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HBV-associated DLBCL
of poor prognosis: advance
in pathogenesis, immunity
and therapy

Xin Wan1, Ken H. Young2* and Ou Bai1*

1Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China,
2Department of Hematopathology, Duke Cancer Institute, Duke University Medical Center, Durham,
NC, United States
Advanced studies have shown a biological correlation between hepatitis B virus

(HBV) and B-cell lymphoma, especially diffuse large B-cell lymphoma (DLBCL).

Patients with DLBCL infected with HBV (HBV-associated DLBCL) are clinically

characterized by an advanced clinical stage, poor response to front-line

immunochemotherapy regimens, and worse clinical prognosis. HBV-

associated DLBCL often exhibits abnormal activation of the nuclear factor

kappa B pathway as well as mutations in oncogenes, including Myc and BCL-6.

Currently, there is no consensus on any specific and effective treatment for HBV-

associated DLBCL. Therefore, in this review, we comprehensively and

mechanistically analyzed the natural history of HBV infection and immunity,

including HBV-mediated oncogenes, immune escape, epigenetic alterations,

dysregulated signaling pathways, and potential therapeutic approaches for HBV-

associated DLBCL. We hope that an improved understanding of the biology of

HBV-associated DLBCL would lead to the development of novel therapeutic

approaches, enhance the number of effective clinical trials, and improve the

prognosis of this disease.
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of B cell lymphoma,

comprising 30%–40% of non-Hodgkin lymphomas (NHL). Most patients with DLBCL can

be cured using current front-line immunochemotherapy regimens based on a combination

of anthracyclines and anti-CD20 antibodies, such as R-CHOP; however, 30%–40% of

patients have disease relapse or are refractory to first-line treatment, meaning that DLBCL

is a possibly heterogeneous disease (1). Over the past few decades, considerable efforts have

been made to decipher the molecular basis of this heterogeneity. First, according to the

gene-expression profiles of the cell of origin, DLBCL has been divided into three subtypes,

namely activated-B-cell-like (ABC), germinal-center B-cell-like (GCB), and an unclassified
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group; patients with GCB DLBCL have been reported to have a

significantly better overall survival (OS) than those with ABC

DLBCL (2). Moreover, DLBCLs harboring Myc, BLC-2, and/or

BCL-6 translocations are called “double-hit” lymphoma (DHL) or

“triple-hit” lymphoma (THL), which have a poor prognosis. In the

recent 5th edition of the World Health Organization classification of

lymphoid neoplasms, the DHL/THL category is recognized as

“high-grade B-cell” lymphoma owing to the rearrangements of

Myc and BCL-2 (3). However, there are certain disadvantages to

first-line chemotherapy of DLBCL, including hepatitis B virus

(HBV) infection (HBV-associated DLBCL). In this review, we

focus on whether HBV infection worsens the prognosis of patients

with HBV-associated DLBCL through the aforementioned related

molecules and/or cell signaling.
2 HBV-associated DLBCL with
poor prognosis

2.1 Clinical features

Many studies have validated that HBV can lead to other kinds

of cancers besides hepatocellular carcinoma (HCC), including

gastrointestinal tumors and B-cell non-Hodgkin’s lymphoma (B-

NHL), in Asia, Africa and Western countries (4–7). Moreover,

among patients with B-NHL, DLBCL has been reported to have a

strong and more significant association with HBV infection (8–11)

compared to that with indolent lymphoma (12–14); for instance, a

study from west Africa showed that the prevalence of HBV-

associated DLBCL is 14.3% (5). Moreover, a previous study of

ours showed that the incidence of HBV-associated DLBCL is 13.2%

(15), meaning that HBV infection is closely related to DLBCL.

HBV-associated DLBCL is characterized by a high prevalence

among younger individuals, a high incidence at advanced clinical

stages, mainly involving the peritoneal lymph nodes and spleen, and

a relatively poor prognosis (16).Our previous study showed that

patients with DLBCL and HBV infection had poor prognosis

(three-year OS: HBsAg-negative patients, 90.6% vs. patients with

HBV-associated DLBCL 54.5%) (17). Cheng et al. (18) also found

that patients with HBV-associated DLBCL had a lower overall

response rate (ORR: 76.5% vs. 85.5%, p=0.043), poorer 5-year OS

rate (57.2% vs. 73.5%, p <0.001), and a shorter 5-year progression-

free survival (PFS: 47.2% vs. 60.7%, p=0.013) than HBsAg-negative

patients. HBsAg-positivity is an independent adverse prognostic

factor for HBV-associated DLBCL (18, 19). It is also the main factor

leading to the poor efficacy of immunochemotherapy, including R-

CHOP regimens. Accordingly, HBV infection is closely associated

with DLBCL and is a crucial factor leading to poor prognosis (17,

20, 21). Huang et al. indicated that antiviral agents, entecavir,

combined with chemotherapy could improve the prognosis of

patients with HBV-associated DLBCL (median OS not reached vs.

35.61 months) (22). In this review, we focus on the dysregulation in

molecules related to the poor prognosis of HBV-associated DLBCL,

including oncogenes, immune escape, epigenetic modification, and
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dysregulated signaling pathways, as well as chemo-resistance and

potential therapeutic approaches.
2.2 Genomic structure of HBV, immunity,
and dysregulation

The HBV genome encompasses four open overlapping reading

frames (ORFs)-pre-C/C (pre-core/core), pre-S/S (surface proteins),

X (transcriptional co-activator), and P (DNA polymerase) (23)

(Figure 1A). The preS1, preS2, and S genes mainly code HBsAg;

pre-C/C code HBeAg; and the HBV X gene codes the HBx protein

(Figure 1B). After HBV infection, the human body initially carries

the virus for a period of time and subsequently expresses the

relevant antigens, including HBsAg and HBeAg, thereby eliciting

immune response by stimulating the B-cell receptor (BCR) and

subsequently activating the abnormal BCR signaling pathway. B-

cells produce antibodies HBsAb, HBeAb, and HBcAb to block

further infection and support effective viral clearance (24). The

natural history of HBV infection has four phases, including

immune tolerance, immune clearance, immune-control, and

reactive phase (25–27). (1) The immune tolerant phase is

characterized by HBeAg seropositivity with high viral loads (>106-

7 IU/mL) but near-normal liver histology. (2) The immune

clearance phase is characterized by HBeAg positivity with a

declining serum HBV-DNA level and active inflammation in the

liver; this phase may eventually lead to HBV-DNA seroclearance

and the seroconversion of HBeAg to its antibody (HBeAb) in most

patients. (3) In the immune-control phase, following HBeAg

seroconversion, most patients enter the immune-control phase

with low serum HBV-DNA (<2000 IU/mL). (4) The reactive

phase is characterized by HBeAg negativity with HBeAb

positivity, detectable serum HBV-DNA levels, and active

inflammation in the liver; this phase is associated with immune

escape (Figure 1C).

As for genes, HBx is the most frequently integrated viral gene

following HBV infection, which plays a critical role in tumor

pathogenesis (28). Studies have reported that HBx was detected in

the tissues of patients with HBV-associated DLBCL (29, 30). Our

previous study has also shown that HBx was detected in tissues

from patients with HBV-associated DLBCL and that HBx

expression was correlated with c-Myc expression (31) (Figure 2).

2.2.1 Crucial oncogene mutation and
corresponding cell signaling pathways

Whole exome sequencing/whole genome sequencing (WES/

WGS) showed that HBV infection was associated with DLBCL.

Studies indicated several mutations in genes related to the AID/

APOBEC enzymes in patients with HBV-associated DLBCL (32,

33). Ren et al. (32) detected the genes mutation in 275 patients of

DLBCL, including 20% patients with HBsAg positive (56/275). And

the tumor biopsy specimens of 229 patients were taken at diagnosis,

and 46 were taken at relapse. The quantitation of viral DNA was

performed in 44 HBsAg positive patients. Fourteen genes were
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confirmed to be preferentially mutated in the HBV infection group,

including KLF2, TMSB4X, CD70, BCL-6, FAS, TNFRSF14, UBE2A,

CD58, SGK1, ZFP36L1, CXCR4, FOXO1, CSK, and MSL2. In these

genes, the enrichment of genes regulated by BCL-6, FOXO1, and

ZFP36L1 and involved in signaling pathways, including BCR, janus

kinase/signal transducer and activator of transcription (JAK/

STAT), and nuclear factor kappa B (NF-kB), contributed to the

gene expression signature (Figure 3).

BCR signaling activates downstream oncogenic pathways,

including NF-kB or PI3K (34). The PI3K-Akt-mTOR signaling

cascade is known to be dysregulated and represents a major

regulator of cell survival-proliferation (35). NF-kB regulates the

proliferation of B cells and promotes the expression of proto-

oncogenes (Myc and BCL-6) and cellular anti-apoptotic protein

(BCL-2), as well as the secretion of cytokines, including tumour

Necrosis Factor alpha (TNFa), lymphotoxin-a, and interleukin-6; it
further positively regulates the JAK/STAT3 pathway and cell

proliferation and promotes tumorigenesis. As a key transcription

factor, BCL-6 plays a crucial role in the clearance of HBV (36).

Furthermore, BCL-6 is a crucial gene of HBV-associated DLBCL.

There was no significant difference between the HBsAg positive and

HBsAg negative groups in the percentage of GCB vs. non-GCB

patients. The incidence of GCB DLBCL was 37.5% vs. 38.1%,

respectively; non-GCB was 62.5% vs. 61.9%, respectively (32).
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Zhang et al. showed that HBV was important in DHL/THL

DLBCL and that the incidence of Myc/BCL-6 DHL was higher

than that of Myc/BCL-2 DHL with HBV infection (37). A previous

study of ours showed that the rate of Myc rearrangements in

patients with HBV-associated DLBCL was significantly higher

than that in HBV-free individuals (38). Moreover, HBx

simultaneously activated the Src/Ras/ERK pathway, promoting

proliferation and anti-apoptosis owing to the accumulation of

ROS and endoplasmic reticulum stress (39). Therefore, HBV-

associated DLBCL is involved in the signaling pathways,

including BCR, NF-kB, and JAK/STAT3, and further dysregulates

oncogenes, including BCL-6, Myc, which are associated with poor

prognosis. Moreover, following HBV infection, the human body

activates the abnormal BCR signaling pathway, which could be

more directly related to HBV-associated DLBCL.

2.2.2 Immune escape
In the reactive phase, HBV could not be completely eliminated

and induce immune escape, which is associated with the poor

survival of patients with HBV-associated DLBCL. During chronic

HBV infections, virus-specific T-cells appear deeply exhausted.

Both CD8 and CD4 T-cells up-regulate co-inhibitory receptors,

which can inhibit T-cell function following the cross-linking of their

ligands, entailing T-cell exhaustion and tumor escape. For instance,
A B

C

FIGURE 1

Genomic structure of HBV and relationship with the body immune function. (A) The HBV Genomic structure. (B) HBV gene code associated protein.
(C) The natural history of HBV infection has four phases, including immune tolerant, immune clearance, immune-control and reactive phase, could
activate the abnormal BCR signaling pathway and oncogenes mutation. The reactive phase is associated with immune escape.
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the programmed cell death 1/programmed cell death ligand 1 (PD-

1/PD-L1) cell signaling pathway is closely related to the functioning

of the immune system, which is currently a research hotspot in the

field of tumor immunotherapy. The activation of the PD-1/PD-L1

cell signaling pathway can suppress the function of the immune

system and contribute to the immune escape of cancer cells (40).

Our previous study showed that the incidence of PD-1 expression

among patients with HBV-associated DLBCL was 4.3-fold higher

than that among HBV-free individuals (40.0% vs. 9.4%; p=0.010).

Moreover, the median OS and PFS were the worst in PD-1-positive

patients with HBV-associated DLBCL. These results indicate that

the dismal prognosis of patients with HBV-associated DLBCL may

be related to the high rate of PD1 expression (15) (Figure 3).

Moreover, the number of CD4-positive lymphocytes has been

reported to decrease significantly after chemotherapy in patients

with HBV-associated DLBCL, and the CD4:CD8 ratio decreased for

a longer time in the aforementioned population than in HBV-free

individuals, elucidating the reason behind the poor prognosis of

patients with HBV-associated: The host immune system weakened

the tumor surveillance effect, leading to rapid disease recurrence

and poor prognosis (41). Moreover, Ren et al. (32) showed that

CD70, TNFRSF14, and CD58 were the main mutated genes

among patients with HBV-associated DLBCL, leading to a

decrease in T-cell infusion in the tumor microenvironment and

thereby weakening tumor immune surveillance and accelerating

their escape.

In summary, the continuous high expression of multiple co-

inhibitory molecules is the key cause of the depletion of HBV-

specific T-cell function. Blocking these molecules can significantly

restore HBV-specific T cell function and subsequently remove the

virus in vivo. Therefore, the blocking of co-stimulatory molecules
Frontiers in Immunology 04
might represent a novel strategy for the clinical treatment of

HBV infection.

2.2.3 Noncoding RNAs and
epigenetic modification

HBx does not bind to DNA, and HBx-activated RNA polymerase

(pol) I-, II-, and III-dependent promoters directly interact with some

transcription factors and stimulate signal-transduction pathways. The

HBx protein can initiate epigenetic modifications to dysregulate

noncoding RNAs expression, which, consequently, can regulate

downstream epigenetic changes throughout the pathogensis of HBV-

associated DLBCL. Bruni et al. (42) found that patients with HBV-

associated indolent B-NHL have dysregulated miRNA. Chen et al. (43)

also showed that this dysregulation of miRNAs was closely related to

the proliferation and differentiation of B-cells. Of note, miRNAs

regulate through histone deacetylase (HDAC) (44) or the NF-kB
pathway (45). While HDAC inhibitors can break this negative

regulation by promoting the expression of miR-34a (46). Several

studies have shown that epigenetic modification play a significant

role in patients with HBV-associated DLBCL, which have a higher

frequency of the CREB-binding protein (CREBBP) mutations (27.2%)

compared to the general population (47). CREBBPmainly regulates the

activity of histone acetyl transferase (HAT), maintains the activity of

HAT domain, regulates transcription factors, and affects immune

regulation. However, CREBBP mutation (loss-of-function) inactivates

the HAT domain and impairs acetylation-deacetylation balance,

thereby increasing BCL-6 expression (Figure 3). Nevertheless, the

selective inhibition of HDAC3 reverts the molecular phenotype of

CREBBP mutations (48, 49). Moreover, SIRT1 plays an important role

in the acetylation of B-cell germinal center and could lead to an

imbalance of acetylation/deacetylation. SIRT1 could cause the
FIGURE 2

HBx and pre-S2 detected in patients with HBV-associated DLBCL with IHC. (A1) HBx antigen expressed in HBV-associated hepatocytes. (A2) HBx
antigen expressed in HBV-associated DLBCL lymphoma cells. (A3) HBx antigen cannot be detected in HBV-negative DLBCL lymphoma cells. (B1)
Pre-S2 antigen expressed in HBV-associated hepatocytes. (B2) Pre-S2 antigen expressed in HBV-associated DLBCL lymphoma cells. (B3) Pre-S2
antigen cannot be detected in HBV-negative DLBCL lymphoma cells.
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deacetylation of BCL-6, p53, and other transcription factors (50) and

up-regulate the expression of BCL-6 (51). BO et al. showed that chronic

stimulation with HBsAg promoted the viability of the human B

lymphoblastoid cell line through regulation of the SIRT1-NF-kB
pathway (52) (Figure 3). In conclusion, noncoding RNAs and

epigenetic regulation may play roles in the pathogenesis of HBV

associated DLBCL.

2.2.4 Chemo-resistance
HBx elicits a DNA damage response. It binds to p53 in the nucleus,

inhibits the expression of p53-responsive genes, promotes the

phosphorylation (inactivation) of Rb, lowers the activities of CDK

inhibitors, promotes vascular regeneration, and inhibits p53 function

through Rb, thereby inhibiting cell apoptosis and cell cycle (53). HBx

itself can inhibit p53 from functioning as a cell cycle blocker, thereby

promoting cell survival. Moreover, the overexpression of HBx

significantly reduces the activation of CHK2 signals induced by S-

period blockers and p53 and p21 in patients with HBV-associated

DLBCL, consequently reducing the sensitivity of chemotherapy drugs

and suggesting that CHK2 may be a potential factor in HBx-induced

chemotherapy resistance (54). Li et al. (55) found that HBx directly up-

regulated the expression of lncNBAT1, a long non-coding RNA

(lncRNA) that is closely associated with the chemotherapy outcomes

of patients with HBV-associated DLBCL. The up-regulation of

lncNBAT1 reduced the sensitivity of DLBCL cells to the

chemotherapeutic agents that induced S-phase arrest, whereas the

knockdown of lncNBAT1 significantly relieved the chemo-resistance

of HBx-expressing DLBCLs (Figure 3).
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Therefore, patients with HBV-associated DLBCL have a poor

prognosis owing to genomic instability, immune escape, epigenetic

regulation, and chemo-resistance, leading to an uncontrolled cell

cycle, obstruction of apoptosis, and increased frequency of gene

mutations. Moreover, many signal pathways, including BCR, JAK/

STAT3, and the NF-kB pathway, are involved in the pathogenesis of

HBV-associated DLBCL (Table 1).
3 Future prospects of targeted
treatment to improve prognosis

Patients with HBV-associated DLBCL respond poorly to

current first-line immunochemotherapy. Therefore, novel

therapeutic approaches for patients with HBV-associated DLBCL,

including other virus-related lymphomas, should be considered

(Table 2). Possible therapeutic approaches include: (1) anti-virus

therapy; (2) small molecule kinase inhibitors, including epigenetic

regulators, PI3K inhibitors, BCL-6 inhibitors, and BCL-2 inhibitors;

and (3) immunotherapy, including CAR-T and immune-

checkpoint inhibitors (Figure 4).
3.1 Anti-virus therapy

Nucleos(t)ide analogs (NAs) and interferons are two classes of

antiviral agents currently licensed for the treatment of HBV infection.

NAs, including entecavir, tenofovir disoproxil fumarate, and tenofovir
FIGURE 3

Schematic diagram of HBV-mediated oncogenic signaling pathway activation, epigenetic modification, immune escape and chemo-resistance in
HBV-associated DLBCL. 1) Replication of the virus leads to abnormal host epigenetic regulation, accompanied by CREBBP mutations up-regulation
of SIRT1, inducing the up-regulation of deacetylatation levels, resulting in imbalance of CREBBP-BCL-6/HDAC3 axis, finally increasing the activity of
BCL-6 as proto–oncogenes. Gene expression signature of HBV-associated DLBCL was contributed by the enrichment of genes regulated by BCL-6,
FOXO1, and ZFP36L1 and involved in signaling pathways, including BCR, PI3K, JAK/STAT, and NF-kB. In addition, HBx simultaneously activates the
Src/Ras/ERK pathway, promoting proliferation and anti-apoptosis owing to the accumulation of ROS and endoplasmic reticulum stress. 2) Tumor-
infiltrating immune cells CD8+ T cells are in a state of functional depletion, highly expressed PD-1. The activation of the PD-1/PD-L1 cell signaling
pathway can suppress the function of the immune system. CD70, TNFRSF14, and CD58 were mainly mutated in HBV-associated DLBCL, led to a
decrease in T cell infusion in tumor microenvironment. 3) HBx over expression significantly reduces the activation of CHK2 signals induced by S-
period blockers and p53 in HBV-associated DLBCL, thereby reducing the sensitivity of chemotherapy drug; HBx directly up-regulated the expression
of lncNBAT1, reduced the sensitivity of DLBCL cells to chemotherapeutic agents that induced S phase arrest.
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alafenamide, suppress viral replication by inhibiting the reverse

transcription of pre-genomic RNA to HBV DNA in the cytoplasm.

Study indicated that entecavir combined with chemotherapy could

improve the prognosis of patients with HBV-associated DLBCL (22).

Moreover, Yamauchi et al. also showed that the prophylactic use of

entecavir could reduce the occurrence of HBV reactivation-related

hepatitis and mortality in patients with HBV-associated DLBCL

receiving rituximab-containing chemotherapy (56).

3.2 Small molecule kinase inhibitors

3.2.1 Epigenetic regulators
With advances in epigenetic research in recent years, the use of

epigenetic regulators has gradually increased in clinical practice.
Frontiers in Immunology 06
Several clinical trials have confirmed the effectiveness and safety of

HDAC inhibitors, including chidamide, in first-line consolidation

and rescue therapy for the recurrence of lymphoma. Chidamide is a

selective inhibitor of histone deacetylases (HDACs), which is

mainly targeted at class I HDACs, and has a regulatory effect on

the epigenetic function of tumor abnormalities. At our center, the

First Hospital of Jilin University, Changchun, China, a clinical trial

(Table 2; registered in www.clinicaltrials.gov under number

NCT04661943) of chidamide maintenance treatment was

conducted for patients with HBV-associated DLBCL. The

inclusion criteria were achievement of complete response and

complete response lasting for 1 year following systemic treatment

before enrollment. The trial aimed at exploring the efficacy of

epigenetic regulators in patients with HBV-associated lymphoma.
TABLE 2 Clinical ongoing trials in virus-related lymphoma.

Types Treatment regimen Results NCT number

EBV-positive lymphoma EBV-CTLs CR:68%;
1y-OS: 88.9%

NCT01498484

Brentuximab Vedotin ORR:48%
Median OS:15.6m

NCT02388490

Sintilimab+R-CHOP NA NCT04181489

Nanatinostat+ valganciclovir NA NCT05011058

HIV-positive lymphoma Vorinostat + R-EPOCH ORR:100%
1y-PFS:83%

NCT01193842

Peripheral blood stem cells NA NCT00002221

Brentuximab Vedotin + AVD NA NCT01771107

HHV-positive lymphoma Oral Azacitidine NA NCT04799275

HBV-positive lymphoma Chidamide NA NCT04661943
EBV, Epstein-Barr virus; HHV, Human Herpesvirus; HBV, Hepatitis B virus; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone; R-EPOCH, rituximab plus
etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin; AVD, adriamycin, vinblastine, and dacarbazine.
TABLE 1 Summary of molecular advance in HBV-associated DLBCL.

Genes Functional pathway References

TP53, TP63 P53 pathway (32)

BCL-6, CXCR4, KLF2, SGK1 FOXO signaling, BCR signaling (32)

Immunomodulation/escape Targerts References

CD70, TNFRSF14, CD58 (32)

PD-1/PD-L1 (15)

Epigenetic modification and noncoding RNA

Types Main regulators Targets Functional pathway References

Histone Acethylation CREBBP CDKN1A, CIITA, BCL-6 Antigen presentation and TFH activation (47–49)

Histone Deacetylation SIRT1 p53, BCL-6 NF-kB signaling (50–52)

miR-34a SIRT1 STAT3, HMGB1, BCL-2 NF-kB signaling (45, 46)

Chemo-resisitance

CHK2 p53, p21 p53, CHK2 signaling (54)

lncNBAT1 STAT1 APOBEC3A (55)
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3.2.2 Small molecule kinase inhibitors of
cell signaling pathways

Such as PI3K, BCL-6, and BCL-2 inhibitors, and the

immunomodulator lenalidomide have shown efficacy in treating

recurrent and refractory DLBCL (57–60); however, clinical trials on the

efficacy of these treatments for HBV-associated DLBCL are warranted.
3.3 Immunotherapy

3.3.1 Chimeric antigen receptor-T cell therapy
CAR-T for the failure of multiline therapy of DLBCL has been

demonstrated to have significant efficacy. Patients with HBV-associated

DLBCL undergoing CAR-T cell therapy did not increase the risk of severe
Frontiers in Immunology 07
cytokine release syndrome (61). However, Yang et al. showed that patients

with HBV-associated DLBCL receiving CD19-CAR-T cell therapy are at

risk of HBV reactivation, especially in HBeAg-positive patients; the close

monitoring of HBV-DNA levels and adequate antiviral prophylaxis are

essential for the prevention of HBV reactivation (62). HBV-associated

lymphoma presents immune escape-related gene mutations such as

CD70, and targeted CD70 CAR-T may have potential efficacy.

3.3.2 Immune-checkpoint inhibitors
PD-1 expression was higher in patients with HBV-associated

DLBCL than in HBV-free individuals. Thus, immune-checkpoint

inhibitors may have a satisfactory effect on patients with HBV-

associated DLBCL. However, there is no standard first-line therapy,

and clinical trials exploring specific treatment regimens for HBV-
FIGURE 5

The conclusive algorithm of HBV-associated DLBCL.
FIGURE 4

Therapeutic modulation of HBV infection and associated signaling pathways. Many therapeutic targets have been identified. (1) NAs suppress viral
replication by inhibiting reverse transcription of pre-genomic RNA to HBV DNA in the cytoplasm. (2) small molecule kinase inhibitors, including
epigenetic regulators, PI3K inhibitors, BCL-6 inhibitors and BCL-2 inhibitors. (3) immunotherapy, CAR-T, including CD19 and CD70 CAR-T; PD-1/
PD-L1 mAb can activate T cells by regulating the PD-1/PD-L1 axis.
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associated DLBCL are rare compared with those for other virus-related

lymphomas. Further studies to explore more effective therapy regimens

are warranted.

4 Conclusion

Patients with HBV-associated DLBCL experience worse clinical

prognosis and chemo-resistance. HBV infection and integration

triggers inflammation favoring the accumulation of genetic and

epigenetic lesions, involving many oncogenes, including crucial

BCL-6, Myc, and CREBBP. Moreover, many signal pathways,

including crucial BCR, JAK/STAT3, and the NF-kB pathway, are

involved. Therefore, HBV, as a major risk factor, contributes to the

development of HBV-associated DLBCL. There is no standard first-

line immunochemotherapy in clinical settings. Figure 5 presents a

conclusive algorithm of crucial factors for HBV-associated DLBCL.

Therefore, more clinical trials to implement personalized treatment

approaches for HBV-associated DLBCL are warranted.
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