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Multi-phasic gene profiling using
candidate gene approach predict
the capacity of specific antibody
production and maintenance
following COVID-19 vaccination
in Japanese population
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Junko Tanaka3 and Hideki Ohdan1*

1Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and
Health Sciences, Hiroshima University, Hiroshima, Japan, 2Department of Internal Medicine,
Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan, 3Department of Epidemiology, Infectious
Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima
University, Hiroshima, Japan
Background: Vaccination against severe acute respiratory syndrome coronavirus

type 2 is highly effective in preventing infection and reducing the severity of

coronavirus disease (COVID-19). However, acquired humoral immunity wanes

within six months. Focusing on the different tempo of acquisition and attenuation

of specific antibody titers in individuals, we investigated the impact of genetic

polymorphisms on antibody production after COVID-19 vaccination.

Methods: In total 236 healthcare workers from a Japanese municipal hospital,

who received two doses of the vaccine were recruited. We employed a candidate

gene approach to identify the target genetic polymorphisms affecting antibody

production after vaccination. DNA samples from the study populations were

genotyped for 33 polymorphisms in 15 distinct candidate genes encoding

proteins involved in antigen-presenting cell activation, T cell activation, T-B

interaction, and B cell survival. We measured total anti-SARS-Cov2 spike IgG

antibody titers and analyzed the association with genetic polymorphisms at

several time points after vaccination using an unbiased statistical method, and

stepwise logistic regression following multivariate regression.

Results: Significant associations were observed between seven SNPs in NLRP3,

OAS1, IL12B, CTLA4, and IL4, and antibody titers at 3 weeks after the first

vaccination as an initial response. Six SNPs in NLRP3, TNF, OAS1, IL12B, and

CTLA4 were associated with high responders with serum antibody titer > 4000

BAU/ml as boosting effect at 3 weeks after the second vaccination. Analysis of

long-termmaintenance showed the significance of the three SNPs in IL12B, IL7R,

andMIF for the maintenance of antibody titers and that in BAFF for attenuation of

neutralizing antibodies. Finally, we proposed a predictive model composed of

gene profiles to identify the individuals with rapid antibody attenuation by

receiver operating characteristic (ROC) analysis (area under the curve (AUC)=

0.76, sensitivity = 82.5%, specificity=67.8%).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217206/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1217206&domain=pdf&date_stamp=2023-07-26
mailto:tanimine@hiroshima-u.ac.jp
mailto:hohdan@hiroshima-u.ac.jp
https://doi.org/10.3389/fimmu.2023.1217206
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1217206
https://www.frontiersin.org/journals/immunology


Takemoto et al. 10.3389/fimmu.2023.1217206

Frontiers in Immunology
Conclusions: The candidate gene approach successfully showed shifting

responsible gene profiles and initial and boosting effect mainly related to the

priming phase into antibody maintenance including B cell survival, which traces

the phase of immune reactions. These gene profiles provide valuable information

for further investigation of humoral immunity against COVID-19 and for building

a strategy for personalized vaccine schedules.
KEYWORDS

candidate gene approach, gene polymorphism, COVID-19, vaccine, humoral immunity,
specific antibody
1 Introduction

The severe acute respiratory syndrome coronavirus type 2 (SARS-

CoV-2) pandemic has caused a major global health crisis (1, 2), and

vaccines have been developed worldwide (3). Several randomized trials

have shown that mRNA vaccines are highly effective in preventing

infection and reducing the severity of COVID-19 (4–6). Almost of

cases could obtain sufficient amounts of specific antibody production

immediately after the vaccination, however, a marked decrease in

serum antibody titers was observed at approximately 6 months after

the second vaccination (7–9). Along with a decrease in antibody titers,

waning immunity against COVID-19 infection preventive effect has

been reported, especially in males and older individuals (8).

Host factors such as age, sex, comorbidities, and genetic

polymorphisms have been shown to influence individual immune

status including acquired immunity after vaccination (10, 11). The

effect of host-side genetic factors on vaccine response has been

demonstrated in conventional vaccines, such as hepatitis B virus,

pneumococcus pneumoniae, and measles (12–17). However, it is

unclear whether an association exists between genetic

polymorphisms and responses to vaccination against COVID-19.

In the present study, we employed a candidate gene approach,

which selects a series of target genes based on the rationale of

biological response or mechanism (18), to investigate the impact of

genetic polymorphisms on antibody production after COVID-19

vaccination. Furthermore, we analyzed the effects of the gene

profile in an immunological network using an unbiased statistical

method, a stepwise regression method, and identified genetic factors

as predictors of high response and antibody maintenance.
2 Materials and methods

2.1 Study participants

Our study population was similar to the previous report (19). A

total of 236 Japanese healthcare workers working at Funairi Citizens

Hospital in Japan who received their first dose of the vaccine

between March and May 2021 participated in the study. All the

participants received two doses of BNT162b2 (Pfizer/Biotech). The

vaccinations were administered at the intervals specified in the

protocol, that is the second dose was administered three weeks after
02
the first dose. Ultimately, 213 participants with no missing data

were included in the analysis, including 35 males (16.4%) and 178

females (83.6%). The age distribution was as follows: 20–29 years:

n=29 (13.6%), 30–39 years: n=54 (25.4%), 40–49 years: n=58

(27.2%), 50–59 years: n=45(21.1%), and ≥60 years: n=27 (12.7%).

This study was approved by the Ethics Committee for Human

Genome Analysis at Hiroshima University (Hi-258). Written

informed consent was obtained from all the participants.
2.2 Measurement of anti-SARS-Cov-2 spike
IgG antibodies

Blood samples were collected three weeks after the first

vaccination (just before the second vaccination), three weeks after

the second vaccination, and five months after the second

vaccination. Total anti-SARS-Cov2 spike IgG antibodies were

quantitatively measured using the VITROS SARS-Cov-2 S1

Quant IgG antibody reagent (CLEIA, Ortho Clinical Diagnostics).

Quantitative values were determined using the WHO standard

binding antibody unit/ml (BAU/ml) (20). The upper limit of

quantification was 4000 BAU/ml. Participants with specific N-

antibodies detected by the Elecsys®Anti-SARS-CoV-2 (ECLIA,

Roche Diagnostics) were defined as previously infected and

excluded from the analysis.
2.3 Candidate gene polymorphisms

DNA samples from the study subjects were genotyped for 33

functional polymorphisms in 15 candidate genes. The candidate

genes were selected on pathophysiological hypotheses based on the

best evidence from studies published under the keywords, “vaccine,”

“immune response,” and “antibody production.” Single nucleotide

polymorphisms (SNPs) in genes encoding functional molecules

involved in the immune responses that lead to the establishment of

vaccine-induced acquired immunity were investigated. These

processes can be categorized into the following four phases: 1)

antigen-presenting cell (APC) activation, 2) T cell activation, 3) T

cell and B cell (T-B) interaction, and 4) B cell survival (Figure 1). If

there were more than four candidate polymorphisms in a gene,

selection was based on the number of publications in the single
frontiersin.org
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nucleotide polymorphism (SNP) database of the National Center for

Biotechnology Information (21, 22). The list of each SNPs and its

allele frequency is presented in Table 1 (12–17, 23–51).
2.4 Genotyping

Genetic analyses were performed as previously described (28).

Briefly, blood samples from the study subjects were collected in

EDTA tubes and assigned a blinded unique identification number.

Genomic DNA was extracted from whole blood samples using a QIA

Cube (QIAGEN, Hilden, Germany). SNP genotyping was performed

using TaqMan SNP Genotyping Assays (Thermo Fisher Scientific,

MA) according to the manufacturer’s protocol. Two allele specific

TaqMan probes containing different fluorescent dyes and polymerase

chain reaction (PCR) primer pairs were used to detect specific SNP

targets. Quantitative PCR was performed using a Rotor-GeneQ

(QIAGEN). We described the zygosity of the A>G SNP as AA or

GG and AG in the case of homozygosity and heterozygosity,

respectively. Genotypes were analyzed in either a recessive or

dominant model, which was selected as the more impactful model

based on the results of previous studies or our data set.
2.5 Effects of gene profiles on antibody
titers after vaccination

We analyzed the association between antibody titers and genetic

polymorphisms at 3 weeks after the first vaccination, 3 weeks after

the second vaccination, and 5 months after the second vaccination,

which was analyzed as initial response, boosting effect, and

maintenance ability of antibodies, respectively.

Analyzing the impact of genetic profile for boosting effect, we

divided subjects into 2 groups: the individuals with a serum
Frontiers in Immunology 03
antibody level ≥4000 BAU/ml (upper limit of measurement)

defined as high responders and those with <4000 BAU/ml defined

as low responders at 3 weeks after the second vaccination.

To account for the level of antibody titer at boosting effect for

following maintenance ability, subjects were categorized into three

groups by the antibody titers at 3 weeks after the second vaccination

(≥4000 BAU/ml, ≥1825 BAU/ml, and <4000 BAU/mL, or <1825

BAU/ml). The median antibody titer at 3 weeks after the second

vaccination was 1825 BAU/ml, excluding high responders.

To analyze of the maintenance of protective antibodies, we

focused on the neutralizing antibodies. Previously, our collaborators

have reported a proportional relationship between the total IgG

levels of anti-S protein antibodies and neutralizing activity (19). The

predictive formula was as follows: neutralizing inhibitory activity

(%) = 48.2 × log (total IgG level of anti-S protein BAU/ml) - 53.5.

The negative threshold for neutralizing activity was evaluated using

a surrogate virus neutralization test, which showed 30% inhibition

compared with negative sera (52). A total IgG level of 54 BAU/ml,

which was expected to maintain 30% neutralizing activity, was

calculated using a predictive formula. We analyzed the predictive

gene profiles below the negative threshold.
2.6 Statistical analysis

All statistical analyses were performed using JMP Pro statistical

software package 15.0.0 (SAS Institute, Cary, NC, USA). We used

multivariate multiple regression and multivariate logistic regression

analyses to identify the factors that were significantly associated with

antibody production and maintenance. We used stepwise logistic

regression with forward-backward elimination to determine the best

combination of variables. The accuracy of the predictive model for

high responders and maintenance was assessed using the area under

the receiver operating characteristic (ROC) curve.
FIGURE 1

Immuno-network for antibody production after COVID-19 vaccine. We selected 15 molecules and 33 SNPs categorized into priming- associated
APC and T cell activation, B cell activation with T -B interactions, and B cell survival, which are key immunological steps for enhancing to enhance
specific antibody production after antigen exposure.
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TABLE 1 Description of candidate genes related to humoral immunity.

Gene SNP site Gene locus
(GRCH38.p13)

Location Major
allele

Minor
allele

Minor allele
frequency*

References

APC activation

NLRP3 rs4612666 chr1:247435768 Intron C T 0.38 (0.45) (23)

rs10925027 chr1:247449260 500B Downstream T C 0.56 (0.47) (24)

TNF rs1799724 chr6:31574705 2KB Upstream C T 0.21 (0.13) (13, 25)

rs1799964 chr6:31574531 2KB Upstream T C 0.17 (0.20) (26, 27)

OAS1 rs1131454 chr12:112911065 Exon A G 0.38 (0.41) (28, 29)

IL1B rs1143627 chr2:112836810 5′ UTR A G 0.48 (0.48) (28, 30)

T cell activation

IL12B rs6887695 chr5:159395637 60KB upstream G C 0.46 (0.42) (31)

rs3212227 chr5:159315942 3′ UTR G T 0.50 (0.49) (12, 32)

rs2546893 chr5:159328952 Intron G A 0.46 (0.45) (17)

PDCD1 rs36084323 chr2:241859444 2KB Upstream C T 0.49 (0.47) (33)

rs2227981 chr2:241851121 Exon G A 0.28 (0.27) (34)

rs10204525 chr2:241850169 3′ UTR T C 0.27 (0.34) (35)

CTLA4 rs231775 chr2:203867991 Exon G A 0.39 (0.36) (36)

rs3087243 chr2:203874196 500B Downstream G A 0.28 (0.26) (37)

STAT4 rs7574865 chr2:191099907 Intron G T 0.33 (0.35) (38, 39)

rs7572482 chr2:191150346 Intron A G 0.51 (0.39) (40)

rs3821236 chr2:191038032 Intron G A 0.43 (0.41) (26)

T-B interaction

IL4 rs2243250 chr5:132673462 2KB Upstream T C 0.31 (0.22) (12, 14–16)

rs2070874 chr5:132674018 5′ UTR T C 0.31 (0.22) (15, 16)

rs2227284 chr5:132677033 Intron T G 0.25 (0.15) (14)

IL4R rs1805010 chr16:27344882 Exon G A 0.42 (0.48) (12, 16)

rs1801275 chr16:27363079 Exon A G 0.13 (0.17) (16)

IL7R rs6897932 chr5:35874473 Exon C T 0.17 (0.20) (27, 32)

rs1494555 chr5:35871088 Exon G A 0.50 (0.48) (41)

rs1494558 chr5:35860966 Exon T C 0.47 (0.43) (41)

IL10 rs1800872 chr1:206773062 2KB Upstream T G 0.28 (0.32) (42, 43)

rs1800871 chr1:206773289 2KB Upstream A G 0.32 (0.32) (16, 42)

TLR4 rs10759932 chr9:117702866 2KB Upstream T C 0.23 (0.24) (44)

rs1927914 chr9:117702447 2KB Upstream A G 0.35 (0.37) (45)

B cell survival

BAFF rs9514828 chr13:108269025 Non-Coding Transcript C T 0.44 (0.36) (46, 47)

rs12583006 chr13:108285104 Intron T A 0.47 (0.45) (46, 48, 49)

MIF rs755622 chr22:23894205 2KB Upstream G C 0.21 (0.20) (50)

rs1007888 chr22:23898914 Non-Coding Transcript C T 0.47 (0.46) (51)
F
rontiers in Imm
unology
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APC, Antigen-presenting cell; SNP, Single nucleotide polymorphism; T-B interaction, T and B cell interaction
* Data of East Asian population from Genome 1000 date base (Our samples).
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3 Results

3.1 Polymorphic gene profiles
affect the initial response after
the first COVID-19 vaccination

First, we analyzed the demographic and genetic variables

associated with specific antibody production in the initial

response phase after the first COVID-19 vaccination. Ten of the

33 candidate SNPs were defined as potential factors by stepwise

regression, and seven of the 10 SNPs and young age (<60 years)
Frontiers in Immunology 05
were significantly associated with the absolute titer of anti-SARS-

CoV-2 spike IgG in the initial response phase (Table 2). The

statistically significant seven SNPs were within genes encoding

immune function molecules belonging to multiple phases, i.e.,

rs4612666 (NLRP3), rs10925027 (NLRP3), and rs1131454 (OAS1)

upon APC activation phase; rs3212227 (IL12B), rs2546893 (IL12B),

and rs3087243 (CTLA4) on T cell activation phase, and rs2227284

(IL4) on T-B interaction phase. Thus, SNPs in genes encoding

molecules responsible for functions in immunological processes

from the priming to B cell activation phases were important

predictors in favor of antibodies in response to the initial vaccine,
TABLE 2 Demographic and genetic valuables associated with higher antibody titer in an initial response phase.

Demographics Variables n (%) IgG titer: median (IQR) p value

Age < 60 186 (87.3) 308.0 (120.8-500.5) <0.001

≥ 60 27 (12.7) 74.7 (60.9-122.0)

Sex Male 35 (16.4) 156.0 (65.6-385.0) 0.247

Female 178 (83.6) 276.0 (111.0-722.6)

Genetic variables SNP sites Genotype n (%) IgG titer: median (IQR) p value

APC activation

NLRP3 rs4612666* (C>T) CC 78 (36.6) 175.5 (89.6 - 400.3) 0.009

CT+TT 135 (63.4) 307.0 (121.0-506.0)

rs10925027* (T>C) TT+TC 175 (82.2) 220.0 (96.0-445.0) 0.008

CC 38 (17.8) 374.5 (143.0-531.0)

OAS1 rs1131454* (A>G) AA+AG 180 (84.5) 235.5 (97.0-444.8) 0.047

GG 33 (15.5) 378.0 (132.5-515.5)

T cell activation

IL12B rs3212227* (G>T) GG+GT 162 (76.1) 255.0 (98.7-474.8) 0.005

TT 51 (23.9) 225.0 (114.0-481.0)

rs2546893* (G>A) GG+GA 167 (78.4) 241.0 (92.4-474.0) 0.020

AA 46 (21.6) 323.0 (121.0-488.8)

CTLA4 rs3087243* (G>A) GG 24 (11.3) 168.5 (88.5-385.3) 0.011

GA+AA 189 (88.7) 272.0 (109.0-482.5)

T-B interaction

IL4 rs2227284* (T>G) TT 121 (56.8) 296.0 (109.0-509.5) 0.003

TG+GG 92 (43.2) 238.0 (88.4-413.0)

IL7R rs6897932* (C>T) CC 121 (56.8) 236.0 (96.0-478.5) 0.147

CT+TT 92 (43.2) 268.0 (118.5-472.8)

B cell survival

BAFF rs12583006* (T>A) TT+TA 171 (80.3) 236.0 (99.5-476.0) 0.203

AA 42 (19.7) 297.5 (102.8-513.3)

MIF rs755622* (G>C) GG 124 (58.2) 255.0 (105.8-510.5) 0.248

GC+CC 89 (41.8) 241.0 (95.8-418.0)
fron
IQR, Interquartile range; SNP, Single nucleotide polymorphism; T-B interaction, T cell and B cell interaction
*Ten of 33 SNPs were selected as potential predictive variables using stepwise regression.
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whereas SNPs encoding molecules belonging to the B cell survival

phase showed no significant association.
3.2 The boosting response is
also associated with priming
phase gene profiles

Three weeks after the second vaccination, we observed 53 high

responders with anti-SARS-CoV-2 spike IgG at more than 4000

BAU/ml. Ten SNPs in the 33 candidate genes were defined as

potential factors using stepwise regression, and six SNPs and young

age were significantly associated with high responders (Table 3).

Four of the six genes related to high responders overlapped with

those related to initial response, i.e., rs4612666 (NLRP3) and

rs1131454 (OAS1) on APC activation phase, and rs3212227 and

rs2546893 (IL12B) on T cell activation phase.

We proposed a model for predicting high responders using

polygenetic factors and age with a receiver operating characteristic

(ROC) curve analysis (area under the curve (AUC) =0.74, Figure 2).

The model equation was as follows; prediction score (P) = 1/(1+e-x)

x = -1.09 + 0.71×(age: -1 if 60 years, 1 if under 60)+ 0.58×(sex: -1 if

male, 1 if female)+ 0.48×(NLRP3 rs4612666: -1 if CC, 1 if T carrier)+

0.35×(NLRP3 rs10925027: -1 if T carrier, 1 if CC)+ 0.37×(TNF

rs1799724: -1 if CC, 1 if T carrier)+ 0.80×(TNF rs1799964: -1 if T

carrier, 1 if CC)+ 0.70×(OAS1 rs1131454: -1 if A carrier, 1 if GG)+

0.35×(IL1B rs1143627: -1 if A carrier, 1 if GG)+ 0.88×(IL12B
Frontiers in Immunology 06
rs3212227: -1 if G carrier, 1 if TT)+ 0.77×(IL12B rs2546893: -1 if

AA, 1 if G carrier)+ 0.48×(CTLA4 rs231775: -1 if GG, 1 if A carrier)+

0.44×(CTLA4 rs3087243: -1 if AA, 1 if G carrier).
3.3 Polymorphic gene profile for
long-term maintenance of specific
antibody after vaccination

By analyzing the effect of gene profiles on the ability to maintain

antibody titers 5 months after the second vaccination, seven SNPs

were defined as potential factors by stepwise regression. Three of the

7 SNPs, rs3212227 (IL12B) in the T cell activation phase, rs1494555

(IL7R) in the T-B interaction phase, and rs1007888 (MIF) in the B

cell survival phase, were significantly associated with the

maintenance of high titers of anti-SARS-CoV-2 spike IgG (Table 4).

One of the current topics in COVID-19 prevention is the

breakthrough infection after vaccination. It has been reported that

the neutralizing potency, which is proportional to anti-SARS-CoV-2

spike receptor-binding domain IgG levels, is key to preventing

COVID-19 infection (53, 54). We evaluated predictive factors for

the individuals whose anti-SARS-CoV-2 spike IgG titer dropped

below the negative threshold (details in Material and method) and

found that rs12583006 (BAFF) was exclusively identified as a genetic

risk factor for rapid attenuation of anti-SARS-CoV-2 IgG (aOR 0.23,

95%CI 0.07-0.80) (Table 5). We proposed a predictive model to

identify individuals with rapid anti-SARS-CoV-2 IgG attenuation
TABLE 3 Demographic and genetic valuables for predicting high responders in a boost response phase.

Demographics Variables OR

95%CI of OR

p valueLower Upper

Age < 60 4.12 1.06 16.03 0.041

Sex Male 0.31 0.10 1.03 0.056

Genetic variables SNP sites Genotype OR

95%CI of OR

p valueLower Upper

APC activation

NLRP3 rs4612666* (C>T) CC 0.38 0.17 0.86 0.019

rs10925027* (T>C) CC 1.99 0.84 4.76 0.119

TNF rs1799724* (C>T) CC 0.47 0.23 0.99 0.047

rs1799964* (T>C) CC 5.00 0.72 34.90 0.105

OAS1 rs1131454* (A>G) GG 4.09 1.65 10.17 0.002

IL1B rs1143627* (A>G) GG 2.01 0.90 4.49 0.088

T cell activation

IL12B rs3212227* (G>T) TT 5.76 1.31 25.28 0.020

rs2546893* (G>A) AA 0.21 0.04 0.10 0.049

CTLA4 rs231775* (G>A) GG 0.38 0.18 0.82 0.014

rs3087243* (G>A) AA 0.41 0.12 1.38 0.150
fron
APC, Antigen-presenting cell; CI, Confidence interval; OR, Odds ratio; SNP, Single nucleotide polymorphism
*Ten of 33 SNPs were selected as potential predictive variables using stepwise regression.
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using ROC curve analysis with or without antibody titer information

(AUC=0.86, and 0.76, respectively, Figures 3A, B). Although the

prediction model with anti-SARS-CoV-2 IgG titer information was

more accurate, the model consisting of the gene profile alone without

antibody titer remained informative. The model equation was as

follows; predicted score (P)=1/(1+e-x) x=-1.16 + 0.50×(sex: 1 if

male, -1 if female)+ 0.42×(age: 1 if 60 years, -1 if under 60 years)+

0.38×(NLRP3 rs4612666: -1 if T carrier, 1 if CC)+ 0.91×(NLRP3

rs10925027: -1 if CC, 1 if T carrier)+ 0.40×(IL12B rs6887695: -1 if G

carrier, 1 if CC)+ 0.47×(STAT4 rs7572482: -1 if A carrier, 1 if GG)+

0.51×(IL4R rs1805010: -1 if A carrier, 1 if GG)+ 0.40×(IL7R

rs1494555: -1 if A carrier, 1 if GG)+ 0.50×(BAFF rs12583006: -1 if

T carrier, 1 if AA), (AUC=0.76, Figure 3B).
4 Discussion

In this study, we investigated the effects of host genetic factors

on the production and maintenance of specific antibodies after

COVID-19 vaccination. Currently, the entire genome can be

examined using comprehensive strategies such as genome-wide

association studies (GWAS). Although the GWAS has the

advantage of identifying novel variant-associated lesions and

covering rare variants without any bias, it requires the large

number of participants and amount of expense to carry out a

study (18, 55). In a previous study, we employed a candidate gene

approach to identify genetic factors associated with the severity of

COVID-19 infection (28). Our study with a relatively small cohort
Frontiers in Immunology 07
successfully identified OAS1 (rs1311454) as a risk factor for severe

infection, consistent with the results of a large GWAS (56). We

applied this approach as an efficient way, to analyze the association

between specific antibody production after COVID-19 vaccination

and host immune-associated gene polymorphisms. This is the first

report to investigate the impact of genetic polymorphisms for

COVID-19 vaccine response in the candidate gene approach.

Based on a series of immune responses, we selected 15 molecules

and 33 SNPs categorized as priming associated APC and T cell

activation, B cell activation with T-B interaction, and B cell survival,

which are key immunological steps in enhancing specific antibody

production after antigen exposure (11, 57, 58). To understand the

immune response as a multi-directional interacting network, genetic

polymorphisms were analyzed using unbiased statistical methods

such as stepwise regression. Genetic analyses have revealed gene

profiles that reflect the immune response after vaccination to produce

and maintain a specific antibody against the SARS-CoV-2 spike

receptor-binding domain. Antigen exposure triggers a series of

responses in which APCs present antigens to T cells and antigen

presented T cells activate B cells by activating molecules and

cytokines resulting in the generation of memory B cells in a

germinal center reaction (T cell-dependent pathway) (59). Grifoni

et al. recently reported the significance of T cell responses to SARS-

CoV-2 in specific antibody production by showing that spike-specific

CD4+ T cell responses correlated with the magnitude of specific IgG

titers in recovered COVID-19 patients (60). Simultaneously, APCs

promote B cell activation and differentiation, such as class-switching

recombination, in a T cell-independent manner (61, 62). In line with

these mechanistic steps of B cell activation, we observed that the

initial response and boosting effect were significantly associated with

gene profiles of APC activation, T cell activation, and T-B

interactions. Although some B cells differentiate into plasma cells

to establish long-term humoral immunity after activation, several

reports have suggested that current COVID-19 vaccines do not

induce the differentiation into long-lived plasma cells, since the

kinetics of antibody titers show a decrease in the following several

months without exception in immunologically normal individuals

(7–9). Therefore, antibody maintenance after COVID-19 vaccination

depend on B cell survival. The maturation and survival of memory B

cells depend on B cell receptor signaling and several cytokines such as

BAFF and MIF (63, 64). Our data showed that the tempo of IgG

decline after the second vaccination varied among individuals, and B

cell survival-related genes affected the attenuation difference along

with T cell activation and T-B interaction related genes. Thus, the

transition of the responsible gene profile from the initial/boosting

effects to antibody maintenance reflect the phase transition of

immune responses, supporting the validity of the candidate gene

approach employed in this study.

Among the gene profiles demonstrated in this study, the SNPs

of NLRP3 and IL12B were consistently defined as potential factors

for specific antibody production and maintenance after COVID-19

vaccination. These molecules and the SNPs in the genes encoding

them may be key elements for further investigations into efficient

vaccine development. Emerging reports have suggested that the

cellular immunity induced by the COVID-19 vaccine may play an

important role in protection against COVID-19 (65). The impact of
FIGURE 2

Receiver operating characteristic (ROC) analysis of predictive models
to identify the high responders after the second vaccination. ROC
curve analysis was performed using the indicated age, sex, and
genetic factors to calculate the predictive value, area under the curve
(AUC), sensitivity, and specificity. The demographics and ten genes
indicated age less than 60, sex (female) and rs4612666 and
rs10925027 (NLRP3), rs1799724 and rs1799964 (TNF), rs1131454
(OAS1), rs1143627 (IL1B), rs3212227 and rs2546893 (IL12B), rs231775
and rs3087243 (CTLA4), respectively (details are described in Table 3).
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TABLE 5 Demographic and genetic variables associated with rapid neutralizing antibody attenuation.

Demographics Variables OR

95%CI of OR

p valueLower Upper

Sex Male 0.38 0.11 1.31 0.127

Antibody titer after 2nd vaccination (BAU/ml) < 1825 23.67 6.03 92.90 <0.001

Genetic variables SNP sites Genotype OR

95%CI of OR

p valueLower Upper

APC activation

NLRP3 rs10925027* (T>C) CC 8.64 0.99 75.33 0.051

IL1B rs1143627* (A>G) GG 3.15 0.83 11.97 0.091

T cell activation

IL12B rs2546893* (G>A) AA 2.64 0.70 9.88 0.149

T-B interaction

IL4R rs1805010* (A>G) GG 0.52 0.18 1.49 0.222

IL10 rs1800872* (T>G) TT 2.41 0.79 7.37 0.121

B cell survival

BAFF rs12583006* (T>A) AA 0.23 0.07 0.80 0.021
F
rontiers in Immunology
 08
 fron
APC, Antigen-presenting cell; CI, Confidence interval; OR, Odds ratio; SNP, Single nucleotide polymorphism; T-B interaction, T cell and B cell interaction
*Six of 33 SNPs were selected as potential predictive variables using stepwise regression.
TABLE 4 Demographic and genetic variables associated with higher antibody titer in a long-term maintenance phase.

Demographics Variables n (%) IgG titer: median (IQR) p value

Antibody titer after 2nd vaccination (BAU/ml) ≥ 1825 133 (62.4) 214.0 (169.0-325.0) <0.001

< 1825 80 (37.6) 83.4 (51.7-143.2)

Genetic variables SNP sites Genotype n (%) IgG titer: median (IQR) p value

T cell activation

IL12B rs3212227* (G>T) GG+GT 162 (76.1) 171.0 (86.9-236.0) 0.008

TT 51 (23.9) 171.0 (105.0-518.4)

PDCD1 rs2227981* (G>A) GA+AA 105 (49.3) 162.0 (82.3-241.0) 0.209

GG 108 (50.7) 177.0 (112.3-258.0)

T-B interaction

IL4R rs1801275* (A>G) AA 160 (75.1) 170.5 (86.7-254.8) 0.098

AG+GG 53 (24.9) 172.0 (105.0-251.0)

IL7R rs1494555* (G>A) GG 49 (23.0) 172.0 (84.0-245.0) 0.019

GA+AA 164 (77.0) 170.5 (94.3-254.0)

TLR4 rs10759932* (T>C) TT+TC 201 (94.4) 172.0 (94.9-255.5) 0.236

CC 12 (5.6) 114.0 (70.4-191.5)

B cell survival

BAFF rs9514828* (C>T) CC 64 (30.0) 177.0 (94.3-280.8) 0.137

CT+TT 149 (70.0) 164.0 (86.8-249.5)

MIF rs1007888* (C>T) CC 58 (27.2) 176.0 (110.8-276.3) 0.031

CT+TT 155 (72.8) 164.0 (87.0-248.0)
IQR, Interquartile range; SNP, Single nucleotide polymorphism; T-B interaction, T and B cell interaction
*Seven of 33 SNPs were selected as potential predictive variables using stepwise regression.
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genetic profiles on cellular immunity will be of great interest in

future studies.

OAS1, a gene polymorphism in rs1131454 reported as a risk factor

for severe COVID-19 infection (28, 56), is induced by IFN-g and

directly suppresses viral replication through viral RNA degradation

(66). A recent report showed that OAS1 gain-of-function variants

cause exogenous RNA-independent immunodeficiency disease

through RNase L-mediated RNA cleavage leading to transcriptomic

alterations, translational arrest, dysfunction and apoptosis of

monocytes, macrophages, and B-cells (67). Because the mRNA

vaccine itself induces type I IFN expression through MDA5 signaling

(68), we included rs1131454 (OAS1) as a target gene in this study. We

found that homozygosity of the minor allele in rs1131454 (OAS1) was

associated with a high response to antibody production after

vaccination, consistent with the protective effect against B cell/APC

dysfunction through cellular RNA -cleavage.

Finally, our predictive model based on genetic polymorphisms

could be useful for predicting individual vaccine efficacy and building

a strategy for personalized vaccination schedules (Figures 3A, B). A

third COVID-19 vaccine dose was recommended based on the

reduction in vaccine effectiveness over time. One report showed

that the protective effectiveness calculated using the Cox hazard

model decreased from 88% at 1 month after the second vaccination

to 47% after 5–6 months (69). However, little information is available

on the development of appropriate vaccination schedules for

individuals. Although routine measurement of antibody titers could

be useful for monitoring immune status and vaccine efficacy, repeated

measurements with routine follow-ups are inefficient in identifying

declining antibody titers. Genetic profiling with basic demographics

provides information to distinguish the potential for an early decline

in antibody titers. Predictive models composed solely of genetic

polymorphisms can provide useful information in clinical

practice (Figure 3B).
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This study had several limitations. First, we cannot discard the

potential selection bias, as the enrolled population was female

-dominant and consisted of a single Japanese race. Second, the

modest sample size may have limited the power of the study. We

believe that an appropriate methodology, such as the candidate gene

approach can reveal the valuable effects of gene polymorphisms

even with a modest sample size. Further studies involving other

cohorts are required to validate our findings.
5 Conclusions

We revealed that the kinetics of anti-SARS-CoV-2 IgG titers

after COVID-19 vaccination were associated with a rationalized

multi-phasic gene profile, rather than physical senescence. These

gene profiles provide valuable information for further investigations

of humoral immunity against COVID-19 and for building a strategy

for personalized vaccine schedules.
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FIGURE 3

Receiver operating characteristic (ROC) analysis of predictive models to identify the individuals with rapid antibody attenuation. ROC curve analysis
was performed using the indicated genetic factors with or without antibody titers, after the second vaccination. (A) The model consisted of the
indicated genetic factors and antibody titers after the second vaccination. The demographics and six genes indicated gender(male), antibody titer
after the second vaccination less than 1825 BAU/ml, rs10925027 (NLRP3), rs1143627 (IL1B), rs2546893 (IL12B), rs1805010 (IL4R), rs1800872 (IL10),
and rs12583006 (BAFF) (details are described in Table 5). (B) Model consisting of demographics and indicated genetic factors without antibody titer
information. The demographics and seven genes indicated age less than 60 years, sex (male), rs4612666 and rs10925027 (NLRP3), rs6887695
(IL12B), rs7572482 (STAT4), rs1805010 (IL4R), rs1494555 (IL7R), and rs12583006 (BAFF).
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