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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease whose cause is unknown;

however, a viral infection is thought to be involved. Current theory favors Epstein-Barr

virus (EBV); yet EBV’s ubiquitous presence and ease of transmission are inconsistent with

low MS concordance across genetically identical twins. Further, causality has not been

demonstrated and the mechanism of disease induction is unknown. As an alternative

hypothesis, MS may be triggered when myeloid dendritic cells (mDCs) become infected by

lymphocytic choriomeningitis virus (LCMV). As mDCs are critical to thymic development

of regulatory T cells (1), LCMV infection could hypothetically suggest a mechanism for

disease initiation. Elucidating the mechanism of MS disease initiation is critical to our

ability to prevent this debilitating disease.
2 Immune dysregulation in MS

MS is a chronic inflammatory disease in which self-antigens such as myelin proteins are

attacked by autoreactive T cells (2). Normally, immunologic attacks on self-antigens are

suppressed by a specialized subset of CD4+ cells called regulatory T cells (Tregs). However,

the suppressive capacity of Tregs from relapsing-remitting MS (RRMS) patients is
Abbreviations: CSF, cerebrospinal fluid; EBV, Epstein-Barr virus; HLA, human leukocyte antigen; IFN,

interferon; IRF3, interferon regulatory factor 3; IRF7, interferon regulatory factor 7; LCMV, lymphocytic

choriomeningitis virus; MBP, myelin basic protein; mDC, myeloid dendritic cell; MHC, major

histocompatibility complex; MS, multiple sclerosis; PBMC, peripheral blood mononuclear cell; RRMS,

relapsing-remitting multiple sclerosis; ssRNA, single-stranded RNA; TLR, toll-like receptor; Treg, regulatory

T cell; TSLP, thymic stromal lymphopoietin.
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1 See Genbank (https://www.ncbi.nlm.nih.gov/nuccore) accession

numbers EF164923, EU136038, FJ607028, FJ607030, FJ607031, FJ607035,

F607038, JN687949, JN872495, and M22138.
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diminished. Peripheral Tregs from RRMS patients contain relatively

few recent thymic emigrants, suggesting a defect in thymic Treg

neogenesis (3).

Normal Treg development in the thymus requires strong

stimulation from CD11c+ myeloid dendritic cells (mDCs). Such

stimulation requires that mDCs upregulate HLA-DR and the

costimulatory molecules CD40, CD80, and CD86 in response to

thymic stromal lymphopoietin (TSLP) (4, 5). However, TSLP fails

to induce upregulation of these costimulatory molecules in mDCs

taken from RRMS patients (6). This reduced potency of TSLP is in

part due to downregulation of one subunit of the TSLP receptor, IL-

7Ra, independent of the IL7RA gene polymorphism (rs6897932)

associated with MS (1, 6). Thus it appears that failure of self-

tolerance in RRMS can be attributed, at least in part, to reduced

surface molecule expression and subsequent impairment of

mDCs (1).

The reason for mDC impairment is unknown but may be

initiated by a viral infection. Several lines of evidence support a

role for viral infection in MS. For example, MS clusters have

appeared as epidemics (7) or regional hotspots (8, 9). MS relapses

have appeared after respiratory infections (10). MS pathology is

similar to an ongoing infectious process (11) and has been

simulated experimentally through viral infection (12). And MS

symptoms are relieved by administration of the antiviral cytokine,

beta-interferon (IFN-b) (13).
The efficacy of IFN-b in a subset of patients points to a possible

dysregulation of antiviral defense in RRMS. Normally, viral genetic

material is recognized by specialized proteins called “toll-like

receptors” (TLRs), which signal the release of antiviral cytokines

such as type I interferons (IFN-a/b) and IL-12. This process

appears to be altered in MS. Genes in the interferon pathway,

such as IRF3, IRF7, and IFN, are downregulated in a subset of

patients (14–16). Further, release of IL-12 in response to

stimulation of TLR8, but not the other endosomal TLRs, is

reduced in RRMS (17), suggesting an impairment of TLR8

signaling. Because TLR8 is expressed primarily by CD11c+ mDCs

(18), the poor response to TLR8 signaling in RRMS patients may be

further evidence of mDC impairment.

While the above findings are suggestive of viral involvement in

RRMS, they do not tell us which virus(es) may initiate disease, nor

the mechanism by which they do it. One highly researched

candidate is Epstein-Barr virus (EBV). An association between

EBV and MS was hypothesized based on several factors, such as

higher seropositivity against EBV among MS patients (19–21);

higher presence of EBV in MS brain (19, 22, 23); an increase in

EBV-specific CD8+ cells during MS relapses (19); and EBV-specific

oligoclonal bands in MS CSF (24). However, a causal relationship

between EBV and MS has not been demonstrated. It is unclear how

EBV, which infects B cells, could cause the impairment of mDCs or

the diminished response to TLR8 stimulation observed in RRMS

patients. Nor does EBV explain the geographic distribution of MS.

For example, EBV’s high overall prevalence (~95%) and ease of

person-to-person transmission is inconsistent with the low MS

concordance across monozygotic twin pairs (25–30). Further, MS

prevalence follows a latitudinal gradient, with increasing risk farther

from the equator (31); in contrast, exposure to EBV is delayed in
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countries of higher latitude (32), forming a reverse latitudinal

gradient. This inconsistency has been rationalized by assuming

the “hygiene hypothesis,” which proposes that delayed exposure to

EBV increases risk of MS. However, the hygiene hypothesis would

lead to the untenable conclusion that EBV-negative individuals

incur the highest MS risk (33). Recent evidence suggests that EBV

may be a marker of chronic inflammation, indicating T cell

exhaustion and an inability to clear the virus (34, 35), rather than

a causative agent per se.

Given the downregulation of costimulatory molecules and

receptors on mDCs in RRMS, impairing their ability to stimulate

Treg development in the thymus, it is reasonable to hypothesize that

a trigger virus for MS may impair mDCs. One such virus is

lymphocytic choriomeningitis virus (LCMV).
3 LCMV: a hypothesis

LCMV is a zoonotic ssRNA virus whose natural host is the

common house mouse. Transmission to humans occurs primarily

by inhalation of aerosolized rodent excreta, by bites, or by contact

with rodent urine, feces, or saliva (36). LCMV infection in humans

is usually mild or asymptomatic, but may occasionally lead to

aseptic meningitis (37).

LCMV strains differ with respect to tropism and pathogenicity.

While the wild-type strain induces acute infection that is rapidly

cleared, strains carrying the F260L mutation in the GP1

glycoprotein gene suppress the immune response and establish

persistent infection (38). The F260L variant infects humans1 as well

as mice. This variant preferentially infects CD11c+ mDCs (38), the

cell type that is impaired in RRMS.

Any pathogen proposed as an instigator of MS should explain

how mDCs become impaired. LCMV may provide some answers in

this respect. LCMV persistent strains preferentially infect CD11c+

mDCs, resulting in downregulation of key cell surface molecules

involved in antigen presentation and T cell maturation (39).

Specifically, expression of MHC (HLA in humans), CD40, CD80,

and CD86 is reduced in LCMV-infected mDCs. As a consequence,

infected mDCs bind developing T cells less tightly and fail to

stimulate their proliferation (39). Such persistent viral infection

mimics the impairments observed in RRMS patients (Table 1).

Contributing to the Treg failure in RRMS is downregulation of the

IL-7Ra subunit on both T cells and mDCs (6). While the IL-7Ra
subunit was not explicitly studied in mDCs from persistently

infected mice, LCMV infection reduced expression of IL-7R on T

cells (41, 42). The similarities between LCMV infection and RRMS

with respect to cell surface molecule expression on mDCs and,

possibly, T cells is intriguing and worthy of further investigation.

A pathogen involved in initiating MS should also explain the

observed dysregulation of the innate immune system. Two aspects

of innate immunity altered in RRMS are relevant here. First, TLR8
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https://www.ncbi.nlm.nih.gov/nuccore
https://doi.org/10.3389/fimmu.2023.1217176
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hogeboom 10.3389/fimmu.2023.1217176
is less effective than other endosomal TLRs in signaling the release

of IL-12 from PBMCs of RRMS patients (17). Second, a subset of

RRMS patients who benefit from exogenous IFN-b treatment show

downregulation of genes in the interferon pathway (14, 54). Both

these aspects of innate immunity can be impacted by LCMV. TLR8

senses ssRNA and is expressed primarily on mDCs, the cell type

infected by LCMV persistent strains. This contrasts with TLR7,

which also senses ssRNA but is expressed by a different cell type

(plasmacytoid DCs). The difference between TLR8 and TLR7

signaling in RRMS patients suggests a defect in mDCs, which

could hypothetically be a consequence of LCMV infection. LCMV

infection does inhibit IL-12 secretion (40, 43–45), although the

involvement of TLR8 has not been tested directly. Further, LCMV

inhibits IFN production by blocking activation of the interferon

transcription factor IRF3 (46, 47). The predilection of LCMV to

infect the primary cell type expressing TLR8, along with its ability to

suppress IL-12 and IFN release, are consistent with similar

observations from RRMS patients (Table 1). LCMV-induced

inhibition of cytokine release and evasion of host recognition

should be investigated further to determine whether they

contribute to immune dysfunction in MS.

Finally, a pathogen involved in MS initiation should be

consistent with epidemiologic observations about MS.

Epidemiology was one of the earliest tools used to study MS.

While MS research has now moved more toward molecular and

genetic epidemiology, some of the old population-based findings

still hold. MS continues to be more prevalent in the temperate zone

geographically, with a latitudinal gradient (31). MS prevalence is

still under 1% (48, 55), and concordance across monozygotic twin
Frontiers in Immunology 03
pairs remains around 1 in 4 (25–30). These characteristics

cannot easily be explained by EBV, which is highly prevalent,

easily spread person-to-person, and shows a reverse latitudinal

gradient of childhood exposure. In contrast, LCMV is most

prevalent in the temperate zone with a latitudinal gradient (49)

and overall prevalence on the order of 2–5% (49, 50). The virus is

transmitted directly from rodents and their excreta, without

human-to-human spread (50), consistent with the low disease

concordance reported by MS twin studies. Aside from these

global measures, a few regional hotspots of MS are approximately

colocalized with areas of high LCMV prevalence (Table 1). For

example, the country with the highest MS incidence during the

reporting period 2005–2007 was Croatia (48); at the same time,

Croatia’s Vir Island reported that 36% of residents were positive for

anti-LCMV antibodies (51). While the evidence is circumstantial,

the low prevalence, temperate zone distribution, and lack of

human-to-human transmission that characterize LCMV are

consistent with the low twin concordance and geographic

distribution observed for MS.
4 Conclusion

The infectious pathogen that induces MS has not yet been

identified with certainty. LCMV is a viable candidate due to its

ability to impair mDCs, whose function is required for thymic

development of regulatory T cells. However, the evidence in favor of

LCMV, such as immune evasion or geographic distribution, is

largely circumstantial and does not constitute proof. We believe
TABLE 1 Parallels between RRMS and persistent LCMV infection.

RRMS Characteristic References LCMV Characteristic References

Downregulation of CD40, CD80, CD86, HLA-DR on
CD11c+ mDCs

(1) Downregulation of CD40, CD80, CD86, MHC class I & II on
CD11c+ mDCs infected with persistent LCMV strain

(39, 40)

Impaired ability of CD11c+ mDCs to stimulate effector T cells (1) Impaired ability of LCMV-infected CD11c+ mDCs to stimulate
effector T cells

(39, 40)

Downregulation of IL-7Ra subunit on CD11c+ mDCs and
T cells

(6) Downregulation of IL-7R on LCMV-infected T cells (41, 42)

Reduced release of IL-12 in response to stimulation of TLR8, but
normal response to TLR7 stimulation. (TLR8 is expressed by
mDCs, while TLR7 is expressed by pDCs.)

(17) Reduced release of IL-12 from LCMV-infected mDCs (40, 43–45)

IFN-b is effective in subset of patients, whose pre-treatment
expression of IFN-b genes is downregulated

(14, 15) LCMV inhibits transcription of IFN-b genes (46, 47)

MS prevalence is <1% globally (48) LCMV prevalence is <5% globally (49, 50)

MS concordance across monozygotic twins is low (~25%) (25–30) LCMV is not spread person-to-person (36, 50)

Geographically most prevalent in the equatorial zone globally
with latitudinal gradient

(31) Reported LCMV prevalence in humans and mice all fall within
the equatorial zone and show a latitudinal gradient

(49)

Croatia was country with highest MS incidence in 2005–2007 (48) LCMV seroprevalence in Croatia was 36% in 2006 (compare to
<5% globally)

(51)

Slovenia was country with second-highest MS prevalence in
2005–2007; high MS prevalence along Croatia/Slovenia border

(8, 48) LCMV seroprevalence among mice in Slovenia and Croatia was
47% (compare to <5% globally)

(52)

Motif for MBP peptide-HLA binding and recognition by
autoreactive T cells from MS patients is VHFFK

(53) Best match IHFYR by sequence homology comes from LMCV
nucleoprotein

(49)
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that rigorous scientific evidence, either for or against the LCMV

hypothesis, is important and feasible to obtain.

A preliminary assessment can be both simple and cost-effective.

Since seroprevalence of anti-LCMV antibodies in the US and

Western Europe is low, on the order of 5%, testing for increased

seroprevalence among MS patients could be accomplished with a

very small sample of subjects.

A study evaluating the association between a pathogen and MS

should consider the impact of gene-environment interactions. The

genetic influence most likely relevant to pathogen-induced

autoimmunity is HLA type. A pathogenic virus may initiate

inflammation by mimicking an endogenous peptide when bound

to HLA; however, the orientation of any given peptide will vary by

HLA type (56–58). For example, an immunodominant peptide

from myelin basic protein (MBP) binds to the high-risk HLA

DRB1*1501 in a different orientation than it does to other HLA

types (57), where it may not bind at all. A peptide from LCMV

predicted to mimic this MBP peptide (49) meets criteria (53) for

binding to HLA DRB1*1501, but would likely not match criteria for

binding to another HLA type. It is plausible, perhaps likely, that any

specific virus operating through molecular mimicry may be

successful in only a subset of the population. For these reasons,

clinical investigation of a proposed trigger virus should control for

relevant risk genes such as HLA in the study design or analysis.

If even a small subset of MS cases is associated with LCMV

infection, further exploration of this subset may enhance our

understanding of autoimmunity and provide new options for
Frontiers in Immunology 04
therapeutic interventions. We urge clinical investigators to

consider the potential benefits of exploring LCMV seroprevalence

among RRMS patients.
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