITPs and

have shown positive effects in reducing systemic inflammatory

response and improving patient outcomes (104). A combination

therapy using dexamethasone and intravenous immunoglobulin

(IVIG) has demonstrated increased platelet counts within 12 hours

after treatment and improved bleeding control and oxygenation in

severe COVID-19 patients with ITP (105).

Recombinant human ACE2 (hrsACE2), which binds to viral

spike proteins, has been explored as a therapeutic option for

preventing tissue damage. Intravenous administration of hrsACE2

for seven days in severe COVID-19 patients has been shown to

significantly reduce angiotensin II levels, inhibit IL-6 and IL-8-

mediated inflammatory response, alleviate organ damage caused by

SARS-CoV-2, and indirectly improve thrombocytopenia (106).

By targeting these receptors and utilizing specific drugs, it is

possible to inhibit the process of thrombocytopenia in sepsis and

COVID-19. Understanding these mechanisms can aid in the

development of effective prevention strategies that improve

outcomes for sepsis and COVID-19 patients.
5 Conclusion

Thrombocytopenia, characterized by low platelet count, is a

common symptom observed in both sepsis and COVID-19 patients.

The exact mechanisms underlying thrombocytopenia in these
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conditions are still being researched, but several potential causes

have been identified. In sepsis, cytokine storm plays a significant

role in inducing thrombocytopenia. Excessive production of

cytokines can directly destroy platelets or stimulate the

production of antibodies that bind and destroy platelets.

Therapeut i c ta rge t s fo r manag ing seps i s -as soc ia t ed

thrombocytopenia include IL-11 and recombinant human

thrombopoietin, which have shown promising results in

improving platelet counts. Additionally, inhibitors targeting TLR4

and GPIIb/IIIa receptors have demonstrated potential in animal

studies. In this context, cytokine release syndrome contributes to

thrombocytopenia. Drugs like tocilizumab (TCZ) and anakinra

have shown efficacy in managing cytokine release syndrome by

targeting IL-6 and IL-1 pathways. Complement inhibitors such as

eculizumab have demonstrated positive outcomes in reducing

inflammation and improving platelet counts. Chemokine

inhibitors and thrombopoietin receptor agonists are also being

explored as treatment options. However, it is important to

maintain a balanced view when considering these treatments.

Some therapeutic options come with limitations or risks. For

example, IL-11 has serious side effects that restrict its clinical use,

while TPO-RAs carry a risk of thrombosis. Furthermore, the

effectiveness of certain drugs like leronlimab in treating

thrombocytopenia caused by COVID-19 requires further

investigation. And looking ahead, continued research is necessary

to gain a comprehensive understanding of the mechanisms

underlying thrombocytopenia in sepsis and COVID-19. This will

enable the development of more targeted and effective treatments. It

is crucial to consider the potential benefits and risks associated with

each therapeutic approach, taking into account individual patient

characteristics and disease severity. While progress has been made

in identifying therapeutic targets for thrombocytopenia in sepsis
Frontiers in Immunology 07
and COVID-19, further research is needed to optimize treatment

strategies. A critical evaluation of available options will help ensure

that interventions are balanced, comprehensive, and tailored to the

specific needs of patients. Prospective studies should focus on

identifying biomarkers for early detection, elucidating the

interplay between platelets and immune responses, and evaluating

the efficacy of targeted therapies.
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