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and immunotherapy efficacy
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Sheng Ju1,2, Baisong Li3, Jun Chen1,2, Yufeng Xie1,2, Xin Tong1,2*,
Mi Liu3* and Jun Zhao1,2*

1Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
2Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China,
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Background: Lung adenocarcinoma (LUAD) is a major subtype of non-small cell

lung cancer (NSCLC) with a highly heterogeneous tumor microenvironment.

Immune checkpoint inhibitors (ICIs) are more effective in tumors with a pre-

activated immune status. However, the potential of the immune activation-

associated gene (IAG) signature for prognosis prediction and immunotherapy

response assessment in LUAD has not been established. Therefore, it is critical to

explore such gene signatures.

Methods: RNA sequencing profiles and corresponding clinical parameters of

LUAD were extracted from the TCGA and GEO databases. Unsupervised

consistency clustering analysis based on immune activation-related genes was

performed on the enrolled samples. Subsequently, prognostic models based on

genes associated with prognosis were built using the last absolute shrinkage and

selection operator (LASSO) method and univariate Cox regression. The

expression levels of four immune activation related gene index (IARGI) related

genes were validated in 12 pairs of LUAD tumor and normal tissue samples using

qPCR. Using the ESTIMATE, TIMER, and ssGSEA algorithms, immune cell

infiltration analysis was carried out for different groups, and the tumor immune

dysfunction and rejection (TIDE) score was used to evaluate the effectiveness

of immunotherapy.

Results: Based on the expression patterns of IAGs, the TCGA LUAD cohort was

classified into two clusters, with those in the IAG-high pattern demonstrating

significantly better survival outcomes and immune cell infiltration compared to

those in the IAG-low pattern. Then, we developed an IARGImodel that effectively

stratified patients into different risk groups, revealing differences in prognosis,

mutation profi les, and immune cell infi l trat ion within the tumor

microenvironment between the high and low-risk groups. Notably, significant

disparities in TIDE score between the two groups suggest that the low-risk group
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may exhibit better responses to ICIs therapy. The IARGI risk model was validated

across multiple datasets and demonstrated exceptional performance in

predicting overall survival in LUAD, and an IARGI-integrated nomogram was

established as a quantitative tool for clinical practice.

Conclusion: The IARGI can serve as valuable biomarkers for evaluating the tumor

microenvironment and predicting the prognosis of LUAD patients. Furthermore,

these genes probably provide valuable guidance for establishing effective

immunotherapy regimens for LUAD patients.
KEYWORDS

lung adenocarcinoma, immune activation, immune infiltration, immunotherapy
efficacy, prognosis
1 Introduction

Lung cancer is a highly prevalent and lethal malignancy on a

global scale (1). Common histologic subtypes of lung cancer

encompass lung squamous cell carcinoma (LUSC), lung

adenocarcinoma (LUAD), and small cell lung cancer (SCLC), with

LUAD representing the most predominant subtype (2). Current

therapeutic approaches for LUAD include surgery, chemotherapy,

radiotherapy, targeted therapies, and Immunotherapy; However,

these modalities are only efficacious in a subset of LUAD patients,

and the prognosis for those with advanced LUAD remains

unfavorable (3). Notwithstanding clinical parameters, such as the

tumor-node-metastasis (TNM) staging system, vascular invasion,

and tumor mutation load status, have been extensively utilized,

these prognostic and predictive factors have limitations in their

capacity to accurately forecast the prognosis and therapeutic

response of LUAD patients (4, 5). Therefore, novel prognostic

classifiers or therapeutic biomarkers are urgently needed to

enhance the clinical benefit for patients with LUAD.

Emerging evidence suggests that the tumor immune

microenvironment (TIME) plays a pivotal role in the initiation and

progression of neoplasms (6). As a complex and heterogeneous

ecosystem, the TIME, encompassing various stromal, vascular, and

immune cells, has been identified as a putative determinant of cancer

therapeutic response (7, 8). Immune checkpoint inhibitors (ICIs), one

of the most promising immunotherapeutic strategies can enhance the

anti-tumor properties of effector T cells by ameliorating their

dysfunction and depletion promoting their activation and function

(9). Consequently, they have been demonstrated to extend patient

survival across a spectrum of malignancies, including melanoma,

breast, liver, and urothelial carcinoma (10, 11). Several ICIs have

been approved for cancer therapy, such as Nivolumab and Keytruda,

which target Programmed Death Receptor1 (PD-1), Atezolizumab,

which targets Programmed cell death 1 ligand 1 (PDL1), and

Ipilimumab, which targets cytotoxic T-lymphocyte-associated protein

4 (CTLA-4) (12–14). Unfortunately, ICIs do not always succeed in

restoring suppressed T cells repertoire in cancer patients, and some ICI

users experience serious immunological adverse effects (15). Recent
02
studies have demonstrated that hot tumors, also known as tumors with

a high number of immune infiltrating cells in a pre-activated state,

respond well to ICIs (16–19).Whereas cold tumors that lack infiltrating

immune cells show little immune system activation (20). In advanced

LUAD patients, the TIME is characterized by a high abundance of

immunosuppressive cells and stromal components that create a hostile

milieu for T cell function by secreting various metabolites, chemokines,

and cytokines. As a result, this group of LUAD patients exhibits poor

immune activation and response to ICIs (20). Hence, it is crucial to

evaluate the immune activation status of the TIME for personalized

therapy in LUAD patients.

The immune activation signature mainly includes the IFNg
signature, the expanded immune gene signature, the cytotoxic T

lymphocyte (CTL) signature, and the expression of MHC class I

molecules HLA-A and HLA-B, All these signatures have been

previously reported to correlate with the prognosis of solid tumors

(20–23). In this study, we constructed an immune activation related

gene index (IARGI) risk model that uses identified prognostic genes

associated with LUAD survival to predict prognosis and

immunotherapy outcomes in patients with LUAD.
2 Materials and methods

2.1 RNA extraction and quantitative
real time-PCR

Tumour tissues and corresponding normal tissues were

collected from 12 LUAD patients from the First Affiliated

Hospital of Soochow University (Suzhou, China). The clinical

information of the patients is provided in Table S1 of

Supplementary Materials. Tumour staging was performed

according to the Union for International Cancer Control Tumour

Node Metastasis (TNM) classification of lung carcinoma (24). Total

RNA was extracted from fresh tissue samples using Trizol, followed

by reverse transcription to cDNA and quantitative real-time

polymerase chain reaction (qPCR) analysis. The qPCR data was

normalized to b-actin using the 2-DDCt method. The primer
frontiersin.org
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sequences used for qPCR are listed in Table S2 of Supplementary

Materials. This study was approved by the Ethics Committee of

First Affiliated Hospital of Soochow University (20228181).
2.2 Data collection of databases

The TCGA database (The Cancer Genome Atlas) was used to

retrieve RNA expression profiles, clinical data, genetic mutations, and

copy number variation (CNV) data for LUAD in the training set.

Finally, after data cleaning, 495 samples were collected from TCGA for

further analysis. Using the Gene Expression Omnibus (GEO) database,

we obtained the RNA expression profiles and clinical data for the

GSE72094 dataset. PRJEB23709 and GSE135222 were two datasets

collecting cancer patients treated with immune checkpoint inhibitors,

downloaded from the European Nucleotide Archive and GEO,

respectively. All the obtained RNA expression profiles were log Log2

(TPM +1) transformed for normalization. IAGs were identified from

three previously published gene sets, namely the IFN gamma signature

(22), the expanded immune gene signature (25), the cytotoxic T

lymphocyte (CTL) signature (26), and the prognosis-related HLA-A

and HLA-B genes (27). Protein-protein interaction study were

conducted by an open-source STRING database (https://

cn.string-db.org).
2.3 Consensus clustering

By Using the R package “ConsensusClusterPlus” (28), an

unsupervised consensus clustering analysis was carried out to

investigate the expression profile data of the prognostic genes.

The optimal number of clusters was selected based on the

cumulative distribution curve and the process was repeated 1000

times to ensure the stability of the results.
2.4 Tumor immune microenvironment

Multiple algorithms, including ESTIMATE (29), TIMER (30) and

the single sample gene set enrichment analysis (ssGSEA) algorithm

(31) were applied to analyze the tumor microenvironment. The

ESTIMATE algorithm evaluates the ESTIMATE score, immune

score, and stromal score, the TIMER algorithm and the ssGSEA

algorithm were utilized to estimate the infiltration abundance of

various types of immune cells.
2.5 Prediction of immunotherapy response

The Tumor Immune Dysfunction and Rejection (TIDE) score is

a web-based tool (HTTP://tide.dfci.harvard.edu/) that evaluates the

potential clinical efficacy of immunotherapy in different risk groups

and indicates the potential for tumor immune evasion (21); a higher

TIDE score implies a poorer response to ICI. SIGLEC15, TIGIT,

CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2 are

genes related to immune checkpoints (32). We extracted the
Frontiers in Immunology 03
expression values of these eight genes to examine the expression

of immune checkpoint-related genes in different groups.
2.6 Functional analyses

Differential genes between the two IAG patterns were obtained

using the R package “limma” (33). To compare the differential

pathways and biological effects between the two genetic subtypes,

we performed Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis with Cluster Profiler R package (version 3.14.3) and Gene

Ontology (GO) analysis with Metascape website based on DEGs (|

FC| >1.5, P < 0.05) (34, 35). The KEGG analysis was performed using

the R package “Cluster Profiler” (version 3.14.3) and the GO analysis

was performed on the Metascape website (36). We also obtained

immune activation-related gene/protein interactions from the

STRING website (http://www.string-db.org/) and constructed the

network using Cytoscape software. We calculated Degree scores

and screened core genes (Degrees > 10) with Cytoscape software (37).
2.7 Construction of the IAG-related
risk signature

We performed LASSO-Cox analysis (10-fold cross-validation)

with glmnet R package using IAGs that were statistically significant in

univariate Cox regression analyses. To minimize the risk of

overfitting, we performed 100 LASSOs and selected genes that

appeared multiple times in the model. Ultimately, a linear equation

called “IARGI” was constructed to predict the overall survival of

LUAD patients: risk score = [coef (1) × GeneExp (1)] + [coef (2) ×

GeneExp (2)] +… + [coef(i) × GeneExp(i)] (38). We used Kaplan-

Meier curves with survival and survminer R packages to perform

prognostic analyses and assess survival at 1, 3, and 5 years.
2.8 Tumor immune single cell
hub database

Expression analysis of immune-activation-related prognostic

genes at single-cell resolution was conducted using data from the

NSCLC-EMTAB6149 dataset (39) through the Tumor Immune

Single Cell Hub Database (http://tisch.comp-genomics.org/home/)

(40), an online database focused on the tumor microenvironment

(TME) that has collected single-cell transcriptome profiles of nearly

20,000 cells from 27 tumor datasets across 76 cancers. The NSCLC-

EMTAB6149 dataset contains a 52,698-cell catalog of the TME

transcriptome in human lung tumors at single-cell resolution.
2.9 Prediction of chemotherapeutic
drug sensitivity

The R package “pRRophetic”was used to predict the sensitivity of

chemotherapeutic drugs (41). The minimum inhibitory
frontiersin.org
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concentration (IC50) was calculated based on the expression profiles

of different risk groups of LUAD patients, and the specific drug for

the group was selected by comparing the sensitivity of

chemotherapeutic drugs in the high and low-risk groups.
2.10 Statistical analysis

Statistical analyses were performed with R (version 3.6.1) and

GraphPad Prism (version 8.0.1). Survival analyses were performed

using the Kaplan-Meier method, and the predictive performance of

the risk model was assessed by the “survivalROC” R package using

time-dependent subject work characteristics (ROC). Discontinuous

data were expressed as numbers/percentages, and continuous data

were expressed as mean ± standard deviation (SD). Statistical

analysis was performed using Student’s t-test between the two

groups. p < 0.05 was considered a statistically significant difference.
3 Results

3.1 Transcriptional and genetic
alterations of immune activation
genes in LUAD patients

The flow chart of our study is illustrated in Figure 1. We

integrated a set of 25 IAGs reported in the literature

(Supplementary Table S3), and compared their expression

patterns between normal and tumour tissues in the TCGA LUAD
Frontiers in Immunology 04
cohort. Eight IAGs, namely HLA-E, PRF1, HLA-DRA, NKG7,

HLA-B, TAGAP, TNFRSF8, and CIITA were found to be

significantly downregulated in LUAD, while six genes, namely

IFNG, CXCL13, LAG3, SATA1, CXCL9 and CXCL10 were

significantly upregulated (Figures 2A, B). To further investigate

the value of the 25 IAGs in LUAD, we analyzed their mutational

status in the TCGA LUAD cohort (Figure 2C). In the included

LUAD tumour tissues, mutations in these genes were detected in 74

cases at a frequency of 14.9%. Among these genes, STAT1 had the

highest mutation frequency, followed by TAGAP, TNFRSF8, PRF1,

GZMB, and GZMA. Conversely, mutations in these genes were rare

in normal tissues. Copy number variation (CNV) analysis indicated

that copy number gain was prevalent in CD2, NKG7, and

TNFRSF8, while IDO1 and GZMB were primarily associated with

copy number loss (Figure 2D). CNV was observed on multiple

chromosomes, particularly on chromosomes 2, 4, 5, 6, 11, and 12

(Figure 2E). Overall, our analysis revealed a significant degree of

heterogeneity in the genetic and transcriptional changes of IAGs

between tumour and normal specimens, suggesting their crucial

role in tumour initiation and progression.

Based on the aforementioned IAGs, 15 genes that are

potentially associated with LUAD prognosis were screened by

Kaplan Meier survival analysis and univariate Cox analysis using

Kaplan-Meier Plotter (http://kmplot.com/analysis/) (Figure 2F).

Results from protein-protein interaction (PPI) analysis revealed

the presence of interactions between these genes/proteins, which

were validated through experimental assays (pink lines), curated

databases (blue lines), co-expression (black lines), or text mining

(olive green lines) (Figure 2G).
FIGURE 1

Flow chart of the data analyzing process.
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3.2 Identification of two different
molecular patterns of LUAD based on IAGs

By employing consensus clustering methods, two distinct clusters

were discerned in the TCGA LUAD cohort based on differential

expression patterns of IAGs (Figure 3A). Cluster 1 had high

expression levels of these genes and was defined as the IAG-high

pattern. Cluster 2 had low expression levels and was defined as the

IAG-low pattern (Figures 3B, C). Notably, survival analysis revealed a

significant survival discrepancy between the two patterns, with a more

favorable prognosis associated with the IAG-high pattern and a poorer

prognosis linked to the IAG-low pattern (Figure 3D).
3.3 Tumor microenvironment landscape in
two molecular patterns

The ESTIMATE algorithm was used to compare the immune

microenvironments of the two models, and the findings revealed that

the IAG-high model had higher ESTIMATE, immunological, and

stromal scores (Figure 3E). According to the TIMER scores, the IAG-

low pattern was associated with a decreased abundance of immune

cells, including B cells, CD4+T cells, CD8+ T cells, and dendritic cells,

as evidenced by Figure 3F. Moreover, a comparative analysis of
Frontiers in Immunology 05
immune checkpoint-associated genes in both molecular patterns

revealed a significantly higher expression of these genes in the

IAG-high pattern as compared to the IAG-low pattern (Figure 3G).

The Tumor ImmuneDysfunction and Exclusion (TIDE)model is a

computational tool that simulates two primary mechanisms of tumor

immune evasion and predicts the efficacy of immunotherapy (42).

Specifically, a high TIDE score indicates the presence of suppressor cells

that may hinder T-cell infiltration. In this study, the TIDE score was

calculated for both IAG molecular patterns, and the results revealed a

significantly lower TIDE score in the IAG-high pattern compared to the

IAG-low pattern, indicating that patients with the former molecular

pattern may derive more benefits from immunotherapy (Figure 3H).
3.4 Construction of genomic subtypes
based on differentially expressed genes
from two IAG patterns

The differential expression analysis between the two IAG patterns

was conducted using the “limma” R package, with a threshold of |

FC| >1.5 and p< 0.05. A total of 377 DEGs were identified, comprising

276 upregulated genes in the IAG-high pattern and 101 upregulated

genes in the IAG-low pattern (Figure 4A). The KEGG pathway analysis

based on these DEGs revealed significant enrichment of immune-related
B C

D E

F G

A

FIGURE 2

Immune activation-related genes in the TCGA LUAD cohort. (A, B) Differential expression of immune activation-related genes between tumor and
normal tissues presented in a heatmap (A) and the box plot (B), *P < 0.05, **P < 0.01, ***P < 0.001; (C) The mutation landscape of immune
activation-related genes; (D, E) Copy number variations of immune activation-related genes; (F) Univariate Cox analysis identifying prognostic genes;
(G) Protein-protein interactions among immune activation associated prognostic genes.
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biological processes, such as cytokine-cytokine receptor interaction, T cell

receptor signaling pathway, chemokine signaling pathway, and natural

killer cell-mediated cytotoxicity (Figure 4B). Moreover, GO analysis was

performed using a metascape, and the enriched modules were displayed

in different colored regions (Figure 4C). In these modules, several

biological functions were consistent with the KEGG analysis, such as

regulation of lymphocyte activation in adaptive immune response,
Frontiers in Immunology 06
immunoglobulin production, lymphocyte activation, and regulation of

T cell activation. To further investigate the crucial genes that play a

central role in these differentially expressed genes, a core PPI network

was constructed using the STRING database (network type: physical

subnetwork, minimum required interaction score: 0.4) and Cytoscape

software (Cytohubba plugin, Degree > 15). Ultimately, a core network

containing 68 genes was obtained (Figure 4D). Univariate Cox analysis of
B

C D

E F

G H

A

FIGURE 3

Two patterns based on immune activation associated prognostic genes revealed differences in the tumor microenvironment. (A) Consensus
clustering of 15 prognostic genes in TCGA LUAD cohort; (B, C) The expression of immune activation associated prognostic genes between the two
patterns; (D) Differences in prognosis between the two patterns; (E) ESTIMATE score, immune score and the stromal score of the two patterns;
(F) Abundance of infiltration of immune cells calculated by TIMER algorithm; (G) The expression of immune checkpoint-associated genes in the IAG-
high and IAG-low patterns; (H) TIDE score of the two patterns. *P<0.05, ***P < 0.001. The expanded form of "ns" represents "not significant". This
indicates that the statistical analysis did not yield any meaningful results.
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68 core genes revealed that 46 of them were associated with prognosis

(Figure 4E). Using an unsupervised consensus clustering approach based

on the expression of 46 core genes, we classified LUAD patients from the

TCGA cohort into two genomic subtypes: gene subtype 1 and gene

subtype 2 (Figures 4F, G). Gene subtype 1 had a significantly worse

prognosis than gene subtype 2 (Figure 4H). To better understand the

direct relationship between IAGpatterns and gene subtypes, Sankey plots

were drawn and it was observed that the majority of IAG high pattern

and a small proportion of IAG low pattern comprise gene subtype

1 (Figure 4I).
3.5 Construction of immune activation-
related gene index risk model

Based on LASSO-Cox regression analysis results (Figures 5A, B),

four IAGs were selected as the best indicators for the prediction model.

The risk score was computed as follows: risk score = (-0.1283) * (CIITA

expression) + (-0.0075) * (GZMK expression) + (-0.2923) * (CXCR6
Frontiers in Immunology 07
expression) + (0.3394) * (STAT1 expression), these results were then

incorporated into the IARGI risk model. Firstly, we utilized the

expression levels and risk coefficient of 4 IARGI genes in the LUAD

dataset to calculate the IARGI risk scores of each patient. Based on the

median of the risk scores, LUAD patients were categorized into low-

risk and high-risk groups, respectively. The heat map showed the

expression of 4 genes in both groups and revealed significantly higher

mortality in the high-risk group (Figure 5C). The overall survival rate

of patients in the low-risk group was significantly better than that of the

high-risk group (Figure 5D). Time-dependent ROC analysis

demonstrated that our IARGI risk model had good predictive power

over a 5-year time horizon (Figure 5E). We performed multivariate

Cox analysis on LUAD patients by IARGI, age, gender, and

pathological stage, the results suggested that IARGI could be an

independent prognostic factor (Figure 5F). IARGI also showed good

performance in predicting the prognosis of LUAD samples in the

validation set (GSE72094) (Figure 5G). We explored the ability of the

IARGI risk score to assess the effect of immunotherapy in two cohorts

of cancer patients treated with immune checkpoint inhibitors,
B C

D E F

G H I

A

FIGURE 4

Identification of immune activation related gene subtypes based on differentially expressed genes. (A) Volcano map showed differentially expressed
genes between two patterns (|FC| >1.5, P < 0.05); (B) KEGG enrichment analysis of differentially expressed genes; (C) GO enrichment analysis of
differentially expressed genes using Metascape; (D) Construction of core gene network using STRING database and cytoscope software;
(E) Univariate cox analysis of core genes; (F, G) Consensus clustering based on core genes; (H) Prognostic differences between two genomic
subtypes. (I) Sankey diagram based on IAG patterns, gene subtypes, gender, pathological stage, survival status and risk score.
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PRJEB23709 and GSE135222. The results of KM survival analysis

showed that the IARGI risk score was associated with longer overall

survival after treatment with ICIs (Figure 5H). Analysis of data from

GSE135222 also found a potential difference in progression-free

survival for patients with different IARGI scores treated with ICIs

(Figure 5I), although this difference was not statistically significant due

to the small sample size and the short follow-up period.

To further elucidate the correlation between IARGI and clinical

factors, we conducted a comprehensive analysis. Our results demonstrate

that there was no statistical significance observed in the IARGI risk

scores of patients with an age greater than or equal to 65 years and those

under 65 years (Supplementary Figure S1A). In contrast, themale gender

was associated with significantly higher risk scores compared to the

female gender (Supplementary Figure S1B). Additionally, patients with

pathological stages III and IV exhibited higher risk scores than those with

pathological stages I and II (Supplementary Figure S1C).

3.6 Expression validation and single-cell
resolution of 4 IARGI genes

qPCR was employed to validate the expression levels of the 4

IARGI genes in LUAD tumor tissues and normal tissues. Clinic
Frontiers in Immunology 08
information could be found in Table S1. The results indicated a

significant upregulation of STAT1 expression in tumor tissues

compared to normal tissues, while the expression of CIITA

showed the opposite trend (Figures 6A–D), which is consistent

with the results of previous bioinformatics analysis. The NSCLC-

EMTAB6149 dataset was analyzed at the single-cell resolution using

UMAP dimensionality reduction method to investigate the

distribution patterns of four IARGI genes across different cell

types (39). It was discovered that CIITA, GZMK, and CXCR6 are

predominantly expressed in T cells and monocytes/macrophages,

while STAT1 exhibits high expression in both malignant and

immune cells (Figure 6E).
3.7 Predicting immune infiltration, genetic
mutations, and chemotherapeutic drug
efficacy based on IARGI

As previously described, two molecular patterns and two

genetic subtypes associated with IAG risk signature were

identified. As shown in Figures 7A, B, the IAG-low pattern and

gene subtype 1 had higher IARGI risk scores, and these findings
B C

D E F

G H I

A

FIGURE 5

Construction of prognostic signature by IARGI. (A, B) LASSO-Cox regression analysis based on 15 prognostic genes; (C) Differences in survival status and
expression of 4 IARGI genes between different risk groups; (D) Prognostic analysis of two risk groups from TCGA LUAD cohort; (E) Time-dependent
ROC analysis of TCGA LUAD cohort; (F) Multivariate Cox analysis of IARGI risk score and clinical factors; (G) Prognostic analysis of two risk groups from
GSE72094; (H) Prognostic analysis of two risk groups from PRJEB23709; (I) Prognostic analysis of two risk groups from PRJEB23709.
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were consistent with previous analyses. Following the validation of

the prognostic utility of the IARGI, we sought to investigate the

potential biological significance of the IARGI genes in the context of

tumour immune response. Specifically, we aimed to determine

whether IARGI risk score could be utilized for predicting

immune infiltration, gene mutation status, and immunotherapy

outcome prediction in patients with LUAD. We utilized the

ESTIMATE algorithm, which revealed that individuals in the

high-risk group exhibited lower estimated, immune, and

interstitial scores, indicating a lower level of immune infiltration

(Figure 7C). These findings highlight the potential clinical utility of

the IARGI as a predictive biomarker for immunotherapy response

in LUAD patients. Further research is warranted to elucidate the

underlying molecular mechanisms involved in this process. The

immune cells associated with antitumor immunity were more

abundant in the low-risk group than in the high-risk group,

including CD4+ T cells, CD8+ T cells, DC, and macrophage,

except for Th2 cells associated with immunosuppression. These

results suggested that the high-risk group had a negative TME that

promotes tumours progression (Figures 7D, E). In addition, our

study found that the IARGI risk score was significantly negatively

correlated with PDL1 expression and positively correlated with

tumours mutational load (TMB) (Supplementary Figure S2).

TIDE score was used to evaluate the prognostic value of the

IARGI risk score in the context of immunotherapy efficacy. The

results of TIDE demonstrated that the low-risk cohort exhibited a

significantly lower TIDE score (Figure 7F), suggesting that patients

with a lower IARGI risk score may derive greater therapeutic benefits

from immunotherapy. The heat map revealed the 20 genes with the

highest mutation rates in both groups and demonstrated a significant

difference in the mutation frequency of these genes. The low-risk

group had mutations in 86.8% (190/219) of samples, whereas the

high-risk group `had mutations in 96.4% (214/222) of samples
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(Figure 7G). We also performed chemotherapeutic drug predictions

for patients with LUAD in the high- and low-risk groups to provide

personalized treatment options. Lapatinib, Rapamycin, and

Phenformin were more effective for the high-risk group, while

Bortezomib, Lenalidomide, and Methotrexate were more effective

for the low-risk group (Figures 7H, I).
3.8 Construction and calibration of a
nomogram that combines clinical
factors with IARGI

We constructed a nomogram by combining the IARGI with

clinical factors to improve the accuracy of prognosis prediction

(Figure 8A). The calibration curve showed good agreement between

the nomogram-predicted and observed survival times at 1, 3, and 5

years (Figure 8B). The survival curves and time-dependent ROC

curves also indicated that the nomogram had a better prognostic

value than the IARGI alone (Figures 8C, D). The decision curve

analysis (DCA) revealed that using the nomogram score or the

IARGI risk score for survival prediction was more beneficial than

using the pathological stage alone (Figure 8E). Results of the TIDE

algorithm show that the Nomo score is a good predictor of

immunotherapy outcome (Figure 8F). We validated the

nomogram using an external validation set (GSE72094). The

results showed that the Nomo score significantly stratified LUAD

patients into different prognostic groups: patients with higher

Nomo scores had worse survival outcomes (Figure 8G). The time-

dependent ROC curve also confirmed the validity of the nomogram

(Figure 8H). These results further demonstrated that our

nomogram model, which integrated IARGI and clinical factors,

improved the accuracy of prognosis prediction in LUAD patients.
B C D

E

A

FIGURE 6

Expression of the 4 IARGI genes in LUAD verified by qPCR and Single-cell dataset (A–D) The expression of 4 IARGI genes in 12 pairs LUAD tumors
and normal tissues was verified by qPCR; (E) The distribution of 4 IARGI genes in different cell types was analyzed using single-cell resolution in the
NSCLC-EMTAB6149 dataset by UMAP. Mean ± standard deviation. *P<0.05, **P<0.01. The expanded form of "ns" represents "not significant". This
indicates that the statistical analysis did not yield any meaningful results.
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4 Discussion

Pre-activated immune status of the tumours microenvironment

is widely considered a powerful predictor of response to cancer

therapy and survival outcome (43). In this study, we developed a

novel immune-related predictive model utilizing immune-

activating genes and multiple statistical approaches to accurately

predict the prognosis and immunotherapy response of LUAD.

Using both the training dataset (TCGA-LUAD) and an external

validation dataset (GSE72094), we stratified LUAD patients into

high-risk and low-risk groups based on IARGI, with high-risk

patients exhibiting poorer prognosis and immunotherapy

response, as expected. Furthermore, we established a nomogram

model incorporating IARGI and clinical features in predicting

patient overall survival in LUAD, thereby significantly enhancing

prognostic accuracy and holding immense potential for clinical

application. Our findings demonstrate the reliability of IARGI as
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robust biomarkers for predicting the prognosis and immunotherapy

response of LUAD and provide valuable insights for personalized

treatment strategies in LUAD patients.

The tumor immune microenvironment is closely related to

tumor occurrence, treatment response, and drug resistance (44,

45). An increasing number of immune-related gene signatures have

been used for prognostic classification of LUAD (46, 47), however,

limited studies have been performed to characterize immune

activation-related genes in the immune microenvironment of

LUAD. One important aspect to consider is that certain IAGs are

expressed in both tumor and immune cells. As both RNA

sequencing data from TCGA and mRNA expression levels

detected by qPCR represent the cumulative expression of all cell

types in a given tissue, it may be difficult to distinguish the source of

these genes. Consequently, the RNA expression levels of these IAGs

may not show significant differences between tumor and normal

tissues. In this study, 15 immune-associated prognostic genes in
B C

D E

F G

H I

A

FIGURE 7

Correlation between IARGI and TME, mutation levels, chemotherapeutic drug sensitivity. (A) IARGI risk scores in IAG-high and IAG-low patterns;
(B) IARGI risk scores in the two different gene subtypes; (C) Stromal score, immune score, and estimate score between high- and low-risk groups;
(D) Evaluation of immune cell infiltration in high-risk and low-risk groups by TIMER algorithm; (E) Evaluation of immune cell infiltration in high-risk
and low-risk groups by ssGSEA algorithm. (F) TIDE score in high-risk and low-risk groups; (G) Genetic mutation in high-risk and low-risk groups;
(H, I) Prediction of chemotherapeutic drugs in high-risk and low-risk groups. *P<0.05, **P<0.01, ***P < 0.001.
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LUAD were identified and their mutation frequency and CNV were

analyzed. Based on the expression of prognostic genes, LUAD

patients were classified into two patterns, viz. IAG-high pattern

and IAG-low pattern. Patients in IAG-high pattern have longer

survival and more abundant immune cells such as B cells, DCs,

neutrophils, macrophages, CD4+ T cells, and CD8+ T cells. This

indicates that high expression of IAGs is closely related to

lymphocyte infiltration in tumors. Moreover, previous studies

have shown that high-density tumor-infiltrating lymphocytes can

inhibit tumor progression (48), especially in patients who receive

immune checkpoint inhibitors (49). TIDE scores can predict patient

response to immunotherapy by assessing the potential ability of

tumor immune evasion. In our results, patients in the IAG-high

pattern had significantly lower TIDE scores than in the IAG-low

pattern, which also suggested that patients with the IAG-high

pattern benefited more from ICI treatment than those with the

IAG-low pattern.

To stratify the risk of patients with LUAD accurately, we

constructed a prognostic signature based on four genes associated

with immune activation: CIITA, GZMK, CXCR6, and STAT1.

CIITA is the main transcriptional activator of MHC class II

molecules. It changes the closed chromatin and promoter of

inactive MHC II genes to an open conformation, facilitating the

binding of trans-acting factors to the promoter (50). Low expression

of CIITA can impair antigen processing and presentation by MHC

class I and II molecules (51), thus weakening anti-tumor immunity

and enhancing tumor growth. High expression of GZMK and

CXCR6 has also been found to enhance immune surveillance and

antitumor immunity in several studies (52, 53). STAT1 plays an

important and complex role in tumor formation and tumor

immunosurveillance: on one hand, STAT1 can exert antitumor
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effects by activating the interferon signaling pathway (54) and acts

as a predictor of therapeutic response to adjuvant therapy in cancer

patients (55). on the other hand, it plays an important role in cell

migration, tissue invasion, and therapeutic resistance to

radiotherapy and chemotherapy (56). STAT1 has different roles

in different tumors. In LUAD, as previously reported, it mainly acts

as a tumor promoter (57). Moreover, we observed that STAT1 was

highly expressed in both malignant and immune cells at single-cell

resolution (Figure 6A). Considering the importance of immune

infiltration in the tumor ecosystem, we used the ESTIMATE

algorithm, TIMER, and ssGSEA algorithms to analyze immune

infiltration. The results suggest that populations with high IARGI

exhibit lower immune infiltration, which is the main reason for

their low objective response rate to immunotherapy, in agreement

with previous speculations (58).

Many prognostic models for LUAD based on gene features have

been developed, such as a tumor microenvironment-associated

prognostic signature introduced by Zhao et al. (47), a seven-

immune-related-gene signature constructed by Zhan et al (59),

and an alternative splicing-related prognostic model proposed by

Zhu et al. (60). Compared with these models, our study reported a

prognostic model based on IARGI, which showed good prognostic

accuracy for LUAD. Given that checkpoint inhibitors are currently

only about 25% effective in the treatment of advanced lung cancer,

and that a proportion of lung cancer patients do not have their

immune systems effectively activated, prognostic models

constructed based on immune activation-related genes are

important for assessing the effectiveness of immunotherapy and

predicting the prognosis of patients. The 4-gene prognostic model

constructed in this study helps to determine prognosis, the IARGI

derived from this model can serve as an independent prognostic
B C D

E F G H

A

FIGURE 8

Construction and calibration of the nomogram. (A) Nomogram integrating IARGI and clinical features; (B) Calibration curve of 1-year, 3-year, and 5-
year survival time. (C) Kaplan-Meier analyses of the training set (based on nomo-score); (D) Time-dependent ROC curves of the training set (based
on Nomo-score); (E) Decision curve analysis curve of nomogram score, IARGI, gender, and pathological stage; (F) Correlation between Nomo-score
and TIDE score; (G) Kaplan-Meier analyses of the validation set (based on Nomo-score); (H) Time-dependent ROC curves of the validation set
(based on Nomo-score). **P<0.01.
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factor and a clinically useful indicator. The combination of the

IARGI and clinical factors in a nomogram can improve the

accuracy and potential clinical application value. Our study has

several limitations. First, the gene set in this study was based on

previously published transcriptomic signatures, so some genes

involved in immune activation might have been missed. Second,

we acknowledge that this is a study based on public databases, and

the predictive ability of our findings needs to be confirmed by

independent prospective clinical studies.
5 Conclusions

This study aimed to construct an IARGI model using immune

activation-related genes to predict the prognosis and

immunotherapeutic effects of LUAD patients. The model was well

validated in several aspects, and our findings provide new insights

for prognostic classification and potential oncology drug discovery.

Notably, IARGI can serve as a guide to clinical judgment and

individualized treatment in the current era of triumphant

immunotherapy in cancer treatment.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found within the article/Supplementary Material.
Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of First Affiliated Hospital of

Soochow University (20228181). The patients/participants

provided their written informed consent to participate in this study.
Author contributions

WZ, JW, and JY extracted the data regarding the TCGA and

GEO database and were major contributors in writing the

manuscript. ZC, YC, and QL processed and interpreted the data.
Frontiers in Immunology 12
GL, HD, and SJ scrutinized the results and revised the manuscript.

BL, JC, and XT wrote and reviewed the manuscript. Study

supervision: ML and JZ. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the grants from National Natural

Science Foundation of China (No. 81873417); Suzhou science and

Technology Bureau (LCZX2019002).
Acknowledgments

We acknowledge the Gene Expression Omnibus (GEO)

database and Cancer Genome Atlas (TCGA) and for data sharing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217590/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung
adenocarcinoma. Cell Death Dis (2018) 9(2):117. doi: 10.1038/s41419-017-0063-y

3. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, CurranWJJr., Wu YL, et al. Lung
cancer: current therapies and new targeted treatments. Lancet (2017) 389(10066):299–
311. doi: 10.1016/S0140-6736(16)30958-8

4. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet
(2021) 398(10299):535–54. doi: 10.1016/S0140-6736(21)00312-3
5. Sears CR, Mazzone PJ. Biomarkers in lung cancer. Clin Chest Med (2020) 41
(1):115–27. doi: 10.1016/j.ccm.2019.10.004

6. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's
roles in cancer suppression and promotion. Science (2011) 331(6024):1565–70. doi:
10.1126/science.1203486

7. Sammut SJ, Crispin-Ortuzar M, Chin SF, Provenzano E, Bardwell HA, Ma W,
et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature
(2022) 601(7894):623–9. doi: 10.1038/s41586-021-04278-5

8. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the Rosetta
stone of therapy resistance. Cancer Cell (2020) 37(4):471–84. doi: 10.1016/
j.ccell.2020.03.007
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217590/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1217590/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.1016/S0140-6736(21)00312-3
https://doi.org/10.1016/j.ccm.2019.10.004
https://doi.org/10.1126/science.1203486
https://doi.org/10.1038/s41586-021-04278-5
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.3389/fimmu.2023.1217590
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2023.1217590
9. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.
Science (2018) 359(6382):1350–5. doi: 10.1126/science.aar4060

10. Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma.
Lancet (2021) 398(10304):1002–14. doi: 10.1016/S0140-6736(21)01206-X

11. Lin EP, Hsu CY, Berry L, Bunn P, Shyr Y. Analysis of cancer survival associated with
immune checkpoint inhibitors after statistical adjustment: a systematic review and meta-
analyses. JAMANetwOpen (2022) 5(8):e2227211. doi: 10.1001/jamanetworkopen.2022.27211

12. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications
of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of
evidence. Cancers (Basel) (2020) 12(3). doi: 10.3390/cancers12030738

13. Zhao B, Zhao H, Zhao J. Efficacy of PD-1/PD-L1 blockade monotherapy in clinical
trials. Ther Adv Med Oncol (2020) 12:1758835920937612. doi: 10.1177/1758835920937612

14. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.
Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J
Med (2010) 363(8):711–23. doi: 10.1056/NEJMoa1003466

15. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies:
optimizing outcomes in melanoma. Nat Rev Clin Oncol (2017) 14(8):463–82. doi:
10.1038/nrclinonc.2017.43

16. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy
and new immunomodulatory targets.Nat Rev Drug Discovery (2015) 14(8):561–84. doi:
10.1038/nrd4591

17. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired
resistance to cancer immunotherapy. Cell (2017) 168(4):707–23. doi: 10.1016/
j.cell.2017.01.017

18. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor
genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science
(2018) 362(6411). doi: 10.1126/science.aar3593

19. Prendergast GC, Mondal A, Dey S, Laury-Kleintop LD, Muller AJ. Inflammatory
reprogramming with IDO1 inhibitors: turning immunologically unresponsive 'Cold'
tumors 'Hot'. Trends Cancer (2018) 4(1):38–58. doi: 10.1016/j.trecan.2017.11.005

20. Nagarsheth N,Wicha MS, ZouW. Chemokines in the cancer microenvironment
and their relevance in cancer immunotherapy. Nat Rev Immunol (2017) 17(9):559–72.
doi: 10.1038/nri.2017.49

21. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response.NatMed (2018) 24(10):1550–8.
doi: 10.1038/s41591-018-0136-1

22. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al.
IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin
Invest (2017) 127(8):2930–40. doi: 10.1172/JCI91190

23. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al.
Patient HLA class I genotype influences cancer response to checkpoint blockade
immunotherapy. Science (2018) 359(6375):582–7. doi: 10.1126/science.aao4572

24. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer
stage classification. Chest (2017) 151(1):193–203. doi: 10.1016/j.chest.2016.10.010

25. Wilson MK, Pujade-Lauraine E, Aoki D, Mirza MR, Lorusso D, Oza AM, et al.
Fifth ovarian cancer consensus conference of the gynecologic cancer InterGroup:
recurrent disease. Ann Oncol (2017) 28(4):727–32. doi: 10.1093/annonc/mdw663

26. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet
(2019) 393(10177):1240–53. doi: 10.1016/S0140-6736(18)32552-2

27. Noblejas-Lopez MDM, Nieto-Jimenez C, Morcillo Garcia S, Perez-Pena J,
Nuncia-Cantarero M, Andres-Pretel F, et al. Expression of MHC class I, HLA-a and
HLA-b identifies immune-activated breast tumors with favorable outcome.
Oncoimmunology (2019) 8(10):e1629780. doi: 10.1080/2162402X.2019.1629780

28. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26(12):1572–3. doi:
10.1093/bioinformatics/btq170

29. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

30. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol
(2016) 17(1):174. doi: 10.1186/s13059-016-1028-7

31. Lin R, Fogarty CE, Ma B, Li H, Ni G, Liu X, et al. Identification of ferroptosis
genes in immune infiltration and prognosis in thyroid papillary carcinoma using
network analysis. BMC Genomics (2021) 22(1):576. doi: 10.1186/s12864-021-07895-6

32. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor microenvironment
characterization in gastric cancer identifies prognostic and immunotherapeutically relevant
gene signatures.Cancer Immunol Res (2019) 7(5):737–50. doi: 10.1158/2326-6066.CIR-18-0436

33. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

34. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and
still GOing strong. Nucleic Acids Res (2019) 47(D1):D330–d8. doi: 10.1093/nar/
gky1055

35. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG:
integrating viruses and cellular organisms. Nucleic Acids Res (2021) 49(D1):D545–d51.
doi: 10.1093/nar/gkaa970
Frontiers in Immunology 13
36. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat Commun (2019) 10(1):1523. doi: 10.1038/s41467-019-09234-6

37. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res (2003) 13(11):2498–504. doi: 10.1101/gr.1239303

38. Tibshirani R. The lasso method for variable selection in the cox model. Stat Med
(1997) 16(4):385–95. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-
SIM380>3.0.CO;2-3

39. Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al.
Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med
(2018) 24(8):1277–89. doi: 10.1038/s41591-018-0096-5

40. Chen J, Chen Z, Huang J, Chen F, Ye W, Ding G, et al. Bioinformatics identification
of dysregulated microRNAs in triple negative breast cancer based on microRNA expression
profiling. Oncol Lett (2018) 15(3):3017–23. doi: 10.3892/ol.2017.7707

41. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One (2014)
9(9):e107468. doi: 10.1371/journal.pone.0107468

42. Fu J, Li K, ZhangW,Wan C, Zhang J, Jiang P, et al. Large-Scale public data reuse
to model immunotherapy response and resistance. Genome Med (2020) 12(1):21. doi:
10.1186/s13073-020-0721-z

43. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (TIME) for effective therapy.
Nat Med (2018) 24(5):541–50. doi: 10.1038/s41591-018-0014-x

44. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the
tumor microenvironment. Nat Immunol (2013) 14(10):1014–22. doi: 10.1038/ni.2703

45. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer
progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-5472.CAN-18-3962

46. Wu J, Li L, Zhang H, Zhao Y, Zhang H, Wu S, et al. A risk model developed
based on tumor microenvironment predicts overall survival and associates with tumor
immunity of patients with lung adenocarcinoma. Oncogene (2021) 40(26):4413–24. doi:
10.1038/s41388-021-01853-y

47. ZhaoM, LiM, Chen Z, Bian Y, Zheng Y,HuZ, et al. Identification of immune-related
gene signature predicting survival in the tumor microenvironment of lung adenocarcinoma.
Immunogenetics (2020) 72(9-10):455–65. doi: 10.1007/s00251-020-01189-z

48. Park S, Ock CY, Kim H, Pereira S, Park S, Ma M, et al. Artificial intelligence-
powered spatial analysis of tumor-infiltrating lymphocytes as complementary
biomarker for immune checkpoint inhibition in non-Small-Cell lung cancer. J Clin
Oncol (2022) 40(17):1916–28. doi: 10.1200/JCO.21.02010

49. Lopez de Rodas M, Nagineni V, Ravi A, Datar IJ, Mino-Kenudson M, Corredor
G, et al. Role of tumor infiltrating lymphocytes and spatial immune heterogeneity in
sensitivity to PD-1 axis blockers in non-small cell lung cancer. J Immunother Cancer
(2022) 10(6). doi: 10.1136/jitc-2021-004440

50. Satoh A, Toyota M, Ikeda H, Morimoto Y, Akino K, Mita H, et al. Epigenetic
inactivation of class II transactivator (CIITA) is associated with the absence of
interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells.
Oncogene (2004) 23(55):8876–86. doi: 10.1038/sj.onc.1208144

51. Nagarajan UM, Bushey A, Boss JM.Modulation of gene expression by theMHC class
II transactivator. J Immunol (2002) 169(9):5078–88. doi: 10.4049/jimmunol.169.9.5078

52. Wu X, Wang X, Zhao Y, Li K, Yu B, Zhang J. Granzyme family acts as a predict
biomarker in cutaneous melanoma and indicates more benefit from anti-PD-1
immunotherapy. Int J Med Sci (2021) 18(7):1657–69. doi: 10.7150/ijms.54747

53. Muthuswamy R, McGray AR, Battaglia S, He W, Miliotto A, Eppolito C, et al.
CXCR6 by increasing retention of memory CD8(+) T cells in the ovarian tumor
microenvironment promotes immunosurveillance and control of ovarian cancer. J
Immunother Cancer (2021) 9(10). doi: 10.1136/jitc-2021-003329

54. Zhang X, Li X, Tan F, Yu N, Pei H. STAT1 inhibits MiR-181a expression to
suppress colorectal cancer cell proliferation through PTEN/Akt. J Cell Biochem (2017)
118(10):3435–43. doi: 10.1002/jcb.26000

55. Khodarev NN, Minn AJ, Efimova EV, Darga TE, Labay E, Beckett M, et al. Signal
transducer and activator of transcription 1 regulates both cytotoxic and prosurvival functions
in tumor cells. Cancer Res (2007) 67(19):9214–20. doi: 10.1158/0008-5472.CAN-07-1019

56. Schultz J, Koczan D, Schmitz U, Ibrahim SM, Pilch D, Landsberg J, et al. Tumor-
promoting role of signal transducer and activator of transcription (Stat)1 in late-stage
melanoma growth. Clin Exp Metastasis (2010) 27(3):133–40. doi: 10.1007/s10585-010-9310-7

57. Yang J, Liu Y, Mai X, Lu S, Jin L, Tai X. STAT1-induced upregulation of
LINC00467 promotes the proliferation migration of lung adenocarcinoma cells by
epigenetically silencing DKK1 to activate wnt/b-catenin signaling pathway. Biochem
Biophys Res Commun (2019) 514(1):118–26. doi: 10.1016/j.bbrc.2019.04.107

58. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer (2019) 19(3):133–50. doi:
10.1038/s41568-019-0116-x

59. Li N, Wang J, Zhan X. Identification of immune-related gene signatures in lung
adenocarcinoma and lung squamous cell carcinoma. Front Immunol (2021) 12:752643.
doi: 10.3389/fimmu.2021.752643

60. Zhu L, Wang Z, Sun Y, Giamas G, Stebbing J, Yu Z, et al. A prediction model
using alternative splicing events and the immune microenvironment signature in lung
adenocarcinoma. Front Oncol (2021) 11:778637. doi: 10.3389/fonc.2021.778637
frontiersin.org

https://doi.org/10.1126/science.aar4060
https://doi.org/10.1016/S0140-6736(21)01206-X
https://doi.org/10.1001/jamanetworkopen.2022.27211
https://doi.org/10.3390/cancers12030738
https://doi.org/10.1177/1758835920937612
https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1038/nrclinonc.2017.43
https://doi.org/10.1038/nrd4591
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1016/j.trecan.2017.11.005
https://doi.org/10.1038/nri.2017.49
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1172/JCI91190
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1016/j.chest.2016.10.010
https://doi.org/10.1093/annonc/mdw663
https://doi.org/10.1016/S0140-6736(18)32552-2
https://doi.org/10.1080/2162402X.2019.1629780
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1186/s12864-021-07895-6
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1038/s41591-018-0096-5
https://doi.org/10.3892/ol.2017.7707
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/ni.2703
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1038/s41388-021-01853-y
https://doi.org/10.1007/s00251-020-01189-z
https://doi.org/10.1200/JCO.21.02010
https://doi.org/10.1136/jitc-2021-004440
https://doi.org/10.1038/sj.onc.1208144
https://doi.org/10.4049/jimmunol.169.9.5078
https://doi.org/10.7150/ijms.54747
https://doi.org/10.1136/jitc-2021-003329
https://doi.org/10.1002/jcb.26000
https://doi.org/10.1158/0008-5472.CAN-07-1019
https://doi.org/10.1007/s10585-010-9310-7
https://doi.org/10.1016/j.bbrc.2019.04.107
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.3389/fimmu.2021.752643
https://doi.org/10.3389/fonc.2021.778637
https://doi.org/10.3389/fimmu.2023.1217590
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 RNA extraction and quantitative real time-PCR
	2.2 Data collection of databases
	2.3 Consensus clustering
	2.4 Tumor immune microenvironment
	2.5 Prediction of immunotherapy response
	2.6 Functional analyses
	2.7 Construction of the IAG-related risk signature
	2.8 Tumor immune single cell hub database
	2.9 Prediction of chemotherapeutic drug sensitivity
	2.10 Statistical analysis

	3 Results
	3.1 Transcriptional and genetic alterations of immune activation genes in LUAD patients
	3.2 Identification of two different molecular patterns of LUAD based on IAGs
	3.3 Tumor microenvironment landscape in two molecular patterns
	3.4 Construction of genomic subtypes based on differentially expressed genes from two IAG patterns
	3.5 Construction of immune activation-related gene index risk model
	3.6 Expression validation and single-cell resolution of 4 IARGI genes
	3.7 Predicting immune infiltration, genetic mutations, and chemotherapeutic drug efficacy based on IARGI
	3.8 Construction and calibration of a nomogram that combines clinical factors with IARGI

	4 Discussion
	5 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


