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In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out.

The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many

cellular functions. It plays a crucial and debatable regulatory role in innate

antiviral immunity. This review summarises the current state of our

understanding of HDAC6’s structure and function in light of the three

mechanisms by which it controls DNA and RNA virus infection: cytoskeleton

regulation, host innate immune response, and autophagy degradation of host or

viral proteins. In addition, we summed up howHDAC6 inhibitors are used to treat

a wide range of diseases, and how its upstream signaling plays a role in the

antiviral mechanism. Together, the findings of this review highlight HDAC6’s

importance as a new therapeutic target in antiviral immunity, innate immune

response, and some diseases, all of which offer promising new avenues for the

development of drugs targeting the immune response.
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Introduction

Viruses are invaders that get inside the cells of many kinds of organisms, from single-

celled microbes to plants and mammals. Virus infection is a prevalent cause of human

sickness or death worldwide and a major source of hospital admissions in children, adults

and the elderly, significantly impacting healthcare systems and human health (1, 2). The

coordination of antiviral immune responses in the innate immune system, which is the first

line of defense against viral infection, is required (3, 4). The innate immune system is a

universal and ancient host defense against infection that recognizes nonspecific pathogens

(5, 6). Most innate immune cells have molecular receptors that are genetically conserved.

The immune system uses these innate immune receptors, also known as pattern
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recognition receptors (PRRs), including retinoic acid-inducible

gene-I (RIG-I)-like receptors (RLRs), toll-like receptors (TLRs),

nucleotide oligomerization domain-like receptors (NLRs), c-type

lectin receptors (CLRs), and others (7). PRRs are used to identify

structurally conserved molecules known as pathogen-associated

molecular patterns (PAMPs), which are shared by a wide range of

microbial species. Even though PAMPs from viruses, bacteria,

fungi, and parasites have a wide variety of chemical structures,

the immune response brought on by innate immunity cells is quick

(8). Infection with a virus or an immunostimulant mimic, such as

poly (I:C), can trigger the synthesis of interferon-b (IFN-b), a vital
element of innate antiviral immunity (9).

HDACs are acetylation erasers from lysine residues that play

critical roles in many biological processes, including immunity, cell

cycle progression, apoptosis, and their repressive effects on gene

transcription (10–12). HDACs have been classified into four classes

in humans. Up to this point, four distinct classes of HDACs have

been identified: class I (HDAC1, HDAC2, HDAC3, and HDAC8),

class II (quite far subdivided into IIa comprising of HDAC4,

HDAC5, HDAC7, HDAC9 and IIb consisting of HDAC6,

HDAC10), class III (Sirtuins 1-7) and class IV (HDAC11) (13,

14). Except for class III, eleven of the 18 HDACs rely on Zn2+ for

deacetylation (15). Class II HDACs are known to often move

between the nucleus and cytoplasm, whereas those of class IIb

HDACs are mostly localized in the cytoplasm (16). Immune cells

react to invaders’ single- or double-stranded DNA or RNA in a

general manner during this viral invasion. HDACs modulate this

response by enhancing or weakening the results to alter genetic

signatures. The JAK/STAT pathway, which is the most crucial

signaling pathway against viral infection, is activated by type-I

interferon (IFN-I) (17). It is noteworthy that HDAC3 interacts

with forkhead box K1 to control signaling STAT1/2 transcription,

which supports macrophages’ antiviral innate immunity (18). To

control the expression of the interferon-stimulated gene (ISG), the

released IFN cytokines first bind to IFN-I receptors and activate the

JAK/STAT signaling cascade (19). HDAC4, a class II member, has

anti-influenza A virus (IAV) characteristics and is a component of

the host’s innate antiviral response (20). Besides, HDAC1 is crucial

for the replication of the IAV, suggesting that it could be a target for

innate immunity-based antiviral protection (21). HDAC6 is

essential for antiviral innate immune responses (22–24). HDAC6

was first discovered due to its similarity to the Saccharomyces

cerevisiae histone deacetylase HDA1 (25, 26). Moreover, HDAC6
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is a multisubstrate enzyme that controls several cellular processes,

including those that lead to cancer, neurological illnesses and

inflammatory disorders. However, it is still unclear how HDAC6

is related to the antiviral signaling network and whether it is

essential for antiviral immunity in animals under physiological

circumstances. In particular, data show that IFN-b gene

activation necessitates HDAC activity and that HDAC6 also

serves as a coactivator of interferon regulatory factor 3 (IRF3)-

dependent transcription (19). The failure of IFN-b production in

cells is linked to the inhibition of antiviral responses (19). As a result

of these factors, HDAC6 has emerged as a topic of intense interest

among researchers and has become a desirable therapeutic target.

To conclude, we highlight new studies that show HDAC6’s

multi-functionality in protein structure, viral infection, innate

immune response, upstream signaling, and the application of

HDAC6 inhibitors in associated diseases.
HDAC6’s structure and function

The HDAC6 isoenzyme has two deacetylase domains. This

enzyme is a cytoplasmic class II histone deacetylase involved in a

variety of cellular functions such as immunological synapse

formation, misfolded protein degradation, migration, and cell-cell

contact (27, 28). With 1,215 amino acids, HDAC6 protein is the

largest HDAC protein found in people. It is unique and different

because it is made up of five domains. The N-terminal (1-87 aa) is

made up of a nuclear-localized signal (NLS, 14-59 aa) and a nuclear

export signal (NES, 67-76 aa), which together control HDAC6’s shift

from the nucleus to the cytoplasm. Also, research shows that the N-

terminal of HDAC6 is needed for binding and effective acetylation of

tubulin (29); it has two highly conserved catalytic domains, the first of

which is called catalytic domain 1 (CD1, 88-447 aa) and has been

shown to have deacetylase activity (30) and ubiquitin E3 ligase

activity (31); the second CD2 (482-800 aa) exhibits broader

substrate specificity as a deacetylated domain with catalytic activity

(32); a cytoplasmic retention signal, Ser-Glu-containing tetrapeptide

(SE14, 884-1022 aa), SE14 has the ability to control how HDAC6

interacts with other proteins (33). Another NES (1049-1058 aa) and a

zinc-finger ubiquitin-specific protease (ZnF-UBP domain, also

known as BUZ, 1131-1192 aa) recruit ubiquitin protein to

stimulate aggresome formation (Figure 1) (34–36). The HDAC6

gene has 21923 base pairs and is on chromosome X p11.22-23. It is
FIGURE 1

Human HDAC6’s functional domains and schematic depiction. HDAC6 has both catalytic activity and two tandem deacetylase domains (CD1 and
CD2). Two nuclear export signal (NES) prevents the protein from building up in the nucleus, and the Ser-Glu-containing tetrapeptide (SE14) region
guarantees persistent anchoring of the enzyme in the cytoplasm. In the nucleus, HDAC6 is translocated by the nuclear localization signal (NLS). The
C terminal contains a ZnF-UBP.
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found in large amounts in the testis, spermatogenic cells, germ cell

tissues, liver, heart, muscle, spleen, and kidney, among other normal

human tissues and organs. (Figure 2) (Data from https://

www.ncbi.nlm.nih.gov/gene/10013) (25, 37, 38).

Also, HDAC family members, especially the cytoplasmic

protein HDAC6, are very important in controlling the acetylation

of non-histone (34). A proteomic analysis found at least 3,600

acetylation sites in 1,750 nuclear and non-nuclear proteins. This

shows that acetylation and deacetylation play an important role in

processes in both the nucleus and the cytoplasm (39). Many

substrates and proteins that work with them are found in the

cytoplasm, which makes sense since that is where HDAC6 was

found to be concentrated. HDAC6 has been shown to interact with

a number of proteins that are not histones. These include a-tubulin
(40, 41), heat shock protein 90 (42), cortactin (43), peroxiredoxins

(44), b-catenin (45), Ku-70 (46), Tat (47), survivin (48),

extracellular signal-regulated kinase-1 (ERK-1) (49, 50), heat

shock factor-1 (51), myosin heavy chain 9 (52), heat shock

cognate protein 70 (52), dnaJ homolog subfamily A member 1

(52), Miro-1 (53), tripartite motif-containing protein 21 (TRIM21)

(22). Table 1 is a summary of the many HDAC6 substrates, what

they do, and what viral infections they are linked to. A proteomics

study found that 107 proteins in the livers of HDAC6 knockout

mice could be HDAC6 deacetylating substrates (52).

HDAC6’s tubulin deacetylase activity was initially reported by

Hubbert et al. in both in vivo and in vitro settings (40). In the end, it

was found that the activity of HDAC6 recombinant mutants is

controlled by mutations in certain catalytic domains. Their analysis

showed that in vitro deacetylase activity was only encountered in

the CD2 domain (35). In contrast to other HDACs, HDAC6 has a

Cys/His-rich C-terminal region that interacts with polyubiquitin in

a novel way while preserving the deacetylase activity of the protein
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(37). It has been reported that HDAC6 inhibitors regulate viral

infection, tumorigenesis and disease development. Specific HDAC6

inhibitors are known so far including Tubacin, Tubastatin A, ACY-

1215, ACY-24, Nexturastat A and others (34). HDAC6 inhibitors

are gradually being used as a novel strategy for antiviral and

antitumor drug development.
Upstream antiviral signaling
promotes HDAC6

The host antiviral response depends on understanding

HDAC6’s upstream signaling molecules. Transactive response

DNA-binding protein 43 kDa (TDP-43), a nuclear RNA binding

protein, is important in RNA processing (70, 71). TDP-43

particularly binds HDAC6 RNA, according to current research

(65). TDP-43 stabilises the antiviral enzyme HDAC6 and increases

its mRNA and protein levels, the study found (65). The

upregulation of MT acetylation and the downregulation of the

antiviral HDAC6 enzyme in response to low TDP-43 levels make

target cells more vulnerable to human immunodeficiency virus

(HIV) infection (65). High TDP-43 levels, on the other hand,

change the cellular level of the HDAC6 antiviral factor,

preventing HIV-1 envelope complex (Env) fusion and infection

regardless of viral Env tropism and strain (65). The acetylation of a-
tubulin lysine-40 amino acids is considered a sign of microtubules

(MTs) stability (72), and as early as 2022, researchers found that

HDAC6 can deacetylate a-tubulin (73). Rabies is caused by the

Rabies virus, which has a high fatality rate and offers a significant

health risk to humans. It was shown that expressing the rabies virus

M protein alone significantly increased HDAC6 expression, leading

to a significant decrease in its substrate, acetylated-tubulin, and
FIGURE 2

Human HDAC6 RNA expression level in normal tissues. The data from National Center for Biotechnology Information. HDAC6 is abundant in the
kidney, testis, liver and brain. RPKM means reads per kilobase of exon model per million mapped reads.
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ultimately MTs depolymerization (74) (Figure 3A). MTs

depolymerization increases viral RNA production substantially

(74). Inhibiting HDCA6 deacetylase activity drastically reduced

rabies virus RNA synthesis, indicating that HDAC6 plays an

essential role in viral infection. The protein kinase C (PKC)

family is a type of serine/threonine kinase that is activated by

phospholipids and calcium (75). PKCa is a member of the PKC

family that is implicated in cancers, viral infection, and other

signaling pathways (75, 76). Although IRF3 activation controls

interferon synthesis, a recent study has demonstrated that IRF3

also works in conjunction with the protein b-catenin (69). A

previous study has shown that HDAC6 activates b-catenin by

deacetylation (69). However, following viral infection, how b-
catenin was activated to affect downstream signaling pathways is

still elusive. Zhu et al. (24) demonstrated a signaling pathway

involving sendai virus (SeV) infection activated PKCa, which
Frontiers in Immunology 04
increases the phosphorylation of HDAC6, which then

deacetylates b-catenin and promotes its translocation to the

nucleus, promotes the phosphorylation of IRF3 and the

production of IFN-b, which eventually lead to the inhibition of

SeV replication (Figure 3B).
HDAC6 mediates viral infection as
well as host innate immunity

HDAC6 regulates both DNA and RNA viral replication, with

recent research concentrating on influenza viruses among RNA

viruses. HDAC6 mainly confronts virus invasion by controlling

host cytoskeleton MTs to dynamically control virus transport,

fusion, or uncoating. HDAC6 can also control viral infection by

modifying the human immune system and autophagy. HDAC6’s
TABLE 1 An overview of the effects of HDAC6 on viral infection and its substrates.

Virus Characterization Substrates/
Targets

Deacetylation
site

Effects of HDAC6 References

AdV Nonenveloped,
dsDNA

TRIM21 Lys385, Lys387 Inhibits AdV replication through deacetylating of TRIM21 (22)

COVID-
19

Enveloped,
(+) ssRNA

– – HDAC6 inhibition reduces T cell exhaustion/ACE2 expression and
reduces the expression of IFN and cytokines

(54)

IAV Enveloped,
(−) ssRNA

MTs – Blocks IAV cellular transport by deacetylating MTs (55)

– – Be recruited to viral fusion site via ZnF-UBP to facilitate IAV uncoating (56)

PA Lys664 Restricts IAV RNA transcription by deacetylating PA (57)

– – Disruption of HDAC6 interacts with ubiquitin to impair IAV infection (58)

HCV Enveloped,
(+) ssRNA

– – Deacetylation activity induces RIG-I signaling to inhibit HCV infection (59)

HIV Enveloped,
(+) ssRNA

Tat Lys28 Inhibits HIV-1 replication by deacetylating Tat and reducing its
transactivation ability

(47)

Tat – Promotes HIV-1 Tat-induced proinflammatory responses by activating
MAPK-NF-kB/AP-1 pathways

(60, 61)

tubulin – HDAC6 inhibition improves axonal transport and protects the HIV-1
envelope protein gp120 from neurotoxicity

(62)

a-tubulin – Inhibits HIV-1 fusion and infection by deacetylating a-tubulin (63)

Pr55Gag/
Vif

– Inhibits HIV-1 production by promoting the degradation of viral
proteins Pr55Gag and Vif

(64)

HIV Enveloped,
(+) ssRNA

a-tubulin – TDP-43 promotes HDAC6 expression and inhibits HIV-1 entry and
infection

(65)

HPIV3 Enveloped,
(−) ssRNA

a-tubulin – Blocks HPIV3 fusion by deacetylating a-tubulin (66)

oHSV Enveloped, dsDNA – – Inhibits oHSV infection by promoting viral autophagy (67)

PCV2 Nonenveloped,
ssDNA

cGAS – Be recruited to promote cGAS degradation and inhibit IFN-I secretion
to promote PCV2 infection

(68)

SeV Enveloped,
(−) ssRNA

b-catenin Lys49 Inhibits SeV infection by upregulating IFN-b expression (19, 24, 69)

VSV Enveloped,
(−) ssRNA

– – Inhibits VSV infection by upregulating IFN-b expression (19, 24)
(–) refers to negative strand RNA virus, – in the substrates/targets and deacetylation site refers to none.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1216548
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2023.1216548
upstream signaling pathway and its downstream target in anti-viral

signaling, regrettably, remain largely unknown. Recent research on

HDAC6 activity emphasizes its importance in the innate immune

response to viral infection. Studies on HDAC6’s function in the

infection of viruses have mostly focused on three aspects: (a)

controlling viral transport, fusion, and viral component release by

modulating plasma membrane dynamics and the cytoskeleton (55,

56, 62, 63, 74, 77); (b) influencing host cells’ antiviral immune

response (19, 23, 69); (c) tuning the breakdown of viral or host

proteins in host cells through autophagy (64, 68, 78).
HDAC6 regulates viral infection by
changing the cytoskeleton and dynamics
of plasma membranes

Through its effect on the cytoskeleton, HDAC6 controls viral

transcription, replication, entry, and the movement of viral parts.

This can be good or bad for a viral infection (55, 74). MTs have been

known for a long time to be important in how the cytoskeleton

moves during viral infection (79). It has been shown that viruses not

only change MT and MT-related proteins to help them infect cells,
Frontiers in Immunology 05
but they also cause specific post-translational modifications (PTM)

to help them spread through cells and cause side effects of how they

spread (80). Acetylation of lysine is a reversible PTM that affects

many cellular processes, such as chromatin remodeling, signaling,

RNA splicing, gene expression, the cell cycle, protein stability, and

protein transport (81). It happens at the lysine-amino ends, which

are watched over by both histone acetyltransferases (HATs) (82)

and HDACs (83). Some HATs and HDACs have been found to be

very important in controlling IFN-I production and response (19,

24, 84). In 2002 and 2003, researchers found that HDAC6-mediated

deacetylation was linked to the stability of MTs dynamics in vivo

and that HDAC6 deacetylated both tubulin and MTs (41, 73). The

cytoskeleton controls how the host cell membrane moves, which is

how animal viruses get in (85). The host cytoskeleton is made up of

microfilaments, MTs, and intermediate filaments (86, 87). These

filaments guide a number of processes, such as reshaping plasma

membranes, capturing and moving cargo, and arranging organelles

in space, which are important for cell shape, polarity, movement, or

division. Many viruses use the MT-based transport system of the

host cell to move around inside the cell (88, 89).

HDAC6 is a major regulator of the invasive pathway of viruses.

It affects how MTs move and how T regulatory cells work (40, 90),
B C D EA

FIGURE 3

Effects of HDAC6 on RNA virus infection and host antiviral immunity. (A) By upregulating HDAC6, the M protein of the rabies virus induces MTs
depolymerization to facilitate viral RNA synthesis. (B) HDAC6 deacetylation of b-catenin promotes nuclear translocation and IRF3-mediated IFN-b
transcription, thereby inhibiting the infection by SeV. (C) HDAC6 prevents HIV-1 replication by deacetylating Tat and decreasing its ability to
transactivate. (D) By interacting with RIG-I and promoting RIG-I deacetylation and sensing of RNA viruses, HDAC6 accelerates the transmission of
the RLR signaling pathway when it is overexpressed, which increases the production of IFN-b and inflammatory proteins to prevent viral infection.
(E) HDAC6 prevents the production of HIV-1 by promoting the degradation of viral proteins Pr55Gag and Vif. Ac, acetyl; M, matrix protein of rabies
virus; P, phosphorylation; RABV, rabies virus.
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and it is a key part of how IAV gets infected (57). Seasonal

outbreaks of IAV continue to kill a lot of people and make a lot

of people sick all over the world. IAVs from birds can spread to

humans and change enough to cause a pandemic (91). There is still

a chance of a future IAV pandemic because new bird IAV strains

(like H10N8, H6N1, H7N9, H9N2, H1N1, and H5N6) keep

showing up in humans. IAV has already caused a pandemic this

century (92–97). IAV attacks the airway epithelium of a person’s

respiratory system to start the infection, which then leads to the flu,

an acute fever-related respiratory illness. It has been shown that

acetylated MTs help IAV nonmembrane components move (55).

However, the deacetylation of MTs by HDAC6 prevents the

trafficking of IAV components (55). HDAC6 is an anti-IAV host

factor that works by using acetylated MTs as its substrate to inhibit

the movement of viral components toward the plasma membrane of

the host cell (55) (Figure 4A). However, when in IAV infection, the

virus can take advantage of a variety of host characteristics to aid in

its reproduction. For example, to aid uncoating and infection, IAV

can use the aggresome-processing machinery driven by HDAC6

(56). IAV hijacks host HDAC6 to employ the host’s aggresome

pathway to uncoat itself during viral entry (56). The ubiquitin-

binding domain, but not the deacetylase activity, was needed for
Frontiers in Immunology 06
HDAC6 to be brought to viral fusion sites and for viruses to uncoat

and infect cells (56). A further study showed that HDAC6 interacts

with MT motor protein cytoplasmic dynein and its activator

dynactin to bind unanchored ubiquitin chains that mimic

unfolded proteins in the capsid, assisting in its transit to the

aggresome (56) (Figure 4B). But new research has discovered that

interfering with the interaction of HDAC6 and ubiquitin impairs

IAV and Zika virus infection (58). It suggests that designed ankyrin

repeat proteins (DARPins), which can block the ZnF pocket where

ubiquitin engages, also inhibit aggresomes and stress granules (SGs)

formation (58) (Figure 4C). The effects of acetylation and

deacetylation on viral proteins and human immune pathway

proteins impact viral replication. Other RNA viruses, like the

HIV-1, use the MTs for their own purposes, just like IAV does.

For instance, MTs were found to be crucial for HDAC6 to interact

with Tat and for HDAC6 to deacetylate Tat and stop HIV-1

transactivation (47) (Figure 3C). HDAC6 reduction promotes

axonal transport and avoids HIV-1 envelope protein gp120

neurotoxicity (62). HDAC6-mediated deacetylation of a-tubulin,
for example, inhibits HIV-1 fusion and infection (63). Recent

research has demonstrated that the suppression of HDAC6

greatly increases the amount of acetylation of a-tubulin, which
FIGURE 4

HDAC6 promotes or inhibits IAV replication and infection interestingly. (A) HDAC6 inhibits IAV release by downregulating IAV viral component
transport by deacetylating MTs. (B) HDAC6 interacts with dynein, IAV can promote virus uncoating by utilizing the HDAC6-Znf-dependent
aggresome formation mechanism. (C) DARPins block the binding of HDAC6-ZnF to Ub, inhibit the production of downstream SGs and impair IAV
infection. (D) Through the destabilization of PA, HDAC6 functions as a negative regulator of IAV infection. HDAC6 binds to and deacetylates PA,
promoting its proteasomal degradation. PA, polymerase acidic protein; MT, microtubule; Ub, ubiquitin.
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enhances the fusion and reproduction of human parainfluenza virus

type 3 (HPIV3) (66). TANK-binding kinase 1 (TBK1), an IKK-

related serine/threonine kinase, plays a big role in antiviral

immunity (98–101). Recent research shows that HDAC6 controls

the phosphorylation of TBK1 and Akt in macrophages by poly (I:C)

(23). Reports show that when double-stranded RNA (dsRNA) binds

to TLR3, it turns on TBK1 and starts signaling transduction that

leads to the production of IFN-I (98–101). The cell signaling

molecule Akt also interacts with MT (102, 103). It has been

observed that Akt regulates glycogen synthase kinase-3b (GSK-

3b) activity and interleukin-10 (IL-10) expression (104, 105). GSK-

3b has a pivotal role in controlling TBK1 activity (106). In the

presence of a virus, GSK-3b interacts to TBK1, leading to the

phosphorylation of TBK1 (106). Numerous studies indicate that

MTs and GSK-3b have intimate interactions (107–109). Poly (I:C)

induced IFN-b expression in macrophages was elevated after

HDAC6 deletion, which influenced IFN-I and IL-10 production

via enhancing TBK1 activity and removing GSK-3b inhibitory

regulation (23). The results of the experiments with HDAC6

knockout mice highlight the effect of HDAC6 deletion on the

immune system, confirming the importance of HDAC6 in viral

infection. HDAC6 knockout mice exhibited abnormalities in bone

homeostasis and immunological function (38). The number of IFN-

I and IL-6 produced by these mice is also lower, making them more

vulnerable to lethal RNA virus infection (110).

Generally, these results highlight the complexity of the

relationship between hosts and invaders by showing that HDAC6

can have both positive and negative effects on viral replication and

indicating that effective HDAC6-targeting techniques may

fundamentally vary between various viral species.
HDAC6 influences the host’s antiviral
immunological response

HDAC6 acts as an anti-IAV host factor by deacetylating

polymerase acidic protein (PA), which reduces IAV RNA

polymerase activity (Figure 4D) (57). A recent study found that

HDAC6 mutant mice have a higher proclivity to produce IAV

infection (111), emphasising the importance of HDAC6 in anti-

IAV infection. In embryonic stem cells and animals, HDAC6

overexpression enhances viral resistance (112). According to the

latest research, TRIM21 is a substrate of HDAC6, and acetylation

regulates its function (22). HDAC6 interacts with TRIM21 via the

PRYSPRY motif and deacetylates it at lysines 385 and 387,

facilitating homodimerization (22). Enhanced TRIM21 acetylation

caused by HDAC6 inhibition, together with the suppression of

TRIM21 dimer izat ion and ubiqui t inat ion caused by

hyperacetylation, prevents TRIM21 from adhering to the

antibody-bound adenovirus (AdV) type 5 complex and being

destroyed by the ubiquitin-proteasome pathway (22). HDAC6

depletion or inhibition promotes virus accumulation in cells,

indicating a reduced ability for virus intracellular neutralization

mediated by antibodies (22), which confirmed that HDAC6 is a new

activator of TRIM21-mediated anti-viral innate immune response.

Furthermore, HDAC6 deletion suppressed poly (I:C)-induced Akt
Frontiers in Immunology 07
activation, as evidenced by decreased phosphorylation of Akt at

Ser473 near the carboxy terminus, implies that HDAC6 might

control the degree to which macrophages activate Akt during

viral infection (23). The findings imply that HDAC6 may

modulate macrophage innate immunological responses to viruses.

RLRs, which include RIG-I and MDA5, are critical in innate

immune responses to viral infection (113–117). RLRs in the cytosol

detected invading RNA viruses (118). MDA5 and RIG-I detect

different dsRNAs, MDA5 recognizes poly(I:C), and promoting

production of IFNs in response to paramyxoviruses, influenza

virus, and RIG-I recognizes in vitro transcribed dsRNAs and

picornavirus (119). RIG-I containing CARDs and DExD/H box

helicase domain and inducing production of IFNs in case of

infection with dsRNA (113). RIG-I is required for viral RNA

recognition and activation of downstream signaling pathways

(110), such as the SeV (120), IAV and vesicular stomatitis virus

(VSV) (121). RIG-I has piqued the interest of researchers as a viral

sensor, able to distinguish 5’-triphosphate-containing dsRNA from

a range of viruses or short dsRNA molecules (113, 114, 122).

Additionally, overexpression of HDAC6 but not the catalytically

inactive mutant boosted RLR-mediated RNA virus replication

decrease (110). Binding of K63-linked polyubiquitin chains to

RIG-I and start assembly of mitochondrial anti-viral-signaling

protein (MAVS; also known as VISA, CARDIF, and IPS-1)

activates TBK1 and IKK through a K63 polyubiquitin-dependent

mechanism (123). Subsequently, transcription factors IRF3 and

nuclear factor kappa B (NF-kB) are activated, and type I

interferons and pro-inflammatory cytokines are turned on (123).

HDAC6 regulates deacetylation of the RIG-I C-terminal domain,

which limits the protein’s capacity to recognize viral RNA (110).

HDAC6 acts as a deacetylase that enhances RIG-I activation and

innate antiviral defense in order to identify and reduce hepatitis C

virus (HCV) and other RNA virus infections (59). HDAC6

temporarily bound to RIG-I in the presence of viral RNAs,

deacetylating lysine 909 (K909) to improve RIG-I’s ability to

detect viral RNAs (Figure 3D) (110). Acetyl-mimicking mutants

of RIG-I do not induce virus-induced assembly of active homo-

oligomers, whereas deacetylation of RIG-I promotes the

oligomerization of RIG-I and binding to the ligand MAVS

(Figure 3D) (59). Reduced HDAC6 expression led to

compromised defense against RNA viruses but not DNA viruses

(110). Reducing or eliminating endogenous HDAC6 in immune

cells increased viral multiplication and lowered IFN-I and pro-

inflammatory cytokine production in response to RNA viruses

(110). IFN-I responses are essential for the host innate immunity

to protect against infections (124, 125). When cytoplasmic RIG-I-

like receptors detect viral RNA, they send signals to the

transcription factors IRF3 and NF-kB, which in turn induce IFN-

I transcription (126). MAVS binds to RIG-I upon virus recognition

and stimulates the production of ISGs by activating NF-kB and

other interferon regulatory factors (127, 128). In order to offer

antiviral defense and regulate immunity to infection, this

mechanism leads to the development of MAVS, which in turn

activates NF-kB and IRF3 signaling pathways and triggers the

production of IFN-I and a large number of antiviral and

immunology-related genes (129). In response to viral infection,
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RIG-I or TLR3 signaling activated IRF3, a critical transcription

factor for IFN induction (130, 131). It has been demonstrated that

HDACs participate in the TLR signaling pathway of the innate

immune system. For instance, HDAC6 facilitates ubiquitin-

dependent myeloid differentiation primary response 88 (MyD88)

aggregation, which hinders TLR4 responses and prevents a viable

MyD88 signaling platform from emerging (132). In addition, the

intracellular bacterium Listeria monocytogenes activates HDAC6 to

regulate innate immune and autophagy responses to TLR-mediated

signals (133). Ablation of HDAC6 appears to decrease NF-kB
activation in response to TLR stimulation and permit faulty

autophagy, resulting in impaired bacterial clearance. HDAC6 is

linked to the TLR adaptor protein MyD88 (133).

In conclusion, these findings imply that enhancing HDAC6

responses may protect against viral infection and effectively

demonstrate that HDAC6 may improve the host IFN-I response

to obstruct viral pathogenesis. HDAC6, a host factor, acts as an

antiviral target by modulating viral transport, uncoating,

replication, and infectivity, as well as IFN-I expression.
HDAC6 controls viral infection by
degrading host or viral proteins

In addition to controlling RNA viral infection, HDAC6 affects the

host’s innate immune response following DNA virus infection. Porcine

circoviruses (PCV) are non-enveloped tiny viruses with single-stranded

circular DNA genomes (1.76 kb) that belong to the Circoviridae family

(134, 135). PCV2 is a type of PCV that promotes cyclic GMP-AMP

synthase (cGAS) phosphorylation at S278 in the early stages of

infection by activating phosphatidylinositol 3-kinase (PI3K)/Akt

signaling, which directly silences cGAS catalytic activity (68). Then,

by the activity of the HDAC6 deacetylase, cGAS phosphorylation at the

S278 site can stimulate k48-linked polyubiquitination at the K389 site,

which can be exploited as a signal and facilitate the translocation of

k48-ubiquitinated cGAS from the cytosol to the autolysosome (68).

According to the results, PCV2 inhibits IFN-I induction to enhance

DNA virus infections by targeting cGAS (68). As such, TRIM14

recruits USP14 to cleave the K48-linked ubiquitin chains of cGAS at

K414 during herpes simplex virus type 1 (HSV-1) infection (136). This

inhibits the p62-mediated autophagic degradation of cGAS and

increases the activation of IFN-I signaling (136). ISG15 association

with HDAC6 and p62 and it was activated by type I IFN signaling,

which enhances the activity of selective autophagy, resulting in the

effective clearance of ubiquitin and ISG15-tagged unwanted proteins

and pathogens via p62 and HDAC6 (137). ISG15-mediated protein

conjugation may therefore be the IFN system that permits the cell to

utilize autophagy as an innate antiviral defense (137).

To inhibit HIV-1 production, HDAC6 promotes aggresome/

autophagic degradation of the viral polyprotein Pr55Gag (64). By

targeting the HIV proteins Pr55Gag and viral infectivity factor

(Vif), HDAC6 functions as an anti-HIV-1 limiting factor, reducing

viral proliferation and infection (64) (Figure 3E). SGs are dynamic

structures that can be targeted for autophagic clearance, which is

known as granulophagy (138). Aside from that, granulophagy may

be an approach used by viruses to suppress antiviral immune
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responses (78). SGs mentioned above can serve as an antiviral

immune complex and play a positive role in IFN-I response, while

HDAC6 is also a component of SGs (78). In recent years, studies

have found that coxsackie virus A16 infection leads to

granulophagy, degradation of SGs, and selective autophagy

inhibits IFN-I response (78). The findings demonstrate that viral

replication and proliferation can be prevented by limiting

granulophagy. Furthermore, HDAC6 inhibits oncolytic herpes

simplex virus (oHSV) replication in glioma cells by aiding oHSV

endocytic entry and subsequent fusion to lysosomes, hence steering

incoming virions to autophagy/xenophagy rather than viral

multiplication in the nucleus (67). HDAC6, a ubiquitin-binding

deacetylase that targets protein aggregates and damaged

mitochondria, is a key component in basic autophagy (139).

HDAC6 activates autophagy by activating a cortactin-dependent

actin-remodeling mechanism, which then assembles an F-actin

network that promotes autophagosome-lysosome fusion and

substrate degradation (139). HDAC6 is involved in the regulation

of autophagy, whether as an antiviral factor to promote viral protein

degradation or as a component of an antiviral complex to be

degraded by viruses, which provides new ideas for host

antiviral strategies.
Diseases involving HDAC6

More attention has been paid to HDAC6’s many roles in

pathology and physiology because it could be used to treat a

wide range of diseases. Recent studies and reports have

shown that selective HDAC6 inhibition is a good way to fight

neurodegenerative diseases like Alzheimer, Huntington, and

Parkinson (140). The cells of the innate immune system are the

most important line of defense against pathogens and cancer cells.

HDAC6 is closely linked to a number of diseases that are linked to

cancerous tumors (141). As well as cancers like lung cancer, breast

cancer, and ovarian cancer (28). In the case of hepatocellular

carcinoma (HCC), pro-inflammatory cytokines increase the

amount of HDAC6 in the body. This can cause more cells to

grow by stopping p53 from doing its job as a transcription factor

and causing it to be broken down (142). Hepatitis B virus (HBV), as

a stronger inducer of HCC, chronic infection of HBV increased risk

of HCC (143, 144). According to research, the protein expression

levels of HDAC6 in HBV patients’ serum and liver decreased

significantly after antiviral treatment (145). It has been reported

that HBV internalization is sparked by the host-entry cofactor

epidermal growth factor receptor (146). A deficiency of HDAC6

promotes epidermal growth factor receptor endocytic trafficking

and degradation (147). In addition, the study found that HDAC6

can promote human papillomavirus (HPV) positive cervical cancer

by upregulating Wnt5a (148). In the small-cell lung cancer

xenograft model, HDAC6 was found to be a possible treatment

target when used with JQ1 (149). More research needs to be done to

find out if HDAC6 overexpression mice cause tumors or if they are

more or less likely to get tumors. The innate immune response is

different and ends with the production of cytokines (150). A

macrophage releases ILs, cytokines that give instructions to other
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immune cells when it encounters a virus, bacteria, or other

pathogens (151, 152). The innate immune response is a quick,

nonspecific reaction that is controlled by a number of molecules.

HDACs are important for controlling the size and strength of the

response, which makes it possible to make just the right amount of

inflammatory cytokines and ILs (153). Early-onset familial

Parkinson’s disease is caused by changes in the protein Parkin,

which is a ubiquitin ligase (154). Parkin increases mitophagy by

accelerating mitochondrial ubiquitination, which attracts ubiquitin-

binding autophagic components, HDAC6 and p62, resulting in

mitochondrial clearance (154). Tubulin deacetylation is caused by

the enzymatic activity of HDAC6 (40), and blocking tubulin

deacetylation is effective in avoiding neurodegeneration in animal

models of Alzheimer’s and Huntington’s disease (155, 156).

Through the transcriptional activation of their respective genes

by a transcription factor NF-kB, which is a crucial component of the

immune response, these cytokines are frequently produced by a

variety of innate immune cells, HDAC6 has a role in HIV-1 Tat-

induced pro-inflammatory gene expression by regulating the

mitogen-activated protein kinase NF-kB/AP-1 pathways and it is

a biological target for HIV-1 Tat-mediated neuroinflammation (60,

61). Interestingly, HDAC6 is also involved in the severe acute

respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic

that is currently underway (coronavirus disease 2019; COVID-19)

(157). HDAC6 inhibition has the potential to be used to minimize

the morbidity associated with severe COVID-19 viamodulating the

innate and adaptive immune systems (54). HDAC6 inhibition,

which blocks IFN-I synthesis and its downstream effects in airway

epithelial cells and immune cells, may be able to mitigate the

negative effects generated in severely ill COVID-19 patients by

late or extended activation of the IFN-I pathway (54). These results

support the use of HDAC inhibitors as part of an epigenetic

therapeutic strategy in the treatment of severe COVID-19 (54).

HDAC6 may be a risk factor for tuberculosis (TB) and a novel

host-directed anti-TB therapeutic target (158). HDAC6 also affects

allergic skin inflammation. By directly modulating sirtuin 1 expression,

HDAC6-negative MiR-9 prevented atopic dermatitis (159). HDAC6

and CXCL13 influence cellular connections and miR-9 and SIRT1

expression (159). HDAC6 regulates inflammation. HDAC6 reduces

NACHT, LRR, and PYD domains-containing protein (NLRP3)

inflammasome activity by interacting with ubiquitinated NLRP3

(160). HDAC6 knockout mice develop normally, but their immune

systems are weakened (38). HDAC6 promotes monocyte/macrophage

infiltration during inflammation and suppresses T cell IL-17

production, providing new insights into its role in the immune

system (161, 162). A recent study demonstrated that administering

anHDAC6 degrader to LPS-inducedmice reduced the activation of the

NLRP3 inflammasome, confirming for the first time that HDAC6

proteolysis targeting chimera may be a potential treatment for NLRP3-

related illnesses (163).
The application of HDAC6 inhibitors

Tubacin, as a selective inhibitor of HDAC6, plays a positive role

in anti-viral and anti-tumor diseases (164–166). It is worth noting
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that “tubacin”, which prevents a-tubulin deacetylation in

mammalian cells, was discovered for the first time using an

omnifarious, chemical genetic screen of 7,392 small molecules

(167). In the early years, as an HDAC6 selective inhibitor, tubacin

induces apoptosis in epstein-barr virus (EBV)-burkitt lymphoma

cells and kills EBV lymphoblastoid cells by producing reactive

oxygen species (165). A few years ago, researchers found that

tubacin reduces Japanese encephalitis virus replication by

reducing viral RNA synthesis (164). The role of inhibiting viral

replication was also demonstrated by HDAC inhibitors including

suberoylanilide hydroxamic acid (SAHA) (168), which improves

the susceptibility of uninfected CD4+ T cells to HIV by boosting the

kinetics and efficiency of postentry viral processes (169). On the

other hand, HDAC6 knockout mice can live and grow normally,

tubulin hyperacetylation does not interfere with normal

mammalian development, indicating that HDAC6 inhibitors

could have less negative effects (38), as opposed to the inhibition

of specific class I HDACs and other HDACs. These results

encourage more research into the efficacy of HDAC6 inhibitors in

a variety of diseases, including hematological malignancies (170,

171), neurodegenerative diseases (140) and cancers (28). Moreover,

specific inhibition of HDAC6 normalizes B cell activation and

germinal centre development in a model of systemic lupus

erythematosus (172). These tests will provide the basic science

foundation for moving forward with clinical trials of an inhibitor

that selectively targets HDAC6. There is great potential for HDAC6

as a target molecule in clinical drug research, as more than a dozen

HDAC6s are already in use for the treatment of various disorders.
Conclusions

This review summarizes the function of HDAC6 in viral

infection, host antiviral immunity and immune-related disorders.

HDAC6 is a cytoplasmic class II histone deacetylase involved in

various cellular functions, including immunological synapse

formation, misfolded protein degradation, migration, and cell-cell

contact. HDAC6 has two highly conserved catalytic domains:

catalytic domain 1 (CD1) and CD2, which exhibit broader

substrate specificity as a deacetylated domain with catalytic

activity. Another NES (1049-1058 aa) and a ZnF-UBP domain

recruit ubiquitin protein to stimulate aggresome formation. The

HDAC6 gene has 21923 base pairs and is on chromosome X p11.22-

23. It is found in large amounts in the testis, spermatogenic cells,

germ cell tissues, liver, heart, muscle, spleen, and kidney, among

other normal human tissues and organs. HDAC6 functions as a

host antiviral factor to prevent the invasion and infection of

invaders, while the virus will utilize some HDAC6 properties to

escape the host’s defensive response and aid in the virus’s

intracellular cycle completion. HDAC6 can reduce IAV release by

deacetylating MTs, inhibit viral transcription by inhibiting the IAV

RNA polymerase PA subunit, and assist viral uncoating via the

aggregation formation mechanism of HDAC6’s ZnF domain.

Blocking HDAC6 binding of ZnF to ubiquitin can decrease

aggregation formation, reducing IAV uncoating. HDAC6 is

involved in the process of a range of viral infections and can be
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exploited as a potential therapeutic target for many disorders.

Therefore, the review’s findings show that HDAC6 is an attractive

and new potential therapeutic target for the development of

immune-enhancing medicines in the areas of antiviral immunity,

innate immune response, and certain diseases.
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J, Pérez-Yanes S, Barroso-González J, et al. HIV-1 nef targets HDAC6 to assure viral
production and virus infection. Front Microbiol (2019) 10:2437. doi: 10.3389/
fmicb.2019.02437

65. Cabrera-Rodriguez R, Perez-Yanes S, Montelongo R, Lorenzo-Salazar JM,
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Glossary

cGAS cyclic GMP-AMP synthase

COVID-19 coronavirus disease 2019

DARPins designed ankyrin repeat proteins

dsRNA double-stranded RNA

GSK-3b glycogen synthase kinase-3b

HATs histone acetyltransferases

HBV hepatitis B virus

HCC hepatocellular carcinoma

HCV hepatitis C virus

HDAC histone deacetylase

HDAC6 histone deacetylase 6

HIV human immunodeficiency virus

IAV influenza A virus

IFN-I type-I interferon

IFN-b interferon-b

IL interleukin

IRF3 interferon regulatory factor 3

ISG interferon-stimulated gene

MAVS mitochondrial anti-viral-signaling protein

MTs Microtubules

MyD88 myeloid differentiation primary response 88

NF-kB nuclear factor kappa B

NLRP3 NACHT, LRR, and PYD domains-containing protein

oHSV oncolytic herpes simplex virus

PA polymerase acidic

PAMPs pathogen-associated molecular patterns

PCV porcine circoviruses

PKC Protein kinase C

PRRs pattern recognition receptors

PTM post-translational modification

RIG-I retinoic acid-inducible gene-I

RLRs RIG-I-like receptors

SeV sendai virus

SGs stress granules

TBK1 TANK-binding kinase 1

TDP-43 transactive response DNA-binding protein

TLRs toll-like receptors

TRIM21 tripartite motif-containing protein 21
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VSV vesicular stomatitis virus

ZnF-UBP zinc-finger ubiquitin-specific protease
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