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Introduction: Respiratory syncytial virus (RSV) can cause lower respiratory tract

disease in infants and elderly populations. Despite decades of research, there

remains no safe and approved RSV vaccine. Previously, we showed that an RSV G

glycoprotein subunit vaccine candidate with a single point mutation within the

central conserved domain (CCD), i.e. S177Q, considerably improved

immunogenicity.

Methods: Here, we examine the development of nanoparticle (NP) vaccines

having either an RSV G protein CCD with wild-type sequence (NPWT) or an

S177Qmutation (NP-S177Q). The NP vaccine immunogens were adjuvanted with

monophosphoryl lipid A (MPLA), a TLR4 agonist to improve Th1- type responses.

BALB/c mice were primed with 10 mg of NP-WT vaccine, NPS177Q, or vehicle,

rested, and then boosted with a high (25 mg) or low (10 mg) dose of the NP-WT or

NP-S177Q homologous candidate and subsequently challenged with RSV A2.

Results: The results showed that mice boosted with NP-S177Q developed

superior immunogenicity and neutralizing antibodies compared to NP-WT

boosting. IgG from either NP-S177Q or NP-WT vaccinated mice did not

interfere with fractalkine (CX3CL1) binding to CX3CR1 and effectively blocked

G protein CX3C-CX3CR1 binding. Both NP-WT and NP-S177Q vaccination

induced similar neutralizing antibodies to RSV in challenged mice compared to

vehicle control. NP-S177Q boosting improved correlates of protection including

reduced BAL cell infiltration following RSV challenge. However, the NP vaccine

platform will require improvement due to the poor solubility and the

unexpectedly weaker Th1-type IgG2a response.

Discussion: The results from this study support further NP-S177Q vaccine

candidate development.
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1 Introduction

RSV is the leading cause of lower respiratory tract disease in

infants and the elderly (1, 2). By age 2, nearly all infants have

experienced RSV infection (3). RSV typically causes a mild upper

respiratory tract infection, however severe respiratory disease

presenting as bronchiolitis, pneumonia, and wheezing may

require hospitalization (4). Infants <12 months of age are at the

greatest risk for hospitalization (5). While preexisting conditions

including preterm birth and cardiopulmonary abnormalities

significantly increase susceptibility to RSV disease (6) previously

healthy infants are also at risk for hospitalization (5, 7). Synagis®

(palivizumab) is an antibody against the RSV F protein that helps

decrease the risk of serious lung infections and is restricted for use

in at-risk infants (8). Its use in healthy infants is excluded thus

countermeasures are currently unavailable in the United States (9–

11). RSV infection may predispose infected infants to asthma and/

or chronic wheezing later in life (12). Further, RSV infection does

not induce robust antibody responses as reinfections are common

(13). Maternal antibodies (Abs) provide protection against RSV,

however, this protection wanes shortly after birth and the level of

protection may vary (14, 15). Gaps remain in understanding the

mechanisms of RSV disease, but it is understood that severe disease

is linked to immunopathology (16). Thus, RSV vaccines that

prevent immune-mediated pathology are needed to prevent

severe RSV disease (17).

RSV has two major surface proteins, i.e. the F and G proteins.

The F protein is indispensable for virus infection and is the antigen

targeted by palivizumab and nirsevimab therapeutic antibodies (18,

19). While therapeutic anti-F protein antibodies (Abs) and serum

anti-F protein Abs induced by RSV vaccine candidates are

neutralizing and may provide some protection from disease (20),

these Abs are insufficient at blocking RSV disease linked to the RSV

G protein (17, 21–23). The RSV G protein is a heavily glycosylated

surface protein comprised of three domains, i.e. the cytoplasmic

(CT), transmembrane (TM), and ectodomain (ecto) domains.

Importantly, the G protein ectodomain contains a central

conserved domain (CCD) and CX3C motif that are highly

conserved among RSV subtypes and strains (24). CX3C is the

attachment motif for CX3CR1, or fractalkine receptor, that is

expressed on human airway epithelial cells (hAECs) and some

immune cells (25–30). G protein CX3C binding to CX3CR1 has

been shown to induce aberrant CX3CR1+ T cell trafficking, modify

host miRNA profiles, dampen antibody maturation, reduce

antiviral cytokine and IFN responses, and potentiate Th2-type

immune response during RSV infection (24, 31–37). Thus, the G

protein affects RSV attachment and modifies host immune response

to infection, and Abs that block the CX3C motif may prevent

CX3C-mediated attachment and immune dysregulation (38, 39).

Anti-G protein Abs targeting the CCD and/or CX3C are

protective, reduce Th2-type immune responses, increase antiviral

IFN and T cell responses, and prevent lung pathology but the G

protein itself is poorly immunogenic (40–43). The G protein has

been implicated in vaccine-enhanced respiratory disease as early

RSV vaccine trials with formalin-inactivated RSV (FI-RSV) resulted
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in vaccine-enhanced disease and two infant deaths following natural

infection of FI-RSV vaccinees (44–46). Several studies have shown

that G protein may prime for enhanced RSV disease (23, 32, 47, 48).

Importantly, ablation of the CX3C motif to CX4C eliminates

vaccine-enhanced disease showing that proper modifications to G

protein can induce a protective response following vaccination while

preventing disease (49, 50). Recently, we showed that the G protein

with a single point mutation, i.e., S177Q, improved immunogenicity

compared to wild-type G protein or CX4C G protein vaccination

(51). A key finding was that the S177Qmutant, similar to CX4C, did

not mediate CX3CR1+ immune cell trafficking illuminating how the

S177Qmutant may resist the development of enhanced disease (52).

Notably, unlike the CX4C mutant, the S177Q mutant was found to

be structurally intact and display conformational epitopes for high-

affinity anti-G Abs (52).

In this study, we made and evaluated nanoparticle (NP)

immunogens displaying the CCD of the RSV G protein. We

hypothesized that the self-assembling NPs would improve vaccine

immunogenicity by presenting multiple copies of CCD antigens in a

repetitive manner that is similar to natural infection. NPs displaying

wild-type CCD (NP-WT), CCD containing the S177Q mutation

(NP-S177Q), or no antigen (vehicle control) were used to immunize

mice, followed by RSV challenge. NP-WT and NP-S177Q vaccine

candidates were adjuvanted with MPLA to induce a Th1-type

response (53, 54). Mice were intramuscularly (i.m.) primed with

10 µg of vehicle, NP-WT, or NP-S177Q vaccines and subsequently

boosted with either 10 µg (low dose) or 25 µg (high dose) of the

homologous NP vaccine candidates. Subsequently, mice were

intranasally (i.n.) challenged with 106 PFU RSV A2, and on day 5

post-challenge, lung viral loads and immune correlates

were determined.

The results show the NP-S177Q vaccination induced greater

immunogenicity compared to NP-WT or vehicle control. While

both NP-WT and NP-S177Q vaccination reduced lung viral titers,

NP-S177Q vaccination led to improved viral neutralization

compared to NP-WT. IgG from NP-WT or NP-S177Q vaccinated

mice did not interfere with FKN binding to CX3CR1, and the IgG

blocked G protein binding to CX3CR1. Importantly, NP-S177Q

vaccination was able to significantly reduce BAL cell infiltration

following the RSV challenge compared to vehicle-vaccinated mice.

This study shows that RSV G protein CCD nanoparticle vaccines

have promise in the development of precision RSV vaccines,

however as expected with novel vaccine development, will require

optimization such as improving vaccine solubility. However, the

findings of this study support improved NP platforms in developing

the next generation of RSV G protein vaccines expressing the

S177Q mutant.
2 Materials and methods

2.1 Cells and virus

Vero E6 (CRL-1586), A549 (CCL-185), HEp-2 (CCL-23), and

HEK-293 (CRL-1573) (all from American Type Culture Collection
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(ATCC), Manassas, VA) were maintained in 10% fetal bovine

serum (FBS)/DMEM (Hyclone, Logan, UT). CX3CR1.293 cells

(>90% CX3CR1+) were maintained in selection media (10% FBS/

DMEM + 1.0 µg/mL puromycin) as previously described (51). RSV

A2 and B1 were propagated in HEp-2 cells as described (55). RSV

A2 expressing green fluorescent protein (GFP) was propagated in

HEp-2 cells as described (56).
2.2 Nanoparticle construction

Nanoparticle (NP) vaccines were constructed using self-

assembling Aquifex aeolicus lumazine synthase (57) fused to a

next-generation SpyCatcher domain (54, 58, 59). To generate the

NPs, a pET28a plasmid encoding an N-terminal 6-histidine tag, the

Aquifex aeolicus lumazine synthase protein (UniProtKB entry

O66529), and SpyCatcher003 (58) (Table 1) was transformed into

T7 Express E. coli and recombinant LumazineSynthase-

SpyCatcher003 was expressed overnight at 18C. Cells were lysed

by ultrasonication in wash buffer (10 mM Tris-Cl pH 8.0, 10 mM

imidazole, 150 mM NaCl) with 1 mM MgCl2, protease inhibitors,

benzonase, and DTT. E. coli lysates were clarified by centrifugation

and 0.22 um filtered. LumazineSynthase-SpyCatcher003 was

purified from clarified lysates by affinity chromatography using a

HisPur Nickel-NTA Resin and eluted using wash buffer with 250

mM imidazole. LumazineSynthase-SpyCatcher003 was dialyzed

into PBS (pH 7.4) overnight at 4°C, resulting in empty vehicle

control NPs. For negative stain imaging, LumazineSynthase-

SpyCatcher003 protein was deposited onto glow-discharged,

carbon-coated 400 mesh copper grids, stained with 2% (w/v)

uranyl-formate, and viewed on a 200 kV FEI Glacios

transmission electron microscope.

To generate CCD protein antigens, a synthetic gene encoding

an N-terminal SpyTag003 (58) fused to RSV strain A2 G protein

amino acids 157 to 197 (UniProtKB entry P03423) and a C-

terminal 6-histidine tag was cloned into pRSFDuet-1 (Table 1).

Recombinant SpyTag003-RSV G CCD WT and SpyTag003-RSV G

CCD S177Q proteins were expressed in T7 Express E. coli overnight

at 18C. Cells were lysed by ultrasonication in wash buffer (20 mM

Tris-cl pH 8.0, 25 mM imidazole, 150 mM NaCl) with 1 mM

MgCl2, protease inhibitors, and benzonase. E. coli lysates were

clarified by centrifugation and 0.22 um filtered. SpyTag003-RSV
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G CCD WT and SpyTag003-RSV G CCD S177Q proteins were

purified from clarified lysates by affinity chromatography using a

HisTrap FF crude column and washed with wash buffer containing

6 M urea. Protein was eluted in wash buffer containing 500 mM

imidazole. This CCD purification method has been used

successfully to solve its structure bound to anti-G protein

antibodies, confirming that the recombinant CCD protein adopts

an antigenically-relevant conformation (52, 60, 61).

To generate CCD-coated NPs, LumazineSynthase-

SpyCatcher003 protein was incubated with a 4 M excess of

SpyTag003-RSV G CCD WT or SpyTag003-RSV G CCD S177Q

overnight at 4°C. During this incubation, a covalent isopeptide

bond is formed between the SpyTag003 and the SpyCatcher003

which is verified by SDS-PAGE and a shift in the molecular weight

band. Aggregation was observed the following day and was

confirmed to be the NP samples by SDS-PAGE. Insoluble pellets

were resuspended in PBS (pH 7.4) to make a final concentration of 1

mg/ml. Protein concentrations for all NP samples were verified by

Bradford assays.
2.3 Mice

Female BALB/cmice (10-to-12-weeks old; Jackson Laboratories,

Bar Harbor, ME) were housed in micro isolator cages with 12h light/

dark cycle, and fed ad libitum. The mice received a priming dose of

10 µg NP-WT, NP-S177Q, or empty NPs. All vaccines were

adjuvanted with 10 µg monophosphoryl Lipid A (MPLA;

VacciGrade™ from S. Minnesota R595, InvivoGen, San Diego,

CA), a TLR4 agonist, diluted in PBS. Similar to a related study

that used using SpyCatcher multimerization of a SARS-CoV-2 spike

vaccine candidate to induce a potent neutralizing antibody response

at 21 days post-priming (62), vaccinated mice were boosted with

either 10 µg or 25 µg of homologous vaccine or empty NPs and 10 µg

MPLA diluted in PBS. Mice were i.m. vaccinated in the left and right

and left quadriceps with 0.05 mL/quadriceps. Sera were collected on

days 0, 14, 28, and 35 post-boosts. On day 21 post-boost, mice were

i.n. anesthetized with Avertin (2, 2, 2-Tribromoethanol), and i.n. and

challenged with 0.05 mL 106 PFU RSV A2 diluted in PBS. Mice were

monitored daily and euthanized on day 5 pi. Sera, BAL, lungs, and

spleen were collected and stored on ice during organ processing for

assays described below.
TABLE 1 Nanoparticles.

LS-NP
(empty)

6xHis-Lumazine
Synthase
Nanoparticle-
SpyCatcher

MGSSHHHHHHSSGLVPRGSHMQIYEGKLTAEGLRFGIVASRFNHALVDRLVEGAIDCIVRHGGREEDITLVRVPGSWEIPVAAGELARKE
DIDAVIAIGVLIRGATPHFDYIASEVSKGLANLSLELRKPITFGVITADTLEQAIERAGTKHGNKGWEAALSAIEMANLFKSLRSGGSGGGG
MVTTLSGLSGEQGPSGDMTTEEDSATHIKFSKRDEDGRELAGATMELRDSSGKTISTWISDGHVKDFYLYPGKYTFVETAAPDGYEVATP
IEFTVNEDGQVTVDGEATEGDAHT

CCD-
WT

SpyTag-CCD-
6xHis-tag

MRGVPHIVMVDAYKRYKGSKPNNDFHFEVFNFVPCSICSNNPTCWAICKRIPNKKPGKKHHHHHH

CCD-
S177Q

>SpyTag-CCD-
S177Q-6xHis-
tag

MRGVPHIVMVDAYKRYKGSKPNNDFHFEVFNFVPCSICQNNPTCWAICKRIPNKKPGKKHHHHHH*
Nanoparticle construction of empty nanoparticle (LS-NP), CCD-WT (NP-WT), and CCD-S177Q (NP-S177Q); italicized = His-Tag, underline = lumazine synthase NP, CCD, or CCD-S117Q,
capitalized normal = SpyCatcher003, bold = SpyTag003.
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2.4 Serum ELISA

Sera were evaluated for anti-RSV IgG levels as described (51).

Briefly, high-binding ELISA plates (Corning, Corning, NY) were

coated with 5 µg/mL RSV A2 or B1 lysate overnight at 4°C. The next

day, wells were washed 3x with KPL wash buffer (1x KPL in distilled

water (diH2O) (SeraCare, Milford, MA) and blocked with Blotto

(5% non-fat dry milk) overnight at 4°C. Blotto was removed and

sera (in 3-fold dilutions starting at 1:50) was diluted in Blotto and

added to wells overnight at 4°C. Wells were washed 3x with KPL

wash buffer and 2° goat-anti-mouse IgG-HRP (ThermoFisher,

Waltham, MA), or secondary subtype IgG1 or IgG2a antibodies

(Southern Biotech, Birmingham, AL) were added. Plates were

incubated overnight at 4°C, washed 3x with KPL wash buffer, and

developed with 1-Step™ Ultra 3,3’,5,5’-tetramethylbenzidine

(TMB; ThermoFisher) for 20 min, and stopped with Stop

Solution (ThermoFisher), then read immediately using a BioTek

plate reader (BioTek, Winooski, VT) at OD450.
2.5 Microneutralization assay

To determine the level of RSV antibody neutralization in the

mouse sera, a microneutralization assay was used as described with

minor modifications (63). Briefly, sera were pooled and heat-

inactivated at 55°C for 30 min. Diluted sera in 2% FBS/DMEM

(1:40) were co-incubated with 200 FFU RSV A2-GFP +/- 10%

guinea pig complement (C’) (Sigma-Aldrich, St. Louis, MO) for 1 h

at 37°C. Following pre-incubation, the virus/seramixture was added to

95% confluent A549 cells for 48 h. Fluorescent focus units (FFUs)were

visualized using Cellomics ArrayScan (ThermoFisher), enumerated

withHTS software, andmean FFUs of replicatewells were determined.

Neutralization was determined as the percent reduction in mean FFUs

compared to empty NP antisera.
2.6 CX3C-CX3CR1 blocking assay

A CX3C-CX3CR1 blocking assay was performed as described

(24). Briefly, 500 nM RSV G ectodomain (Gecto) was incubated +/-

5/mL heparin sulfate (HS) (Sigma) to prevent non-specific binding

and +/- 20 µg/mL IgG (isolated from vaccinated mice by Protein G

beads (Invitrogen) for 1 h on ice. CX3CR1.293 and HEK-293 cells

were harvested, and 4 x 106 cells/mL were blocked with 1 µg/mL Fc

block diluted in FACS buffer (0.8% FBS/PBS) for 15 min on ice

followed by incubation with 500 nM RSV Gecto +/- 5 µg/mL HS +/-

10 µg/mL IgG for 1 h on ice. Cells were washed and resuspended in

20 µg/mL anti-G protein mAb (clone 130-5F) for 45 min on ice.

Cells were washed and resuspended in goat-anti-mouse Alexa488

(1:200) (ThermoFisher) for 45 min on ice and protected from light.

Cells were washed 3x with FACS buffer, resuspended in FACS

buffer, and analyzed by flow cytometry. To determine FKN

blocking, the assay was followed similarly except cells were

incubated with 2 µg/mL biotinylated-FKN (Acro Biosystems,

Newark, DE) +/- 5 µg/mL HS and +/- 10 µg/mL IgG. To detect

CX3CR1-bound FKN, cells were incubated with Streptavidin-PE
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(1:200) (ThermoFisher). Identical times and temperatures were

used for both ligands. Percent inhibition was determined as the

difference of CX3CR1+ binding (G or FKN +HS + vehicle IgG) – (G

or FKN +HS +NP IgG or mAb control bound to) x 100 as

previously described (51). At least 20,000 events were collected

using BD LSR II (BD Bioscience, Franklin Lakes, NJ).
2.7 Plaque assays

Lungs were harvested at day 5 pi and homogenized in 1 mL

DMEM using GentleMACS tissue homogenizer (Miltenyi Biotec,

Gaithersburg, MD) as described (55). Homogenates were

centrifuged at 500 xG at 4°C for 8 min, supernatant was 10-fold

diluted in DMEM (Hyclone) and overlaid onto 90% confluent Vero

E6 cells in 24-well plates. After 2h of absorption, cells were overlaid

with 2% methylcellulose (Sigma Aldrich) and incubated at 37°C for

6 days. Following incubation, methylcellulose was aspirated, wells

were washed with PBS, fixed with acetone: methanol (60:40, Sigma-

Aldrich), and air-dried overnight. Wells were washed 3x with KPL

wash buffer and blocked with blotto overnight at 4°C. The next day,

Blotto was removed and a mAb cocktail against RSV F and G

proteins (clones 131-2A, 131-2G) was diluted in blotto was added

overnight at 4°C. Wells were washed 3x with KPL wash buffer and

goat anti-mouse-AP (ThermoFisher) was added overnight at 4°C.

Wells were washed 3x with KPL wash buffer and virus plaques were

developed with 1-Step™ NBT/BCIP substrate solution

(ThermoFisher) for 5 min, rinsed with diH2O, and enumerated

using a dissection microscope.
2.8 BAL cell phenotyping

Bronchioalveolar leucocytes (BAL) were collected by i.p.

anesthetizing (Avertin) mice and terminally bleeding by severing

the left axillary artery. The trachea was exposed and a small incision

was made. The lungs were flushed 3x with 1 mL PBS and collected

in 1.5 mL snap-cap tubes and BAL was centrifuged for 10 min at

500 xG at 4°C. The supernatant (BAL fluid) was separated and

stored at -80°C until cytokine/chemokine analysis. BAL cells were

resuspended in FACS buffer (0.8% FBS/PBS) and enumerated using

a hemocytometer and Trypan blue. Cells were washed with FACS

buffer and resuspended in Fc Block for 15 min on ice followed by

the addition of anti-CD3, anti-CD8, and anti-CD11b, or isotype

control Abs (all from BD Bioscience) for 1h on ice (Supplementary

Figure 2). Cells were washed, fixed with 2% PFA (Ted Pella,

Redding, CA) for 20 min at room temperature, washed, and

resuspended with FACS buffer. At least 10,000 events were

collected with BD LSR II (BD).
2.9 Intracellular cytokine staining

Spleens from mice were collected at day 5 pi. Single-cell

suspensions of spleen cells were made by dissociation through a

100 uM cell strainer (Corning), washed with Hanks Balanced Salt
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Solution (HBSS) (HyClone), and red blood cells were lysed with

Gey’s solution (Sigma-Aldrich) for 5 min. Splenocytes were washed

2x with HBSS, resuspended in media containing 10% FBS + RPMI-

1640, and enumerated using a hemocytometer, and 2 x 107 cells/mL

were plated in a round bottom 96-well plate (Corning). Splenocytes

were stimulated with 10 µg/mL RSV G (183WAICKRIPN

KKPGKK197) and M2 peptides (82SYIGSINNI90) (42) or control

(GFP, aa 200-208), phorbol 12-myristate 13-acetate (PMA)/

ionomycin (Sigma), or left unstimulated and were treated with

GolgiPlug (Brefeldin A) (BD) to retain cytokines and incubated at

37°C for 6h. After 6 h, cells were washed 3x with FACS buffer,

blocked with 1 µg/mL Fc block (BD), and stained with anti-CD3

and anti-CD4 or isotype controls (all from BD Bioscience) for 1 h

on ice. Cells were fixed with 2% PFA for 20 min at room

temperature, washed with permeabilization buffer (BD

Bioscience), and incubated with anti-IFNg and anti-IL-4 or

isotype controls diluted in permeabilization buffer for 1 h at 4°C

(Supplementary Figure 2). Cells were washed 3X with

permeabilization buffer, resuspended in FACS buffer, and

analyzed with BD LSR II (BD Bioscience) with at least 10,000

events collected.
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2.10 Statistics

Data were analyzed by one-way ANOVA with Dunnett’s

multiple comparison test. p<0.05 was considered significant. Data

are represented as mean +/- SEM. A vaccination study was

performed once. Experiments were performed at least in duplicate

with representative data shown.
3 Results

3.1 Nanoparticle vaccine constructs

NP immunogens were constructed using SpyTag/SpyCatcher

technology (54, 58) (Figure 1). Briefly, a construct of lumazine

synthase, which self-assembles into 60-mer spherical particles, was

fused to a SpyCatcher domain. Recombinant lumazine synthase –

SpyCatcher protein was purified and confirmed by negative stain

electron microscopy to self-assemble into NPs (Figure 1D). To

generate CCD-coated NPs, the lumazine synthase – SpyCatcher

NPs were incubated with recombinant RSV G CCD protein fused to
D

A B

C

FIGURE 1

Production and characterization of RSV G CCD coated nanoparticle immunogens. (A) Schematic of lumazine synthase (LuSyn) (gradient purple/pink)
and RSV G CCD (green cyan) expression constructs. SpyCatcher (periwinkle) is C-terminally fused to lumazine synthase. SpyTag (teal) is N-terminally
fused to RSV G CCD constructs (WT or S177Q mutant). LuSyn-SpyCatcher and SpyTag-RSV G CCD are incubated together and are covalently linked
via a spontaneous isopeptide bond formed between SpyTag and SpyCatcher proteins. (B) Representation of expected nanoparticle structures
(prepared with PyMol version 2.5): Lumazine Synthase – SpyCatcher (empty NP, vehicle control) and Lumazine Synthase – RSV G CCD (NP-WT or
NP-S177Q). 60 copies of lumazine synthase self-assemble to create 12 pentameric interfaces via their C-terminal ends thereby displaying 60 copies
of spylinked RSV G CCD antigens. (C) SDS-PAGE of gel shift assay showing SpyTag - RSV G CCD (7.6 kDa), Lumazine Synthase-SpyCatcher (31 kDa),
and NP-CCD WT or NP-CCD S177Q (38.6 kDa as a monomer) constructs after pelleting and resuspending in 1xPBS, pH 7.4. Multiple bands are likely
due to contaminating proteins after Ni-NTA purification of bacterial lysates. (D) Negative stain electron microscopy micrographs (upper panel) and
2D class averages (lower panel) of empty NP’s show expected self-assembly and size.
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a SpyTag, allowing for the formation of the covalent isopeptide

bond between the SpyCatcher and SpyTag and display of the CCD

antigen on the surface of the NPs (Figure 1B). Covalent linking of

the SpyTagged CCD to the lumazine synthase – SpyCatcher was

verified by SDS-PAGE and a change in molecular weight of the

bands (Figure 1C). We previously identified that a point mutation at

site 177 (serine to glutamine) improved immunogenicity in a G

glycoprotein vaccine compared to wild-type G protein adjuvanted

with MPLA (51). Thus, in addition to wild-type CCD antigen

loaded onto NPs (NP-WT), the S177Q CCD antigen was also

generated and loaded onto NPs (NP-S177Q). Notably, upon

overnight incubation of CCD antigens with NPs, precipitation

was observed. Pelleting of the precipitate by centrifugation and

evaluation by SDS-PAGE revealed that the precipitate is the NP-

WT and NP-S177Q nanoparticle samples (Figure 1C). No

precipitation is observed by incubation of empty NPs or CCD

alone, suggesting that the loading of the CCD, which contains many

hydrophobic amino acids, promoted insolubility of the NPs. To

generate samples for immunization, pellets were resuspended

in PBS.
3.2 RSV NP vaccines induce Anti-RSV Abs

Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or

empty NPs adjuvanted with 10 µg MPLA. On day 21 post-prime,

mice were boosted with either 10 µg or 25 µg of homologous vaccine

or 10µg empty NP, all adjuvanted with 10 µg MPLA. At day 7 post-

boost, the mice were bled, and anti-RSV Abs were detected by

ELISA (Figure 2, Supplementary Figure 1). NP-WT and NP-S177Q

vaccination induced anti-RSV Ab responses. Abs generated by NP-

S177Q were significantly increased (p <0.05), and NP-WT 25µg and

NP-WT 10µg Abs were increased (p = 0.28, p = 0.06, respectively)

compared to empty NP vaccination. NP-S177Q vaccination

induced moderately higher serum IgG titers than NP-WT

(Figure 2), although the IgG responses did not statistically differ
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between vaccine doses. At day 21 post-boost, the NP-vaccinated

mice were challenged with RSV A2, and on day 5 the serum Ab

responses were determined. Similar to pre-challenge IgG titers, all

vaccinated mice had greater anti-RSV A2 IgG compared to vehicle

control (Figure 3A). Mice boosted with 25 µg of NP-S177Q vaccine

had significantly (p<0.05) increased Ab titers compared to vehicle

control, however, NP-S177Q vaccination was not statistically

improved over NP-WT boosted mice. Contrary to our previous

study demonstrating improved Ab recall responses (51), these data

show a less robust recall response as sera Ab levels were roughly 1

log3 lower in each group on days 7 post boost and 5 post-challenge.

Previous constructs utilized full-length G protein as opposed to

restricting antibody responses to the CCD, which may partially

explain this phenomenon. It is also possible Abs were present in the

lung during infection and would not be detected in sera. It is also

notable that serum Ab titers against RSV B1 were markedly lower

than RSV A2 (Figure 3B). This finding was similar to a previous

report suggesting anti-G Abs generated against A2 G protein bind

with lower affinity to RSV B compared to RSV A2, likely due to

variable residues encompassing the CCD between subtypes, despite

conservation of the CX3C motif (40). NP-S177Q vaccination

induced greater Abs compared to vehicle control. NP-WT also

induced anti-B1 Abs although the titers were lower compared to

NP-S177Q.

To determine if the serum Ab response were Th1- or Th2-like,

ELISAs were performed to determine the specific IgG subclass

(Figure 3C). It is established that IgG2a corresponds to a Th1-

type response, while IgG1 corresponds to a Th2-type in response

(64) and determines Fc effector function (e.g., complement-

dependent cytotoxicity) (65, 66). There were no significant

changes in Th2-type Ab responses between vehicle and NP-WT

or NP-S177Q vaccinated mice. Further, Th1-type responses were

only significantly (p<0.05) increased in the 25 µg NP-WT

vaccinated mice, while there were no significant IgG2a responses

in NP-S177Q vaccinated mice. These findings do not recapitulate

the increased Th1-type responses which were previously observed
FIGURE 2

RSV G protein NP Vaccine Immunogenicity. Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or empty NPs, all adjuvanted with 10 µg
MPLA. On day 21 post prime, mice were boosted with either 10 µg or 25 µg of homologous vaccine or 10 µg empty NP, all adjuvanted with 10 µg
MPLA. On day 7 post-boost, serum IgG responses were determined by ELISA. IgG titer determined as the highest dilution OD450 value above
background plus two standard deviations. Bars represent mean IgG titer + SEM (n = 5 mice/group). *p<0.05 by one-way ANOVA with Dunnett’s
multiple comparison test compared to empty NPs.
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with G protein immunogen (51). Conformationally designed

epitopes such as those in the NP vaccines may require adjuvants

that do not denature or emulsify the antigens, and or the insolubility

of NP-WT and NP-S177Q vaccines may have contributed to these

differences (67).
3.3 CX3C-CX3CR1 blocking

Blocking CX3C-CX3CR1 interaction or ablating the CX3C

motif is correlated with protection against RSV disease in mice

and cotton rats (43, 49, 50, 68). To evaluate the efficacy of G protein

CX3C-CX3CR1 blocking Abs generated in response to NP-WT or

NP-S177Q vaccination, serum IgG from NP-vaccinated mice was

isolated and tested. Similar to the G protein vaccinated mice (51),

vaccination with NP-WT or NP-S177Q candidates induced

significant (p<0.05) CX3C-CX3CR1 blocking Abs compared to

vehicle IgG (Figure 4A), and Ab from NP-S177Q vaccination

induced slightly higher blocking Abs (35%) than NP-WT

vaccination (20%). As expected, mAb 131-2G which binds to a

conserved epitope in the G protein blocked up to 90% G protein

binding to CX3CR1. Contrary to our previous report showing that

G protein induced greater CX3C-CX3CR1 blocking Abs compared

to vaccination with an S177Q G protein mutant, in this study, we

observed a slight improvement in G protein CX3C-CX3CR1

blocking, and in agreement with previous reports, 131-2G

blocked G protein binding more effectively than polyclonal IgG

from vaccinated mice. These Abs did not cross-react and block FKN

binding to CX3CR1 (data not shown). This is not unexpected as

there are structural differences that may preclude anti-G protein
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binding (69). Thus, this NP-S177Q vaccine platform induces G

protein CX3C-CX3CR1 blocking Abs which have been shown to

protect against RSV disease and are not implicated in modifying

endogenous FKN signaling.
3.4 RSV neutralization

Anti-G protein Abs are neutralizing in human airway epithelial

cells infected with RSV and in vivo (27). The addition of

complement aids the neutralization of some anti-G protein Abs

including the highly potent 3D3 and 3G12 anti-G protein mAbs

that can be detected in immortalized cell lines (69, 70). To

determine if serum from NP-WT or NP-S177Q vaccinated mice

was neutralizing, heat-inactivated sera +/- 10% guinea pig

complement (C’) were co-incubated with RSV-GFP (56) and

added to RSV-infected human A549 cells for 48 h (Figure 4B). In

the absence of complement, there was no significant (p>0.05)

neutralization for any vaccine groups, however, serum plus

complement from NP-WT and NP-S177Q vaccinated mice

significantly (p<0.05) neutralized infected A549 cells compared to

empty NP vaccination. Moreover, serum from 25 µg S177Q induced

significantly (p<0.05) greater neutralization compared to NP-WT at

the same dose. These data suggest neutralization is complement-

dependent and not CX3C:CX3CR1-mediated neutralization.

Lung viral titers showed that NP-WT and NP-S177Q

vaccination reduces lung titers in vivo (Figure 5). On day 5 pi,

corresponding to peak lung viral titers (71), 10 µg NP-WT or 25 µg

NP-S177Q vaccination resulted in significantly (p<0.05) reduced

viral titers in the lungs of RSV A2 challenged mice. 25 µg NP-WT
FIGURE 3

Serum Ab responses post-RSV challenge. Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or empty NPs, all adjuvanted with 10 µg MPLA.
On day 21 post prime, mice were boosted with either 10 µg or 25 µg of homologous vaccine or 10 µg empty NP, all adjuvanted with 10 µg MPLA.
On day 21 post boost, mice were challenged with 106 PFU RSV A2, and sera collected on day 5 pi. Ab responses were determined for (A) RSV A2 and
(B) RSV B1. IgG titer determined as the highest dilution OD450 value above background plus two standard deviations. (C) OD450 values of IgG1 (gray)
and IgG2A (black) responses against RSV A2. Bars represent mean IgG titer (A, B) or OD450 (C) +/- SEM (n=5 mice/group). *p<0.05 by one-way
ANOVA with Dunnett’s multiple comparison test compared to empty NPs.
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vaccinated mice and 10 µg NP-S177Q vaccinated mice also reduced

lung titers compared to empty NP vaccination (p=0.16, p=0.15,

respectively). These findings are consistent with other G protein

vaccines that reduce lung titers and induce anti-G protein

neutralizing Abs (nAbs), however, others have reported that Abs

to G protein are non-neutralizing but this was determined in the

absence of complement, an effect which has caused

misunderstanding (40, 41, 72, 73). There may be mechanisms

aside from nAbs that result in reduced viral titers after NP

vaccination including a cytotoxic T lymphocyte (CTL) response

or improved macrophage activity, however these were not

examined here. Moreover, while in vivo and in vitro

neutralization data suggest 25 µg NP-S177Q vaccination resulted

in the greatest levels of nAbs and reduced lung titers, the lack of

significant in vivo reduction for 25 µg NP-WT and 10 µg NP-S177Q

does not correlate with our findings in vitro. The findings from this

study show that G protein immunogens are capable of inducing
Frontiers in Immunology 08
nAbs that are detectable in vitro with additional complement and

vaccination may reduce lung viral titers in mice.
3.5 Immune response to RSV challenge

Aspects of RSV disease are connected with the expression of the

G protein CX3C motif (50). Blocking G protein CX3C-CX3CR1

interaction with mAbs specific to this motif or the CCD domain is

correlated with reduced RSV disease in vivo (40, 41, 73). To

determine if NP-WT or NP-S177Q vaccination is protective

against G protein-mediated disease, vaccinated mice were

challenged with RSV A2 and BAL leukocytes were evaluated

(Table 2). A significant (p<0.05) reduction in BAL cell numbers

(3.9 x 104 cells) in RSV-challenged mice that were vaccinated with

10 µg of NP-S177Q vaccine was evident compared to the empty NP

control vaccinated mice (7.5 x 104 cells). Interestingly, no other
A

B

FIGURE 4

Ab Responses. Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or empty NPs, all adjuvanted with 10 µg MPLA. On day 21 post prime,
mice were boosted with either 10 µg or 25 µg of homologous vaccine or 10 µg empty NP, all adjuvanted with 10 µg MPLA. On day 21 post boost,
mice were challenged with 106 PFU RSV A2, and sera were collected on day 5 pi. (A) G protein CX3C-CX3CR1 blocking by IgG from challenged mice
was determined by flow cytometry. (B) Pooled antisera were heat inactivated and diluted (1:40) for microneutralization assay in A549 cells with 0%
(black) or 10% (grey) Guinea pig complement (C’). FFUs were collected on Cellomics ArrayScan and enumerated automatically with HTS Software
(ThermoFisher). Bars represent mean + SEM (n=5 mice/group). (A) *p<0.05 by one-way ANOVA with Dunnett’s multiple comparison test compared
to empty NP. For panel B, p <0.05 by one-way ANOVA with Tukey’s multiple comparison test to compare equally dosed NPs (^) and empty NPs (*).
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vaccination group including mice vaccinated with 25 µg of NP-

S177Q vaccine had substantially reduced BAL cells following RSV

challenge. Consistent with an overall reduction in BAL cell

infiltration, RSV-challenged 10 µg NP-S177Q mice vaccinated

had reduced CD11b+ cell numbers (2.3 x 103) and a trend toward

lower in CD8+ T cell numbers (2.0 x 103) compared to RSV-

challenged empty NP vaccinated mice (5.4 x 103 and 3.3 x 103 cells,

respectively). Taken together, these support lung disease protection

in mice vaccinated with NP-S177Q vaccine compared to vehicle

control vaccinated mice. We also examined intracellular cytokine

production by splenocytes stimulated with RSV G peptide

encompassing the CCD and M2 as previously described (42, 68),

however, there were no statistical differences detected in the

production of IFNg+ or IL-4+ by CD3+/CD4+ T cells between

groups (data not shown).
4 Discussion

RSV is a major cause of respiratory disease in the very young and

old with no safe and approved vaccine available despite decades of
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research. The landscape of RSV vaccine research started with a failed

formalin-inactivated RSV (FI-RSV) vaccine tested in the early 1960s

(74). In those studies, FI-RSV vaccinated infants naturally infected with

RSV infection resulted in amajority of infants requiring hospitalization

where two infants died (44). Further investigation revealed that the FI-

RSV vaccine caused enhanced disease (75). Moreover, it was later

shown that Abs generated against RSV correlate with some but

incomplete protection from disease, and that reinfection with

identical RSV strains could occur, and that viral loads did not

consistently correlate with disease severity in hospitalized infants

(76–78). Thus, a safe and effective RSV vaccine has been elusive (20).

The RSV F protein has historically been the focus for RSV vaccine

development as it is more conserved than G protein, and F protein is

indispensable for in vitro infection (79). However, the G protein has a

highly conserved CX3C chemokine mimic motif within its central

conserved domain (CCD) (24, 60). Abs which bind the CCD and/or

CX3C motif may be protective by preventing viral attachment to host

cells as well as blocking G protein CX3C-CX3CR1 responses and G

protein chemokine mimicry. Importantly, Abs induced by RSV G

protein, including anti-G protein mAbs, that target the CCD and/or

CX3C motif will neutralize RSV A and B strains, prevent Th2-type
TABLE 2 BAL Leukocytes.

Empty NPs NP-WT
25µg

NP-S177Q 25µg NP-WT 10µg NP-S177Q 10µg

Total BAL Cells 7.5 x 104

(± 4.7 x 103)
8.4 x 104

(± 12.0 x 103)
6.6 x 104

(± 14.0 x 103)
6.2 x 104

(± 6 x 103)
3.9 x 104 *
(± 6.2 x 103)

CD8+ 3.3 x 103

(± 5.5 x 102)
3.1 x 103

(± 4.3 x 102)
3.7 x 103

(± 8.2 x 102)
2.5 x 103

(± 5.2 x 102)
2.0 x 103

(± 1.0 x 102)

CD11b+ 5.4 x 103

(± 6.0 x 102)
4.7 x 103

(± 6.8 x 102)
5.0 x 103

(± 17.0 x 102)
2.9 x 103

(± 4.8 x 102)
2.3 x 103

(± 2.4 x 102)
Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or empty NPs, all adjuvanted with 10 µg MPLA. On day 21 post prime, mice were boosted with either 10 µg or 25 µg of homologous
vaccine or 10 µg empty NP, all adjuvanted with 10 µg MPLA. On day 21 post boost, vaccinated mice were challenged with 106 PFU RSV A2, and on day 5 pi the BAL cells were collected and
enumerated (total BAL cells). CD8+ T cells and CD11b+ cells were determined by flow cytometry with at least 10,000 events collected. Mean total cells ± SEM (shown in italics) are presented.
*p<0.05 by one-way ANOVA with Dunnett’s multiple comparison test compared to empty NPs within the same row.
FIGURE 5

Lung Viral Titers. Mice received a priming dose of 10 µg NP-WT, NP-S177Q, or empty NPs, all adjuvanted with 10 µg MPLA. On day 21 post prime,
mice were boosted with either 10 µg or 25 µg of homologous vaccine or 10 µg empty NP, all adjuvanted with 10 µg MPLA. On day 21 post boost,
mice were challenged with 106 PFU RSV A2, and at day 5 pi, lungs were harvested to determine virus loads. The bars represent the mean +/- SEM of
plaque forming units (PFU)/mL of lung homogenate. *p<0.05 by one-way ANOVA with Dunnett’s multiple comparison test compared to empty NPs.
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immune biasing due to G protein, reduce many of the immune

correlates of severe RSV disease (e.g., eosinophilia), improve

respiratory efforts, rescue protective IFN responses, and reduce lung

pathology (17, 37, 80–85). At least two findings have stalled RSV G

protein-based vaccine development, one being that the CCD region is

poorly immunogenic compared to epitopes on F protein (86–88), and

the G protein has been linked to the development of enhanced RSV

disease (17, 22, 39).

To address these impediments, we have investigated the

function and immunogenicity of various G protein mutants (49,

51, 68). Specifically, we examined the G protein S177Q mutant as a

vaccine candidate because our studies showed that the mutation

S177Q increased immunogenicity and improved Th1-type

responses compared to G protein (51). The findings were

predicted as immunogen was derived by structurally-guided

vaccine development and knowing that a single point mutation in

the CCD would alter the conformation of the G protein likely

affecting its immunogenicity and safety profile. Structural and

conformational validation showed that the CCD S177Q mutant

retains high affinity when binding to mAbs and human anti-RSV

reference sera and was substantially improved compared to the

CX4C G protein mutant (52). In this study, mice were vaccinated

with NP-WT or NP-S177Q generated with SpyTag/SpyCatcher

technology (54, 58). Recently, a pre-F ferritin NP (pre-F-NP) with

modified glycans was evaluated in mice and nonhuman primates

(NHPs) (89). It was shown that pre-F-NP vaccination induced

greater neutralizing antibody responses compared to DS-Cav1

trimer, suggesting the NP vaccine platform may offer superior

characteristics compared to protein or subunit vaccination.

In this study, the NP-WT or NP-S177Q vaccine candidates were

immunogenic in a prime/boost scheme, and consistent with our

previous work, the NP-S117Q candidate showed improved

immunogenicity. We sought to determine if these vaccines were

protective, and to this end, the NP-vaccinated mice were i.n.

challenged with RSV A2 and the serum antibody and BAL cell

responses were determined. The sera responses after the RSV

challenge were similar to the 25 µg NP-S177Q vaccinated mice,

being significantly (p<0.05) more immunogenic than vehicle control,

and NP-S177Q vaccinated mice also trended towards increased IgG

titers compared to NP-WT for binding to RSV A2 and B1. As the

CX3Cmotif is conserved between RSV subtypes and strains, these data

suggest that Abs induced byNP-WTorNP-S177Q vaccinationmay be

cross-reactive (40). The serum Ab isotypes were evaluated to

determine if NP vaccination induced a Th1-dependent IgG2

response, or a Th2-dependent IgG1 response (64). Serum from NP-

WT vaccinated mice indicated a predominantly Th1-type response,

however, mice vaccinated with NP-S177Q predominantly had a Th2-

type response (Figure 3C), which was inconsistent with our previous

results. However, sera from both NP-WT and NP-S177Q vaccinated

mice blocked G protein CX3C-CX3CR1 and did not interfere with

FKN binding to CX3CR1 (Figure 4). Sera from 25 µg NP-S177Q

vaccinated mice had significantly greater (p<0.05) complement-

dependent neutralization activity in A549 cells compared to empty

NP and 25 µg NP-WT. Thus, the Ab response to NP vaccination

suggests NP-S177Q improves immunogenicity and induces greater

nAbs, and that Abs that block G protein binding to CX3CR1.
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Neutralizing the virus can contribute to reducing virus-

mediated disease, however disease severity does not faithfully

correlate with viral load or neutralizing Ab responses (77, 78, 80,

90–92). RSV disease is understood to be affected by both virus and

host factors, and interventions that do not address G protein-

mediated immune dysregulation may provide incomplete

protection (22). While we noted significant reductions in lung

viral loads in vaccinated mice, modalities that neutralize viruses

and block G protein mediated disease are of great interest.

BAL cell influx during RSV infection is a correlate of immune-

mediated disease (93). Initial vaccination with NP-WT did not

prime for enhanced respiratory disease when the mice were boosted

with NP-WT or NP-S117Q vaccines likely because of the MPLA

adjuvant precluding non-neutralizing Th2-type responses and/or

restriction of responses to the CCD. Mice receiving the 10 µg NP-

S177Q vaccination resulted in significantly (p<0.05) fewer total BAL

cells where CD11b+ and CD8+ BAL cells were substantially

reduced while 25 µg vaccination did not have this result. It is

possible that the 10 µg vaccine dose was suboptimal in terms of the

robustness of BAL cell recruitment when the vaccinated mice were

challenged. However, these findings show the NP-S177Q boosting

effectively induces CX3C-CX3CR1 blocking and neutralizing Abs

which can provide protection against RSV challenge and disease.

Our previous study (51) evaluated various full-length mutant G

proteins in a prime/boost/boost scheme, and we discovered

significant Ab responses in mice vaccinated with S177Q

mutations. Here, we describe the next iteration of this platform,

an NP containing CCD with or without the S177Q mutation in a

prime/boost scheme. Consistent with our previous studies, the NP-

S177Q vaccine improves immunogenicity, however these studies do

not demonstrate superiority to our previous full-length constructs.

This may be due to the vaccination scheme (i.e., one versus two

boosts), antigen delivery quality and/or presentation (e.g. poor

solubility of NP constructs), or other differences. It will be

important in future studies to compare various NP and

microparticle (MP) vaccine platforms that improve solubility and

immunogenicity and protect from disease. Our ongoing studies

using these improved candidates will fully elucidate immune

responses to this vaccine and show robust protection from disease.
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