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Mitochondria has emerged as a critical ruler of metabolic reprogramming in

immune responses and inflammation. In the context of colitogenic T cells and

IBD, there has been increasing research interest in the metabolic pathways of

glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been

shown to play a crucial role in the metabolic reprogramming of colitogenic T

cells, leading to increased inflammatory cytokine production and tissue damage.

In addition to metabolic reprogramming, mitochondrial dysfunction has also

been implicated in the pathogenesis of IBD. Studies have shown that colitogenic

T cells exhibit impaired mitochondrial respiration, elevated levels of mROS,

alterations in calcium homeostasis, impaired mitochondrial biogenesis, and

aberrant mitochondria-associated membrane formation. Here, we discuss our

current knowledge of the metabolic reprogramming and mitochondrial

dysfunctions in colitogenic T cells, as well as the potential therapeutic

applications for treating IBD with evidence from animal experiments.
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1 Introduction

Inflammatory bowel disease (IBD) is a multifactorial immune disorder, characterized

by chronic relapsing inflammation of the gastrointestinal tract accompanied with impaired

immune homeostasis resulting from inappropriate and persistent activation of the mucosal

immune system. Crohn’s disease (CD) and ulcerative colitis (UC) are the two major forms

of the condition. Despite the accumulating evidences that immune dysregulation, intestinal

microbiota, environmental factors, and genetic susceptibility are implicated in the

pathogenesis of IBD (1), the exact causes remain unclear. The intestinal tract is the

largest immune organ in the body, composing of complex immune-cell populations with a

persistent exposure to the luminal antigens and pathogens. Therefore, immune

homeostasis is essential for tolerance to luminal antigens and protection against pathogens.
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The aberrant mucosal infiltration by innate and adaptive

immune cells has been considered as a key player in the

pathogenesis of IBD. According to the GWAS (genome-wide

association study) based on human studies, NOD2 (pattern

recognition receptor), CARD9 (inflammation), IL23R (Th17 cell

responses), ATG16L1 (autophagy), PTPN22 (T cell activation) and

FUT2 (microbiome) are well known causative IBD genes (2, 3). This

set of identified susceptibility genes for IBD simply implies

vulnerability or hyper-activation of innate and adaptive immune

systems (Figure 1A), although the opening inflammatory response

is thought to remove foreign luminal antigens.

Uncontrolled activation of effector CD4+ T cell responses (Th1,

Th2 and Th17) and defects in immunosuppressive activity by

regulatory T cell (Treg) in lamina propria (LP) were well

characterized in IBD, including both CD (4) and UC (5). In line

with this, recent studies using single cell RNA sequencing have

revealed that distinct subsets of CD4+ T cells are considered to be an

essential contributing factor in the immune landscape of IBD

despite heterogeneity of T cells (6–8). Depletion of CD4+ T by

chimeric monoclonal anti-CD4 antibody is affirmative in treating

patients with Crohn’s disease (9). The ablation of tissue resident

memory CD4+ T cells protects from experimental colitis in mice

(10). Transcriptomic analysis reveals that human intestinal CD4+ T

cells display exclusive gene signatures from circulating CD4+ T cells,

such as differential chemokine and activation gene, Th17-related

transcription factors, tumor necrosis factor (TNF) receptor

signaling pathways (11). These clinical observations advocate a

noteworthy role of CD4+ T cells in IBD. Moreover, colitogenic

CD4+ T cells have been shown to undergo metabolic changes that

support their pathogenicity. For instance, hypoxia-inducible factor

1 alpha (Hif1a) transcription is exclusively over-expressed in

lamina propria CD4+ T cells, as compared to the intestinal

epithelial CD4+ T and circulating CD4+ T cells (11). As gut tissue

resident memory CD8+ T cells exhibit distinct metabolic signatures

to the naive T cells (12), colitogenic tissue resident memory CD4+ T

cells (10) are perhaps expected to experience similar metabolic

rewiring (Figure 1, 2).

The last two decade, there have been numerous research papers

published in terms of immunometabolism. T cells face extensive

metabolic changes to sustain the energy generation to achieve

activation, clonal expansion, differentiation, effector cytokine

production, and survival in inflammatory environments. Naïve

and resting T cells utilize mitochondrial oxidative respiration

coupled to TCA (tricarboxylic acid) cycle, OXPHOS (oxidative

phosphorylation) and adenosine triphosphate (ATP) biosynthesis

for a stable energy generation using a limited nutrient source. Fatty

acid oxidation is especially prominent in naïve, memory and

regulatory T cells.

Once engaged with antigen recognition or T cell receptor (TCR)

activation by CD3 and co-stimulatory receptor CD28, T cell rapidly

changes in their metabolic program toward glycolysis. Although

glycolysis is not so efficient for ATP production, only 2 ATP

molecules per glucose molecule, compared to mitochondrial

respiration, which produces 36 ATP molecules per glucose
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molecule, glycolysis can rapidly substitute the cellular building

blocks for proliferation, differentiation and effector function. This

metabolic change is known as ‘aerobic glycolysis’ or the ‘Warburg

effects’, which was first described phenomenon in cancer

pathogenesis. Later, mitochondrial dysfunction appears to be a

prominent cause of aerobic glycolysis. Today, Warburg effects and

mitochondrial dysfunction gained attention again and furthermore

extended to immunology field (Figures 1B, C).

Mitochondria have a central role in energy metabolism and

cellular homeostasis. Primarily, mitochondria provide the

bioenergetics ATP as a power plant and regulate metabolic

activity within the cell. Upon activation, T cells expand

mitochondrial mass along with the mitochondrial ribosomal

proteins, OXPHOS proteins, and one-carbon metabolism (13, 14).

Besides, mitochondria contribute to cellular calcium homeostasis,

apoptosis regulation, reactive oxygen species (ROS) generation, and

inflammatory signaling pathways. Given the accumulated

understanding of mitochondrial alterations in the process of T

cell activation and Th17/Treg differentiation (Figure 1D), it is still a

puzzle whether manipulating mitochondrial function and

metabolism could modulate the inflammatory signaling of these

cells and alleviate the symptoms of IBD. Recently, several reviews

have been published describing how immune cell metabolism is

associated with inflammatory responses in autoimmunity (15–19)

and the role of mitochondria in intestinal epithelial defense

regarding pathogenesis of IBD (20–22). In this review, we

examine recent studies that have implicated aerobic glycolysis and

mitochondrial dysfunctions in the pathogenesis of IBD (Figure 1).

Our analysis focuses on CD4+ T cells, which have been identified as

a key factor in the disease’s progression. We have provided

experimental evidence that specifically highlights these findings

(Tables 1-3).
2 Targeting T cell metabolism for
treating colitis

2.1 Aerobic glycolysis in colitogenic T cells

CD3/CD28 co-stimulation in a naïve CD4+ T cells during TCR

activation induces glycolysis (Figure 2) while producing lactate by

increasing the expression of glucose transporter (61), hexokinase 2

(HK2) (29), and consumption of glucose (61), and prevents it from

becoming anergy. Inhibition of glycolysis by pan-hexokinase

blocker, 2-dehydroxy-D-glucose (2-DG), during T cell activation

impedes cytokine secretion co-related with mTOR signaling

pathway (62). Moreover, glucose availability is a key factor

for effector T cell functions. Glucose availability significantly

affects secretion of IL-2 and IFN-g (63, 64), aerobic glycolysis

(65), Ca2+/NFAT signaling pathway (64), proliferation, and

viability (66) in T cells. Therefore, targeting elevated glycolysis in

T cells could be fascinating approaches in treating inflammatory

diseases like rheumatoid arthritis, multiple sclerosis (MS) and

systemic lupus erythematosus (67).
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2.1.1 Glucose availability
In patients with UC, there is a higher prevalence of

hyperglycemia than in controls (68). Interestingly, patients who

have both psoriasis and IBD have a significantly higher prevalence

rate of diabetes than those who have sole psoriasis (69). Moreover,
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patients with IBD and diabetes mellitus exhibit a significantly

higher levels of C-reactive protein, erythrocyte sedimentation rate,

eosinophil counts, monocyte counts in blood (70). Furthermore, use

of metformin, a medication for the treatment of type 2 diabetes,

known as an 5’ adenosine monophosphate-activated protein kinase
A

B

D

C

FIGURE 1

Metabolic Reprogramming and mitochondrial activity in CD4+ T subsets for pathogenesis of IBD. (A) Genetic susceptibility factors can trigger T cell-
mediated immune dysregulation, leading to the onset of intestinal inflammation. (B) Pro-inflammatory CD4+ T cells become hyper-activated and
demand metabolic reprogramming to meet their cellular needs for proliferation and effector functions. This metabolic shift involves the utilization of
aerobic glycolysis, glutaminolysis, and mitochondrial oxidative respiration. (C) Regulatory T cells possess a higher number of healthy mitochondria
that can efficiently utilize glucose oxidation to produce ATP without excess ROS generation. In contrast, pro-inflammatory Th17 cells rely on aerobic
glycolysis and glutamine to fuel mitochondria and produce lactate. (D) Treg cells play a critical role in maintaining immune homeostasis in the gut
mucosa by inhibiting immune responses. The imbalance between Treg and Th17 cells is a significant factor observed in patients with autoimmune
diseases such as inflammatory bowel disease. Thus, targeting this imbalance could be an important strategy for the treatment of IBD.
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(AMPK) activator, significantly reduces the hazardous ratio of new-

onset IBD by almost a half (71), and positively prevents dextran

sulfate sodium (DSS)-induced colitis in mice (38). These clinical

observations may suggest that systemic glucose metabolism and

intolerance is notably associated with IBD.

Hyper-glycolysis in cells often leads to mitochondrial

dysfunctions by a hyper-polarizing the mitochondrial membrane

potential, and oversupply of mitochondrial ROS (mROS). A high

glucose concentration induces more mROS, and drives Th17 cell

generation. Accordingly, the treatment of the ROS scavenger,

N-acetyl-L-cysteine (NAC), or the mitochondria-targeted anti-

oxidant, mitoquinone (MitoQ), in T cells significantly inhibits

Th17 cell differentiation even in the presence of high glucose (23).

In animal models of colitis, high glucose availability has been

shown to exacerbate the development of inflammation. Colonic

expression of glycolysis-associated proteins such as HK2, lactate

dehydrogenase A (LDHA), phosphate fructose kinase, and c-MYC

are evidently enriched in inflamed tissues of DSS-induced colitis

mouse model (72). Likewise, a high-sugar diet clearly deteriorates

lymphocyte infiltration, epithelial damage, and cytokine

expressions in the gut after colitic DSS challenges in mice (24).

High glucose consumption (10% in a drinking water) also

exacerbates T cell transfer colitis model in mice by increasing

proinflammatory Th17 populations in the gut (23). Conversely,

overexpressing a transgenic glucose transporter (Glut) 1 receptor in

regulatory T cells fails to achieve disease remission in an adoptive

T cell transfer colitis model (25) (Figure 3A; Table 1).

Glucose restriction achieves an effective prevention of colitis

disease. Treatment of potential Glut blocker, Ritonavir, has been

reported to ameliorate the disease severity in NOD-scid IL-2Rgnull

colitis animal model (26). Glut1-depleted CD4+ T cells fail to trigger

intestinal inflammation in nonsteroidal anti-inflammatory drug-
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induced T cell transfer colitis model in mice (27). Adoptive transfer

of Glut3-deficient T cells fail to induce intestinal inflammation (28).

T cell specific-HK2 deficiency partially recovers intestinal

inflammation in a spontaneous colitis model of IL-10 knockout

(KO) mice, although HK2-deficient CD4+ T cells appear to have

normal proliferation, viability, activation and differentiation in vitro

(29) (Figure 3A; Table 1).

2.1.2 Transcriptional control of glucose
metabolism

This metabolic shifts from OXPHOS to glycolysis reliance often

accompanies induction of the mammalian target of rapamycin

(mTOR), c-Myc, and Hif1a pathways (73). The importance of

these factors in regulating T cell metabolism and effector functions

is well described in the previous literature and review (73, 74).

Tuberous sclerosis 1 (TSC1) is a negative regulator of mTORC1.

Constitutive activation of mTORC1 by CD4+ specific deletion of

TSC1 promotes Th1 and Th17 cell differentiation and suppresses

immunosuppressive activity of Treg, resulting in an enhanced

disease severity in an adoptive T cell transfer colitis model (30).

Conversely, mTOR deficient T cells fail to differentiate into effector

T cells, including Th1, Th2, and Th17 (75). The therapeutic efficacy

of rapamycin, a classic pharmacological inhibitor of mTORC1,

has been substantially demonstrated to ameliorate intestinal

inflammations in experimental animal colitis models in a diverse

perspective (31–36). Another pharmacological mTORC1 inhibitor,

arctigenin, has been reported to decrease Th1 and Th17 cell

differentiation, leading to amelioration of disease severity in DSS-

induced colitis model (37) (Figure 3A).

The activation of mTOR signaling pathway further stimulates

the activity of Hif1a, a master regulator of oxygen homeostasis.

Although Hif1a-deficient T cells have better cellular growth and
FIGURE 2

Mitochondrial involvement in T cell activation and metabolic reprogramming during inflammation. T cell activation by T cell receptor with CD28
promotes metabolic reprogramming. CD28 activation leads to AKT and mTOR activation. Consequently, Hif1a and Myc transcription factors are
upregulated, which accelerates aerobic glycolysis by increasing glucose uptake and lactate secretion to rapidly generate cellular ATP and carbon
building blocks. Upon activation, pyruvate oxidation is decreased and glutaminolysis rather fuels TCA cycles in mitochondria in order to produce
ATP. Glutamine is also rapidly consumed to process de novo nucleotide synthesis. Metabolic adaptation during T cell activation consequently leads
to mitochondrial instability followed by mitochondrial ROS production, which can promote effector T cell polarization. Therefore, mitochondria is a
pivot to all T cell metabolic reprogramming upon activation and differentiation. TCR, T cell receptor; GLUT, glucose transporter; AKT, protein kinase
B; mTOR, mammalian target of rapamycin; TSC, tuberous sclerosis complex; LDHA, lactate dehydrogenase A; MPC, mitochondria pyruvate carrier;
TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation; AMPK, AMP-activated protein kinase.
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proliferation in response to TCR engagement with IL-3 (76),

HIF1a–mediated metabolic reprogramming toward ‘aerobic

glycolysis’ (76, 77) promotes Th17 cell differentiation and declines

Treg cell differentiation in both in vitro experiment, and in vivo

animal model of MS (77, 78) (Figure 3A). In patients with CD,

and UC, Hif1a expression is highly augmented in the inflamed

colonic mucosa (39), especially in Th17 cells (79). These

experimental evidences may suggest that HIF-signaling pathway

is hypothetically to be a fascinating therapeutic target. Despite this,

the modulation of HIF levels for IBD has several limitations to

induce clinical responses. First, the role of Hif1a in regulatory T

cells seems to be debatable in an animal model of colitis (39, 40, 80,
Frontiers in Immunology 05
81). That is presumably because Hif1a under hypoxic condition

not only facilitates glycolysis but also paradoxically protects

mitochondria from ROS by reducing complex I activity, pyruvate

oxidation, autophagy, and mtDNA encoded mRNA levels (82).

Certainly, T cell specific deletion of Hif1a significantly

downregulates Foxp3 over IL-17 expression, leading to the

uncontrolled immune responses in DSS-induced colitis model

(39). In contrast, Von Hippel-Lindau (VHL)-deficient (i.e. Hif1a-
stabilized) Treg cells favor Th1 differentiation over Treg

differentiation, resulting in colitis development in adoptive T cell

transfer model (40) (Figure 3A). Besides, HIF signaling pathways

plays an important role in the maintenance of the epithelial barrier
TABLE 1 Targeting CD4+ T cell glucose metabolism for treating IBD - evidence from an in vivo animal study.

Target
mechanism

Treatment Colitis animal model Effects or MoA! Colitis
outcome#

References

Aerobic
glycolysis

High-glucose diet DSS-induced colitis
Adoptive T cell transfer colitis

Glucose availability
mROS production
Th17 differentiation

Deterioration (23, 24)

Glut1-OE Treg Adoptive T cell transfer colitis Diminished Treg function Deterioration (25)

Ritonavir NOD-scid IL-2Rgnull colitis Glut transporter inhibition Amelioration (26)

Glut1-depleted
CD4

Piroxicam-induced adoptive T cell transfer
colitis

Aerobic glycolysis in CD4 T cells Amelioration (27)

Glut3-depleted
CD4

Adoptive T cell transfer colitis Aerobic glycolysis
Availability of Acetyl-CoA and
citrate
Th17 differentiation

Amelioration (28)

Hk2-deficient CD4 IL-10 KO spontaneous colitis Aerobic glycolysis Amelioration (29)+

mTOR TSC1 deleted CD4 Adoptive T cell transfer colitis mTOR activation
Th1 and Th17 differentiation
Reduced Treg function

Deterioration (30)

Rapamycin Adoptive T cell transfer colitis
DSS-induced colitis
TNBS-induced colitis

mTOR inhibition Amelioration (31–36)

Arctigenin DSS-induced colitis mTORC1 inhibition Amelioration (37)

AMPK Metformin DSS-induced colitis AMPK activation Amelioration (38)

Hif1a Hif1a-deficient T
cell

DSS-induced colitis Reduced Treg function
Th17 differentiation

Deterioration (39)

Vhl-deficient Treg Adoptive T cell transfer colitis Hif1a stabilization
Th1 differentiation

Deterioration (40)

PX-478 DNBS-induced colitis Hif1a inhibition
Impaired epithelial regeneration

Deterioration (41)

DMOG DSS-induced colitis Hif1a activation
Enhanced barrier function

Amelioration (42, 43)

FG-4497 TNBS-induced colitis Hif1a activation
Enhanced barrier function

Amelioration (44)

CG-598 DSS-induced colitis Hif1a activation
Enhanced barrier function

Amelioration (45)

Myc Myc deleted Treg Spontaneous colitis Abnormal neonatal Treg
development

Deterioration (46)
!MOA stands for Mode Of Action.
#Disease severity or disease progression in the treated group is ‘ameliorated’ or ‘deteriorated’ as compared to the control group.
+The role of HK2 in T cell viability, activation, proliferation, differentiation, aerobic glycolysis, and mitochondrial respiration is dispensable in vitro. Nevertheless, CD4-specific deletion of HK2
reduces colitis in spontaneous colitis model of IL-10 KO mice.
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functions. In an animal colitis model, the systemic administration of

Hif1a inhibitor, PX-478, attenuates the protective effects of

exogenous H2S and epithelial regeneration in dinitrobenzene

sulfonic acid-treated rat colitis model (41), whereas Hif1a
activation by DMOG (42, 43), FG-4497 (44) or CG-598 (45)

results in enhancement of epithelial barrier functions against

animal colitis models. Collectively, Hif1a, a master transcription

factor driving aerobic glycolysis, regulates T cell differentiation as

well as intestinal barrier functions (Table 1).

Myc is a proto-oncogene that acts as a transcriptional factor

downstream of the mTOR signaling pathway. It is strongly

upregulated in both CD4+ and CD8+ T cells after TCR activation

(83, 84). Myc regulates the expression of glycolytic enzymes at both

mRNA (84) and protein (83) levels, and affects the expression of

lactate transporter (Slc16a1), glycolytic flux (83), and PPP flux (84).

Myc also supports the de novo pyrimidine/purines synthesis, which

are essential for nucleotide production and proliferation in

activated T cells (83, 84). Moreover, Myc enhances the expression

of amino acid transporter and glutaminolysis in the early phase of

TCR activation (4 to 8 hours). Thus, Myc modulates metabolic

pathways in CD4+ T cells during activation.

Regulatory T cells have a different metabolic signature from

conventional effector T cells, and Myc plays a different role in them.

Foxp3, the key transcription factor for Treg cells, inhibits c-Myc

expression by binding directly to the TATA box of the c-Myc gene

(85). In addition, overexpression of Glut1 in Treg cells impairs their
Frontiers in Immunology 06
functions and exacerbates colitis in a colitis model with adoptive

transfer (25) (Table 1). However, c-Myc expression is critical for

effector Treg generation during early neonatal Treg development

(46). Thus, deleting Myc specifically in Foxp3+ cells causes early-

onset inflammation in multiple organs such as skin, pancreas, liver,

lung, and colon in mice (46) (Figure 3A). Therefore, the use of Myc

inhibitors against proinflammatory T cells should be carefully taken

into account for optimal therapeutic effects.
2.2 Pyruvate oxidation

Pyruvate can be oxidized into acetyl-CoA, which is a substrate

for citrate synthase to generate citrate in the mitochondria

(Figure 2). Pyruvate oxidation is catalyzed by pyruvate

dehydrogenase complex or PDC, which consists of three enzymes:

PDHE1, PDHE2 and PDHE3. The activity of PDHE1a is controlled

by three phosphorylation sites, Ser232, Ser293 and Ser300, which

are tightly regulated by PDC phosphatases (PDPs) and kinases

(PDKs). PDC kinase (PDK) is a serine/threonine kinase that

inactivates PDC activity by reversible phosphorylation. Therefore,

the activity of PDK plays an important role in controlling energy

balance and metabolic fitness in cells. PDK has four isoforms

(PDK1, PDK2, PDK3 and PDK4). Expression of PDK isoforms is

highly enriched in metabolic diseases. Inhibition of PDKs has been

suggested as a potential therapeutic target for obesity, diabetes,
TABLE 2 Targeting CD4+ T pyruvate and glutamine metabolism for treating IBD - evidence from an in vivo animal study.

Target
mechanism

Treatment Colitis animal model Effects or MoA! Colitis
outcome#

References

Pyruvate
oxidation

Ethyl pyruvate TNBS-induced colitis Pyruvate availability Amelioration (47)

DCA Adoptive T cell transfer
colitis

PDK inhibition and PDH
activation
Treg differentiation Th17
reduction

Amelioration ^ (48)

Pdk4-deficient T cell DSS-induced colitis
Adoptive T cell transfer
colitis

PDK inhibition and PDH
activation
Reduced aerobic glycolysis

Amelioration (49)

GM-10395 DSS-induced colitis PDK inhibition and PDH
activation
Reduced aerobic glycolysis

Amelioration (49)

Glutaminolysis Glutamine-supplemented
diet

DSS-induced colitis Glutamine availability Amelioration (50)

Glutamine-depleted iTreg Adoptive T cell transfer
colitis

Glutamine depreviation
iTreg differentiation
Th1 and Th17 reduction

Amelioration (51)

Gls-deficient CD4 Adoptive T cell transfer
colitis

Glutaminolysis inhibition
Treg differentiation
Th17 reduction
Exhausted Th1
Histone modification

Amelioration (52)

BPTES IL-10 KO spontaneous colitis Glutaminolysis inhibition
Th17 reduction
Treg differentiation

Amelioration (53)
!MOA stands for Mode Of Action.
#Disease severity or disease progression in the treated group is ‘ameliorated’ or ‘deteriorated’ as compared to the control group.
^Although disease severity was not affected in this model, the infiltration of proinflammatory T cells was significantly reduced in the gut.
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heart failure, hepatic steatosis and cancer (86, 87). Moreover, the

role of PDKs has been investigated in the mitochondrial respiration,

activation and polarization of myeloid (88) and lymphoid cells (88).

2.2.1 T cell development and maturation
Mitochondrial pyruvate oxidation is a metabolic checkpoint for cell

cycle and cellular functions during T cells development. T cells

progenitor originate from hematopoietic stem cells (HSC) in the

bone marrow. Under physiological conditions in the bone marrow,

long-term hematopoietic stem cells (LT-HSC) show a high glycolytic-

dependent metabolic profile and impaired oxygen consumption. LT-

HSC can preserve their stemness and quiescence by increasing Hif1a-
dependent expression of PDKs and reducing mitochondrial mass (89),

indicating that pyruvate oxidation is not essential for T cell

development at BM. Consistently, defects in PDHA1, PDK2/PDK4

or mitochondrial pyruvate carrier 1 (MPC1) do not affect T cell

development at BM (89–91). However, PDK2 or PDK4 knock-in

can rescue Hif1a deletion-induced mROS and cell death.

Interestingly, only LT-HSC can survive in the in vitro cell culture

condition with PDH inhibitor, 1-aminoethylphosphinic acid (1-AA),

while short-term HSC and multipotent progenitors comes to cell death

(89). Thus, pyruvate oxidation is not a requirement for T cell

progenitor development at BM (Figure 4).
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In the later stage, thymocytes mature and differentiate into

double negative (DN) T, double positive (DP) T and finally CD4+ or

CD8+ single positive (SP) T cells. During this maturation, T cells

metabolically need glucose-derived pyruvate oxidation (90, 91).

Blocking pyruvate flux into mitochondria by MPC1 deletion

reduces OXPHOS gene expression, cellular oxygen consumption

rate, and thymic T cell development (90). PDHE1a deficiency in the

thymocytes also affects redox balance and carnitine metabolism

(91). Loss of PDHE1a remarkably compromise thymic DP T cell

survival and PTEN deletion-induced malignant proliferation in

thymocytes (91) (Figure 4).

Fully differentiated T cells during homeostasis are largely

quiescent and demand a relatively low level of cellular activity.

Therefore, they require somewhat higher mitochondrial

glucose-derived pyruvate oxidation (65). Stimulation of TCR

with CD28 drives expedited metabolic reprogramming through

upregulating glycolysis, the pentose phosphate pathway, and

glutaminolysis, presumably in the cytosol, yet downregulating

pyruvate oxidation (65) in a mitochondrion (84). Certainly, the

levels of p-PDHE1 and PDK4, which signify inhibition of

pyruvate oxidation, were raised in T cells after early TCR/

CD28 activation (13, 49), demonstrating that mitochondrial

pyruvate oxidation is essential (Figure 3B).
TABLE 3 Targeting CD4+ T mitochondrial fitness for treating IBD - evidence from an in vivo animal study.

Target
mechanism

Treatment Colitis animal model Effects or MoA! Colitis
outcome#

References

Mitochondrial
biogenesis

Tfam-deficient CD4 DSS-induced colitis Impaired mitochondrial
biogenesis
Polarization to Th1-like cells

Deterioration (14)

Tfam-deficient Treg Adoptive T cell transfer colitis Impaired mitochondrial
biogenesis
Reduced Treg function

Deterioration (54)

Il15 deficient Rag
mice

T cell transfer colitis Impaired mitochondrial
biogenesis
Reduced Treg function

Deterioration (55)

Il15ra deficient
Treg

T cell transfer colitis Impaired mitochondrial
biogenesis
Reduced Treg function

Deterioration (55)

Mitochondrial
calcium

Ruthehium Red
Ru360

TNBS-induced colitis MCU inhibition Amelioration (56)

Pdk4-deficient T
cell

DSS-induced colitis and T cell transfer
colitis

MAM inhibition
SOCE decrease
Reduction in calcium
signaling

Amelioration (49)

GM-10395 DSS-induced colitis MAM inhibition
SOCE decrease
Reduction in calcium
signaling

Amelioration (49)

VBIT-4, VBIT-12 DSS-induced colitis and TNBS-induced
colitis

VDAC inhibition Amelioration (57–59)

OXPHOS Oligomycin TNBS-induced colitis ATP synthase inhibition
Reduced Th17 differentiation

Amelioration (60)
!MOA stands for Mode Of Action.
#Disease severity or disease progression in the treated group is ‘ameliorated’ or ‘deteriorated’ as compared to the control group.
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2.2.2 Pyruvate oxidation in T cell responses
In addition to the T cell activation, cellular pyruvate availability

also affects T cell differentiation. Ethyl pyruvate (EP) supplementation

notably enhances Treg cell proliferation and differentiation in both in

vivo and in vitro (92, 93), whereas Th1 and Th17 differentiation are

not affected by EP supplementation in vitro (93). Furthermore, the

role of pyruvate oxidation in activated CD4+ T cells is more

important because in vivo activated CD8+ T cells favor carbon

sources from PDH flux (pyruvate oxidation) over pyruvate

carboxylase (PC) flux, while in vitro activated CD8+ T cells prefer

PC over PDH flux (94). In addition, CD4-specific deletion of
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PDHE1a (95) or Glut3 (28) in CD4+ T cells compromises glucose-

derived acetyl-CoA availability, leading to reduction in the histone

acetylation and Th17 polarization (28, 95).

Defeats in mitochondrial pyruvate influx induced by MPC

inhibition disrupts mitochondrial calcium homeostasis. This is

evident by decreasing carbonyl cyanide 3-chlorophenylhydrazone-

induced mitochondrial Ca2+ release as well as ATP-induced

mitochondrial Ca2+ uptake (96). Consequently, nutrient stress

by restricted pyruvate oxidation substantially compromises

mitochondrial respiration (oxygen consumption rate, OCR) and

ATP production and compensatorily enhances autophagy flux (96).
A B

C

FIGURE 3

Targeting T cell metabolic reprogramming for inflammation treatment. (A) Targeting general aerobic glycolysis drivers, such as mTOR, Myc, and
Hif1a, with inhibitors like rapamycin, arctigenin, and 10058-F4, has demonstrated anti-inflammatory effects in autoimmune CD4+ T cells. Inhibiting
the glucose transporter GLUT1 on the plasma membrane also restricts glycolysis, which slows T cell activation. Additionally, inhibiting HK2, the first
glycolytic enzyme converting glucose to G6P, with 2-DG significantly decreases T cell activation. (B) Pyruvate oxidation can be enhanced by
pyruvate supplementation. Inhibiting the MPC with compounds like UK5099 not only induces aerobic glycolysis by increasing pyruvate levels in the
cytosol but also lowers mitochondrial calcium concentration, resulting in significant mitochondrial dysfunction in CD4+ T cells. Inhibiting PDHE1a
with 1-AA alters mitochondrial pyruvate oxidation and can impact T cell development. Conversely, promoting pyruvate oxidation by inhibiting PDK
with compounds like DCA, AZD7545, and GM10395 may be a potential therapeutic strategy for intestinal inflammation. Glut3 depletion reduces
acetyl-CoA availability and histone acetylation (C) Glutaminolysis is associated with mitochondrial function and T cell activation. Glutamine serves as
a source for de novo nucleotide synthesis during T cell activation and effector T cell polarization. Inhibiting de novo nucleotide synthesis with
compounds like PALA and MPA or withdrawing glutamine with compounds like MSO or glutamine deprivation suppresses effector T cell polarization.
Glutaminase inhibition with compounds like CB839, BPTES, and 968 leads to alterations in Th1/Th17 polarization and shows promise as a highly
effective approach for inflammation treatment. TCR, T cell receptor; AKT, protein kinase B; TSC, tuberous sclerosis complex; mTOR, mammalian
target of rapamycin; Hif1a, hypoxia-inducible factor 1; HK2, hexokinase 2; G6P, glucose-6-phosphate; GLUT1, glucose transporter 1; 2-DG, 2-
dehydroxy-D-glucose; LDHA, lactate dehydrogenase A; MPC, mitochondria pyruvate carrier; PDK, pyruvate dehydrogenase kinase; LAT, Linker for
activation of T cells; TCA, tricarboxylic acid cycle; PDP2, pyruvate dehydrogenase phosphatase 2; DCA, dichloroacetate; GS, glutamine synthetase;
GLS, glutaminase; GSH, glutathione; PALA, N-(phosphonacetyl)-L-aspartate; MPA, mycophenolic acid; MSO, methionine sulfoximine; NAC, N-
acetylcysteine; 2-HG, 2-Hydroxyglutarate; a-KG, alpha ketoglutarate; GDH, glutamate dehydrogenase; GPT, glutamate pyruvate transaminase; GOT,
glutamate OAA transaminase; OAA, oxaloacetate.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1219422
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1219422
This may suggest that mitochondrial pyruvate oxidation sustains

mitochondrial health. MPC1 deletion leads to abnormal activation

in splenic T cell and results in expansion of auto-reactive T cells in

the response to CD3/CD28 stimulation (90) (Figure 3B).

In colonic mucosal biopsies from patients with IBD,

phosphorylation of PDHE1a, a substrate of PDK4, has been

strongly correlated with CD4+ T cells (Figure 3B). In line with

this, the experimental DSS-induced colitis model also displays the

significantly upregulated expressions of PDK4 and p-PDHE1a after

DSS challenge. Interestingly, CD45+ hematopoietic cells including

CD4+ T cells, neutrophils, macrophages and dendritic cells appears

to be a central player in charge with PDK and PDHE1a expression

(49) (Table 2). Collectively, the restoration of pyruvate oxidation via

supplementation of pyruvate or inhibition of PDKs may be directly

connected to therapeutic strategy for IBD.

2.2.3 PDH activation through PDK inhibition or
PDP activation

Dichloroacetate (DCA) is a structural analogue of pyruvate that

inhibits PDKs activity (PDK1 at most among PDKs). Previously, its

ability to modulate mitochondrial respiration, ROS generation, and

metabolic reprograming has been demonstrated in respect of

metabolic syndrome (97, 98), osteoporosis (99) and cancer

metabolism (100, 101) as well as immune response (65, 88, 102).

In human alloreactive-human peripheral blood mononuclear cell

(PBMC), DCA treatment significantly decrease glucose uptake,

lactate production, and protein expressions of aerobic glycolysis

related enzymes such as Glut1, HK2, LDHA, p-PDH and Myc (103,
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104). Furthermore, DCA markedly increased regulatory T cell

signature (IL-10 secretion and Foxp3 protein expression), and yet

decreased effector T cell signature (such as T-bet, GATA3, and

RORgT expression) in alloreactive human PBMC. These data

suggests that PDK blocker, DCA, mitigate aerobic glycolysis and

favor differentiation toward immunosuppressive regulatory T cell

rather than proinflammatory effector T cells (103, 104) (Figure 3B).

In line with this observation, activated CD4+ T cells (isolated from

BALB/c normal mice) by CD3/CD28-mediated TCR stimulation

had decreased lactate production and effector cytokine productions

(IFN-g, IL-5, and IL-17) in response to DCA for 48 hours

(105) (Figure 3B).

Under hypoxia, both glycolysis and pyruvate oxidation are

critical for the survival of effector memory (EM) T cells Glucose

deprivation or 2-DG treatment significantly reduces mitochondrial

membrane potentials and consequently induces apoptosis in EM T

cells. However, the addition of sodium pyruvate or DCA

dramatically restores 2DG-induced mitochondrial membrane

potential declines and enhances survival under hypoxic stress

(106). This finding suggests that glucose oxidation via pyruvate

metabolism stabilizes mitochondrial membrane potentials and

thereby increases survivability under hypoxic conditions.

PDK also modulates CD4+ T cell differentiation. First, its

pharmacological inhibitor, DCA, has been clearly demonstrated

to induce Treg differentiation and suppress Th17 differentiation

(48, 107, 108) in part through ROS generation (Figure 3B).

However, the current understanding of the mechanisms by which

PDK inhibitors regulate T cell differentiation is contradictory. The
FIGURE 4

Pyruvate oxidation disruption in hematopoietic stem cells and T cell progenitors alters normal T cell development. The metabolic alterations in
hematopoietic stem cells and T cell progenitors can disrupt the normal development of T cells. During early hematopoietic development, pyruvate
oxidation is not essential. The double deletion of PDK2/4 has no visible impact on long-term hematopoietic stem cells, but PDH inhibition (for
example, with 1-AA) inhibits ST-HSC and MPP cells. Inhibiting MPC1 or PDHE1a, which results in the complete termination of pyruvate oxidation, can
lead to severe mitochondrial dysfunction, affecting thymic selection and leading to the development of autoreactive T cells. MPC, mitochondria
pyruvate carrier; LT-HSC, long term-hematopoietic stem cell; ST-HSC, short term-hematopoietic stem cell; DN, double negative cells; ISP,
immature single-positive cells; DP, double positive cells; SP, single positive cells.
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predominant isoforms of PDKs in naïve, Th17 and regulatory T

cells are PDK1 and PDK3 (48, 107). One paper shows that PDK1

deficiency, the strongest target isoform among PDKs that is possibly

inhibited by DCA, compromises Th17 differentiation and

accelerates Treg differentiation (48), which suggests that the

effects of DCA are dependent on PDK –presumably PDK1-

activity. On the other hand, it has been shown that the

immunosuppressive effects of PDK inhibitors were ironically

independent of PDKs because the effect of DCA on manipulating

T cell differentiation is persistent even under the knockdown of

PDK1 and PDK3 (107). This may suggest that the anti-

inflammatory effects of DCA are likely followed through the

inhibition of PDK2 and PDK4, or unidentified non-canonical

pathways such as ROS production (107). Despite the differences

in methods of isolation and differentiations of naïve CD4+ T cells

that were used in those papers, PDK activity is undoubtedly pivotal

in T cell differentiation. In addition, PDK1 (60) or PDK4 (49)

knockdown significantly reduces IL-17 secretion in in vitro-

polarized Th17 cells (Figure 3B).

The effects of PDK inhibition on Th1 and Th2 differentiation

have not been thoroughly investigated. DCA treatment significantly

enhances IFN-g secretion and production in splenocytes (109) as

well as Th1-polarized CD4+ T cells (108), indicating enhanced Th1

differentiation. In contrast, one report showed that DCA treatment

fails to reduce Th1 differentiation and effector function (48).

PDK1 has been implicated in the early stages of TCR signaling

pathways during T cell activation, in addition to its role in the

mitochondrial matrix (Figure 3B). In PA-R CD8+ T cells, TCR

activation by CD3 results in the downstream signaling complex,

including ZAP70 and Lck, which binds and activates PDK1 within a

few minutes (65). Consequently, due to the impediment of

mitochondrial pyruvate influx, the cumulative cytosolic pyruvate

allows an augmentation in lactate biosynthesis. In this way, the

TCR complex rapidly utilizes aerobic glycolysis during the

activation process (65, 110). In summary, these data suggest that

inhibition of PDKs reduces anaerobic glycolysis, improves

mitochondrial function, promotes ROS production, decreases

Th17 differentiation, and increases immunosuppressive Treg

function. Therefore, targeting pyruvate oxidation flux to

manipulate T cell functions is a promising strategy in the

treatment of inflammatory bowel disease (IBD).

Notably, EP has been shown to significantly increase the

population of CD4+CD25+Foxp3+ regulatory T cells in both

peritoneal cells, lamina propria, and the Peyer’s patches (92)

(Figure 3B). Furthermore, EP treatment attenuates Th17 cell

infiltration in the intestine and prevents trinitrobenzene

sulphonic acid (TNBS)-induced colitis in mice (47). In vivo DCA

treatment (2g/L, ad libitum) significantly reduces CD4+ T cell

accumulation, especially Th17 cells, in the spleen and mesenteric

lymph nodes in a naive T cell adoptive transfer colitis model (48).

Unfortunately, DCA treatment fails to prevent intestinal

inflammation due to the non-responsive Th1 cells to DCA.

However, PDK inhibition by DCA successfully attenuates EAE

progression, which is another Th17-mediated neuronal disease

(48). Although DCA treatment is an efficient way to restrain the
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development of Th17-mediated inflammation, other approaches

inhibiting PDKs may be warranted.

Recently, we have reported the pathological role of PDK4 in

CD4+ T cell (49, 91). PDK4 is highly expressed during early T cell

activation, and its deletion leads to the suppression of aerobic

glycolysis. Certainly, PDK4 KO mice were found to be more

resistant to DSS-induced colitis. In addition, CD4+ T cells

deficient in PDK4 induce less intestinal inflammation in both

DSS-induced colitis and naïve T cell adoptive transfer colitis.

Furthermore, treatment with the pharmacological PDK4

inhibitor, GM-10395, compromises CD4+ T cell activation and

attenuates DSS-induced colitis (49) (Table 2).

Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial

matrix enzyme that sustains PDC activity. PDP1 is predominantly

expressed in mitochondria from skeletal muscle, whereas the PDP

catalytic subunit 2 (PDP2) is expressed in the liver and many other

cells, including white blood cells. In agreement with the effects of

DCA on T cell differentiation, PDP2 overexpression, which

enhances PDC and pyruvate oxidation, inhibits glycolysis and

Th17 differentiation (111) (Figure 3B).
2.3 Glutaminolysis

Glutaminolysis is a catabolic mechanism by which the amino

acid glutamine is degraded to glutamate, a-ketoglutarate (a-KG),
aspartate, and pyruvate (Figure 3C). Glutamine is initially catalyzed

by mitochondrial glutaminase (GLS) to produce glutamate, which is

an essential amino acid playing various roles in cellular physiology.

Glutamate can be further oxidized by glutamate dehydrogenase

(GDH), glutamic oxaloacetic transaminase (GOT), and glutamic

pyruvic transaminase (GPT) to produce a-KG, which supports

TCA cycle intermediate via an anaplerotic route for mitochondrial

ATP generation and a substrate for histone/DNA methylation

during epigenetic modifications (Figure 3C). Particularly, the

glutamate-a-KG cycle plays the most important role in cancer

cells or other proliferating cells to maintain nitrogen metabolism. a-
KG gathers nitrogen atoms from excess amino acids, while

glutamine may contribute nitrogen atoms to synthesize

nucleotides or non-essential amino acids to support cellular

proliferation, protein synthesis, and nucleotide synthesis

(Figure 3C). Thus, a therapeutic strategy targeting glutaminolysis

could be a superior resolution to make not only cancer cells but also

inflammatory, proliferating CD4+ T cells vulnerable.

2.3.1 Glutamine availability
In activated T cells, glutaminolysis plays a vital role in their

proliferation and effector functions. In mouse splenocytes or T cells,

removal of glutamine completely blocks their effector functions (i.e.,

proliferation and secretion of IL-2 and IFN-g (112)) in spite of

comparable expression of activation cell surface marker (CD25,

CD69, and CD98 (112)). This dependence of glutamine for

proliferation of activated splenocytes or PBMC cannot be replaced

by supplementation of glutamate, a-KG, asparagine, or proline, which
are substrates that can substitute for glutamine (112, 113).
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In addition, activated human CD4+ T cell for 24 hours do not

utilize glucose or glutamine as a carbon source to fuel mitochondrial

respiration, as the pharmacological treatment using MPC inhibitor

(UK5099), GLS inhibitor (CB839 or BPTES), or a combination of

both fail to decrease mitochondrial oxygen consumption (52, 114).

However, glutamine deprivation reduces mitochondrial oxygen

consumption and ATP production (51) (Figure 3C).

Moreover, glutamine availability is still critical in the differentiation

of naïve CD4+ T cells. Glutamine deprivation leads to the

differentiation of naïve CD4+ T cells into Foxp3+ regulatory T cells

with robust in vivo proliferative potentials and immune suppressive

effects (51, 113) and a reduction in effector cytokine production such as

IFN-g and IL-17A (52) (Figure 3C). Strikingly, the skewing of naïve

CD4+ T cells to Foxp3+ Tregs with glutamine restriction cannot be

reversed by glutamate or a-KG supplementation, indicating that

glutamine is not required for carbon source (113).

Moreover, naïve CD4+ T cells grown with low glutamine

availability, even under Th1 or Th17-polarizing conditions, favor the

differentiation into Foxp3+ Tregs while blocking the differentiation into

Th1 and Th17 cells (51, 52), respectively (Figure 3C). These

observations suggest that glutamine itself, not those intermediates of

glutaminolysis such as glutamate and a-KG, plays an essential role in

modulating effector functions, mitochondrial ATP synthesis, and

differentiation in CD4+ T cells.

De novo nucleotide synthesis requires glutamine-driven aspartate

as a source of nitrogen atoms for the formation of the purine/pyridine

ring (115). It is well established that aspartate biosynthesis from

glutamate via GOT1/2 is required for proliferation in mammalian

cells (116, 117). In CD4+ T cells, inhibition of de novo purine/

pyrimidine synthesis by N-phosphonacetyl-l-aspartate (PALA) and

mycophenolic acid (MPA) promotes the differentiation of Foxp3+

Tregs, which is consistent with the effects of glutamine deprivation

(Figure 3C). In addition, the generation of Foxp3+ Tregs is abolished

under low glutamine conditions when glutamine synthetase (GS),

which synthesizes endogenous glutamine from glutamate, is inhibited

by Methionine sulfoximine (MSO) (113) (Figure 3C). These findings

suggest that the nitrogen atoms in the amide group of glutamine are

primarily used for nucleotide synthesis, rather than the carbon

backbone of glutamine, in proliferating CD4+ T cells.

Despite that glutamine supplementation attenuates intestinal

inflammation in the DSS-induced colitis animal model (50)

(Table 2), Foxp3+ T cells induced by glutamine restriction have

shown superior immunosuppressive capacity in vivo to prevent IBD

using the adoptive T cell transfer mouse model. Injection of either

CD4+Foxp3+ natural Tregs or Foxp3+ T cells grown under

glutamine-limited conditions fully protects against colonic

infiltration of immune cells, weight loss, and activation of effector

T cells. Moreover, glutamine withdrawal has been shown to

enhance the proliferation of Foxp3+ T cell in vivo (51) (Figure 3C).

2.3.2 Glutaminase
GLS enzyme activity and mRNA expression are highly induced

during early T cell activation (112, 118). However, GLS activity is

considerably lower than the activity of GOT or GDH in T cells (112).

This indicates that GLS, which is the first enzymes in the process of

deamidation of glutamine, is likely to be a limiting factor in T cell
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activation and presumably T cell differentiation. Under Th0 activating

condition by CD3 and CD28 stimulation, GLS inhibition by

compound 968 or BPTES significantly impairs the expression of T

cell activation marker (CD25 and CD226), secretion of effector

cytokines such as IFN-g, TNF-a, IL-2, and IL-17 and chemokine

receptors (CCR6 and CXCR3) (118). Nevertheless, the mode of action

by GLS inhibition is quite astonishingly different from that by

glutamine deprivation on T cell differentiation. Treatment with GLS

inhibitors (CB839 or BPTES) significantly decreases proliferation, IL-

17 cytokine production (52, 119) and ATP-coupledOCR (120) in Th17

cells but increases proliferation and IFN-g production in Th1 cells with

an enhanced exhausted phenotype (i.e. PD-1, Lag3, and Tim3) (52)

(Figure 3C). Moreover, the genetic deletion of GLS leads to the

attenuation of RORgt expression in Th17 cells but the accumulation

of t-bet expression in Th1 cells while not affecting Foxp3 expression in

Treg (Figure 3C). In addition, the generation of a-KG decreases in

CB839-treated Th1 but not Th17 cells, whereas 2-HG increased in both

Th1 and Th17 (Figure 3C). Given that a-KG is an important cofactor

for both histone and DNA demethylation, GLS deficiency may

influence T cell differentiation mechanistically through not only TCA

anaplerotic intermediate but also alteration of epigenetic modifications.

CB839-treated Th1 cells display decreased global H3K27

trimethylation and more Th1 related genes such as Ifng with opened

chromatin accessibility, and supplementation of a-KG reverses the

decreased global methylation and opened chromatin status in CB839-

treated Th1 cells (52) (Figure 3C). Of note, a-KG has been previously

reported to regulate IL-2-sensitive effector gene expression in Th1 cells

through the association of CCCTC-binding factor in part (121). Taken

together, it is suggested that GLS deficiency has distinct mechanisms of

differentiation of Th1 and Th17 cells. Patients with CD possess

significantly higher numbers of GLS1-positive cells in the inflamed

regions of the lamina propria than the control patients (53).

Collectively, targeting GLS may impair the immune responses of the

infiltrated T cell, particularly Th17 in vivo for treating IBD. Adoptive

transfer of GLS-deficient naive CD4+ T cell to Rag1 KO mice indeed

fails to induce weight loss and intestinal inflammation (52) (Figure 3C).

Treatment of BPTES also effectively ameliorates spontaneous intestinal

inflammation in IL-10 deficient mice by restoring Th17/Treg balance

(53) (Figure 3C; Table 2).

Metabolic adaptations has emerged as a critical process in T cell

activation, survival, and differentiation. Manipulating the metabolism

of T cells can be promising strategies for treating IBD. However,

metabolic modulators may have unwanted effects on not just only

pathogenic T cells, but also intestinal epithelial cells, endocrine system,

bile acid production, and intestinal microbial metabolism to some

extent. Thus, further studies are required.
3 Targeting T cell mitochondria for
treating colitis

3.1 Mitochondrial biogenesis

Mitochondrial biogenesis is a fundamental process for

supplying sufficient energy demands during inflammation in

CD4+ T cells. In quiescent circulating CD4+ T cells, the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1219422
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1219422
expression levels of glycolytic enzymes (such as HK2, Pyruvate

kinase M2, LDHA) and the basal glycolysis rate determined by

extracellular acidification rate are relatively higher than those in

CD8+ T cells (122). At the same time, unstimulated CD4+ T cells

possess a higher number of mitochondrial masses than CD8+ T cells

despite maintaining mitochondrial respiration at the same level,

suggesting that quiescent CD4+ T cells stock a decent amount of

mitochondrial biogenesis for later use (122). Indeed, TCR

stimulation rapidly drives mitochondrial reworking in CD4+ T

cells. Upon activation by TCR ligation, splenic T cells increase

mitochondrial membrane potentials after 12 hours and robust

mitochondrial biogenesis (mtDNA and mitochondrial mass) after

48 hours (123) (Figure 5B). In accordance with splenic T cell

activation, the mitochondria in activated CD4+ T cells turn into

hyper-fused form after 9 hours and become highly energetic with

re-fragmentation of mitochondrial morphology, enhanced

mitochondrial biogenesis, and accumulated TCA intermediates

after 24-hour exposure to CD3/CD28 antibodies (124)

(Figure 5B). During this early activation, T cells accelerate the

fatty acid biosynthesis and uptake process (125). Meanwhile,

mitochondria rearrange one-carbon metabolism within

mitochondria, which enhances redox homeostasis and promotes

de novo purine biosynthesis (124). After prolonged activation (more

than 96 hours), CD4+ T cells continuously increase mitochondrial

biogenesis and respiration without mROS-induced mitochondrial

dysfunction (126) (Figure 5B). In addition to activation,

mitochondrial biogenesis and fitness also orchestrate immune-

senescence in CD4+ T cells during aging (127). Therefore,
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controlling mitochondrial biogenesis could provide therapeutic

opportunities in resolving CD4+ T cell-mediated inflammation.

Mitochondrial biogenesis is primarily regulated by the nuclear

transcription factor peroxisome proliferator-activated receptor g
coactivator‐1 (PGC‐1) family of transcription coactivators, which

includes PGC1a, PGC1b, and PPRC1 (Figure 5A). PGC1a, together
with NRF-1, initiates the transcription of various mitochondrial

proteins, including mitochondrial transcription factor A (TFAM),

which is then imported into mitochondria (128). Among

mitochondrial nucleoids, TFAM is the most abundant DNA-binding

protein, which functions in mitochondrial DNA stability and

replication. Notably, Tfam mRNA or protein expressions are

remarkably upregulated in CD4+ T cells after 4- or 24-hour exposure

to CD3/CD28 stimulation, respectively (129) in line with

mitochondrial biogenesis.

3.1.1 Mitochondrial transcription factor A
Deficiency of TFAM in CD4+ T cells leads to mitochondrial

dysfunction characterized by reduced mtDNA copy number,

decreased transcription of mitochondrial proteins, and impaired

fatty acid oxidation, despite compensatory increases in

mitochondrial mass. Strikingly, Tfam-deficient CD4+ T cells also

have dysfunctions in transcription factor EB (TFEB)-induced

endolysosomal biogenesis, impaired autophagic flux, and

abnormal accumulation of lipids such as sphingomyelin and

triglycerides (14). Furthermore, the mitochondrial dysfunctions

induced by Tfam deficiency lead to effector T cell differentiation

favoring Th1 cell differentiation under Th1 or Th2 polarizing
A

B

FIGURE 5

Mitochondrial biogenesis and morphology changes during T cell activation. (A) For T cell activation, it is necessary to undergo mitochondrial
biogenesis to meet the energy requirements of the cell. When TFAM is inhibited, energy homeostasis is disrupted, and this results in the polarization
of effector T cells. Additionally, PGC1a/TFAM activation is stimulated by IL-15, which leads to mitochondrial biogenesis. (B) The morphology of
mitochondria in CD4+ T cells changes during TCR-mediated activation as time progresses. TCR, T cell receptor;PGC1a, peroxisome proliferator-
activated receptor-gamma coactivator 1; NRF, Nuclear Respiratory Factor; TFAM, transcriptional factor A mitochondrial; OXPHOS, oxidative
phosphorylation; ATP, Adenosine triphosphate; ROS, Reactive oxygen species; ARS, aminoacyl tRNA synthetase.
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conditions, as well as more pathogenic IFN-g-secreting Th17 cells

(14). Consistent with this, Tfam deletion in regulatory T cells

induces mROS and switches metabolism towards glycolysis (54).

Tregs in the absence of Tfam have significantly reduced Foxp3

expression, which is indispensable for sustaining immune-tolerance

(54). Moreover, Tfam deficiency leads to the development of more

proinflammatory IFN-g (54), IL-13 or IL-17a secreting Tregs (54)

(Figure 5A). Collectively, mitochondrial Tfam in CD4+ T cells

governs mitochondrial fitness, the balance between effector and

regulatory T cells, and autoimmunity. Therefore, it is suggested that

Tfam deficiency in CD4+ T cells is likely to prompt the development

of autoimmune diseases such as IBD. Undoubtedly, CD4-specific

Tfam KO mice are more susceptible to chemical-induced

experimental colitis model using 3% DSS (14) (Table 3). Of note,

CD4-specific Tfam-deficient mice over 2 months of age exhibit

premature aging syndromes with multiple organ dysfunctions

associated with aging (130). Moreover, the infusions of Tfam-

deficient Tregs functionally fail to resolve the accumulation of

pathogenic CD4+ effector T cells in the adoptive T cell transfer

colitis model and accordingly advance disease severity (54)

(Figure 5A; Table 3).

In addition to TFAM, there are more gene sets related to

mitochondrial biogenesis regarding mitochondrial DNA

replication (e.g., Polymerase G and Twinkle) and mitochondrial

transcription (e.g., RNase H1 and mitochondrial aminoacyl-tRNA

synthetase) (131, 132). Yet, none of them have been thoroughly

elucidated in mitochondrial functions and T cell responses.

Recently, one paper shows that T cells with sti mutation (defects

in alanyl-tRNA synthetase) have compromised TCR signal

initiation machinery in T cells (133). Therefore, targeting

mitochondrial biogenesis is still considered a viable option for

IBD therapy and new developments in this field are expected to

appear in the near future.

3.1.2 Interleukin-15
IL-15 is a cytokine known for T cell homeostasis, generation of

memory T cells and prevention from cell death (134–136).

Nevertheless, IL-15 has been recognized as a critical cytokine in

mitochondrial biogenesis in T cells. IL-15-treated CD8+ T cells have

elongated hyper-fused mitochondria with increased mitochondrial

mass (137, 138) and TFAM expression (139) compared to

unstimulated or IL-2 treated CD8+ T cells. In addition, IL-15 has

also been shown to play a central role in CD4+ T cell proliferation

(140), Th17 effector function (141), T helper cell differentiation

(142), and neuronal-autoimmunity (141). Moreover, IL-15

remarkably restored augmented mitochondrial biogenesis (TFAM

and PGC1a expression) (Figure 5A), diminished mitochondrial

mass (mitotracker-green staining), and impaired proliferation in

cycling Tregs of immune non-responder subjects after HIV

infection (143). In addition, deprivation of the IL-15 cytokine

presumably shifts immunosuppressive Foxp3-positive cells to

proinflammatory RORgt-positive cells (55). Collectively, it is

highly affirmative that IL-15 has a possible implication in

controlling mitochondrial biogenesis in CD4+ T cells and its

therapeutic applications in IBD. Although genetic deletion of
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IL-15 (i.e. using IL-15 whole-body KO mice) is not successful in

treating DSS-induced colitis model in mice (144) (Table 3),

adoptive transfer of B6 CD4+ T cells to IL-15-deficient Rag KO

mice induces colonic inflammation compared to the control, and

adoptive transfer of IL-15 receptor-deficient Treg fails to suppress

severe colonic inflammations with extensive mucosa damage in

CD4+ T cell transfer colitis model (55) (Table 3), suggesting a direct

role of IL-15 in colitogenic CD4+ T cells.
3.2 Mitochondrial oxidative
phosphorylation

Mitochondria produces the bioenergetics molecule ATP from

NADH and FADH2 by oxidative phosphorylation via complex I, II,

III, IV, and V. As expanding mitochondrial respiration is a critical

progression during early T cell activation, as mentioned above,

inhibition of mitochondrial respiratory complexes might be helpful

in buffering T cell immune responses (145) and treating T cell–

mediated inflammation such as IBD.

T cell metabolism is strongly influenced by the surrounding

microenvironment, including nutrient (146) and oxygen availability

(147, 148). As a result, the distinct in vivo conditions (characterized by

relatively high lactate and low oxygen levels) and in vitro conditions

(with high glucose and high oxygen levels) inherently lead to different

functionalities of matured T cells. Specifically, in vivo-differentiated

Th17 cells exhibit a higher dependence on OXPHOS, whereas in vitro-

differentiated Th17 cells rely more on aerobic glycolysis. Consequently,

in vivo-differentiated Th17 cells appear to be more sensitive to complex

V inhibitor, oligomycin, treatment (60). In line with this, oligomycin

treatment significantly reduces Th1 proliferation (149), IL-17a
secreting CD3+ T cells, and thereby attenuates TNBS-induced colitis

animal model comparable to the group treated with RORgt inhibitor
ursolic acid (60) (Figure 6; Table 3).

Other mitochondrial respiratory chain complexes I, III, or IV

are also critical in T cell activation and differentiation. Treatment of

rotenone, a complex I inhibitor, significantly attenuates Th1

polarization in CD4+ T cells (149) (Figure 6). Uqcrfs1, a subunit

of complex III, is required to promote excessive mROS production

and IL-2 cytokine secretion in CD4+ T cells (66) (Figure 6).

Moreover, the inhibition of complex IV by CD4+ T cell-specific

deletion of COX10 or treatment of complex IV inhibitor potassium

cyanide impairs mitochondrial respiration, mitochondrial cristae

structure, T cell activation, proliferation, Th1 (13) and Th17

differentiation and results in apoptosis (13, 150) (Figure 6).

Therefore, mitochondrial oxidative respiration is critical in T cell

activation, differentiation, and effector functions, and targeting

mitochondrial oxidative phosphorylation against IBD may have

therapeutic benefits.
3.3 Mitochondrial calcium homeostasis

T cell activation triggers calcium influx that orchestrates

approximately three-quarters of the transcription associated with
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cell cycle, signal transduction, apoptosis, and effector function

(151). Previous literature has utilized blocking or modulating

plasma membrane calcium channels such as transient receptor

potential ankyrin (TRPA), transient receptor potential vanilloid

(TRPV), calcium release-activated calcium modulator (ORAI), and

calcium-activated potassium channel (KCa) in mouse colitis models

(152–161). Moreover, immunosuppressive drugs, cyclosporine A

(162) or FK506 (163), classical inhibitors of calcium-dependent

calcineurin, induce clinical responses in patients with IBD. In

addition, calcium response in human CD45RO+ CD4+ central/

effector memory T cells is greater than in CD45RA+ CD4+ naïve

T cells (164). While it is strongly predictable that manipulating

calcium signaling in T cells could have therapeutic applications, it

has yet to be proven whether maintaining mitochondrial calcium

homeostasis in T cells has any therapeutic benefit for treating IBD.

Mitochondria have been reported to relocate to the immune

synapse (IS) in T cells at early stage of T cell activation (165). When

T cells encounter antigen-presenting cells, they require a large

quantity of ATP to maintain immunological synapse (IS)

architecture as a cellular substrate for immune activities such as

kinase action, motor proteins, and degranulation. In addition, the

mitochondria at the IS support robust calcium channel opening at

the plasma membrane by clearing excess calcium, and thus amplify

the calcium signaling pathway in T cells (166). Nonetheless, this

mitochondrial calcium governs mitochondrial ATP and mROS

production (167) (Figure 7). Three dehydrogenase enzymes

consisting of TCA-cycle (PDH, a-KG dehydrogenase (KGDH),

and isocitrate dehydrogenase (IDH)) are well-known enzymes

directly regulated by mitochondrial calcium (168–170) (Figure 7).

In some cases, mitochondrial calcium plays a role as a weak

uncoupler, perhaps due to the pH gradient (DpH) and membrane

potentials (DY) across the inner membrane (167). The production

of mROS and the maintenance of mitochondrial membrane

potential are essential for effector function at the early T cell

activation. Treatment of mitochondrial-targeted antioxidant
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mitovitamin E or mitochondrial membrane potential depolarizing

agent, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

(FCCP), successfully attenuates IL-2 secretion in CD4+ T cells

(66) (Figure 7). Thus, mitochondrial calcium unquestionably

plays an important role in regulating T cell activation and their

effector functions.

Mitochondrial calcium instability is contributed by

endoplasmic reticulum (ER) calcium deficiency, which transports

approximately 25 to 50 percent of ER calcium release triggered by

caffeine or thapsigargin to nearby mitochondria in mast cells or

myocytes (171). There are two options to control ER calcium for

mitochondrial calcium homeostasis: (i) inhibiting ER calcium

importer to limit the ER-Ca2+ pool or (ii) inhibiting ER calcium

exporter to mitochondria. However, the former approach may not

be helpful to treat colitis. Sarco/endoplasmic Reticulum Calcium

ATPase (SERCA) is a calcium ATPase which transfers the cytosol

calcium into ER. Thapsigargin, an irreversible SERCA inhibitor, is

known to cause ER calcium shortage and markedly enhance Th17

differentiation, likely due to ER stress (172) and amplified Ca2

+/NFAT signaling (64). Non-canonical SERCA inhibitor

phosphoenolpyruvate augments Ca2+/NFAT signaling in Th1

cells as well (64). Furthermore, ER stress and unfolded protein

responses have been associated with IBD (173). Therefore,

mitochondrial calcium controlling requires other strategies

without alleviating ER stress.

Ryanodine receptor (RyR) and IP3R mediate calcium release

from ER to cytosol or mitochondria. Inhibition of RyR by

dantrolene or IP3R by xestospongin C has been shown to restore

thapsigargin-induced ER stress in hepatocytes (174) or islet cells

(175) (Figure 7). Although there are no animal colitis studies or

clinical trials conducted to date, the applications of these inhibitors

for colitis might be worth a try. In T cells, RyR inhibition by

ryanodine or dantrolene successfully attenuates store-operated

calcium entry (SOCE), T cell proliferation and IL-2 production

(176, 177) (Figure 7). IP3R inhibition by xestospongin significantly
FIGURE 6

Targeting Mitochondrial Respiration Complexes for Modulating T Cell Activation and Inflammation. Activation of T cells results in upregulation of the
TCA cycle and OXPHOS, which leads to the generation of oxidative stress. Inhibition of Complex V (such as oligomycin) hinders mitochondrial
respiration and subsequently suppresses T cell activation and proliferation. Other mitochondrial respiratory complexes are also being explored as
potential targets for drugs aimed at reducing T cell inflammation. TCR, T cell receptor; OXPHOS, oxidative phosphorylation; TCA cycle, tricarboxylic
acid cycle;ROS, reactive oxygen species; CytC, Cytochrome C.
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inhibits differentiation of naive T cells to pro-inflammatory Th9

cells (178) (Figure 7).

However, targeting mitochondrial calcium is also a promising

approach. Treatment of mitochondrial calcium uniporter blockers,

Ru360 and Ruthenium red (179), significantly inhibits mROS

production in CD4+ T cells (66) and IFN secretion and cell

proliferation (180). In in vivo TNBS-induced colitis animal model

treatment of ruthenium red remarkably attenuates intestinal

inflammations. Therefore, targeting mitochondrial calcium is

sufficient to decrease T cell effector function and intestinal

inflammation (56) (Figure 7; Table 3).

3.3.1 Mitochondrial calcium uniporter
Mitochondria contain a number of calcium transport channels,

including the mitochondrial calcium uniporter (MCU), which is

sub-localized in the inner membrane of mitochondria (181).

Mitochondrial-mediated Ca2+ uptake plays an important role in

cytosolic Ca2+ buffering in mast cells. Studies have shown that in

MCU-deficient mast cells, antigen-induced beta-hexominidase

release was suppressed, suggesting a role for MCU-mediated

mitochondrial Ca2+ flux in mast cell degranulation (182).

Furthermore, knockdown of mitochondrial MCU has been shown

to reduce cytoplasmic calcium fluctuation and SOCE in mast cells

(183). However, the pathological role of both MCU and MICU1 (a

gatekeeper of MCU-mediated mitochondrial Ca2+ uptake) in T cells

remains poorly understood. Loss of MICU1 has been shown to

generate excessive ROS, delay proliferation, and impair migration
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in HeLa cells (184), Thus, blocking MCU or MICU1 in CD4+ T cells

is likely to result in mitochondrial Ca2+ instability and ROS

generation, leading to suppression of cell proliferation and gut

penetration in pathogenic CD4+ T cells (Figure 7).

3.3.2 Voltage-dependent anion channel
Voltage-dependent anion channel (VDAC) is a mitochondrial

outer membrane transporter, and has been associated with

mitochondrial calcium transport, cell death, and lupus-like

autoimmunity (185). Upon 24-hour T cell activation, VDAC1

expression increases along with the Glut1 and HK2 in PBMC

(186), which are activation signatures of T cells. In addition,

PBMC from patients with coronavirus-A displays mitochondrial

dysfunctions characterized by fragmented mitochondrial

morphology and apoptotic signaling (186).

The efficacy of VBIT-4 and VBIT-12, VDAC inhibitors, has been

documented in treating IBD using DSS- or TNBS-induced colitis

animal models (57–59) (Figure 7; Table 3). Although the detailed

mechanism behind VDAC inhibition has been shown to be associated

with MAVS and inflammasome activation on intestinal epithelial cells

(58), it may normalize mitochondrial calcium imbalance and attenuate

effector functions in pro-inflammatory T cells (186).

3.3.3 Mitochondria-associated membrane
Mitochondria and ER are physically connected to form a junction

called mitochondria-associated membrane (MAM), which provide a

platform for various cellular processes including calcium homeostasis,
frontiersin.or
FIGURE 7

The role of mitochondrial calcium signaling and MAM in controlling T cell activation and differentiation. Under normal physiological conditions,
mitochondria play a critical role in maintaining redox balance and energy metabolism by absorbing local calcium ions. However, during T cell
activation, mitochondria take up cytosolic or ER calcium through the mitochondria-ER associated membrane contact site (MAM), which promotes
TCA cycle, OXPHOS, and oxidative stress production. If mitochondrial calcium is depleted (e.g., using Ru360 or Ruthenium Red), or MAM formation
is inhibited (e.g. using GM-10395, Xestospongin, VBIT-4, VBIT-12, nocodazole), it can suppress T cell activation, proliferation, and differentiation into
effector T cells. ER, endoplasmic reticulum; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase;IP3R, inositol 1,4,5-trisphosphate receptor;HK,
hexokinase;GRP75, glucose-regulated protein 75;PDK4, pyruvate dehydrogenase kinase 4; PDH, pyruvate dehydrogenase; MPC, mitochondria
pyruvate carrier; VDAC, voltage-dependent anion channel; RyR, Ryanodine receptor; FCCP, Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone;
IDH, isocitrate dehydrogenase;KGDH, a-ketoglutarate dehydrogenase.
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autophagy, lipid metabolism, and apoptosis. The MAMs contain

several tethering molecules such as IP3R, VDAC, and GRP75. In

2018, Bantug and colleagues demonstrated the critical role of MAMs in

early activation of effector/memory CD8+ T cells (Figure 7), which

controls effector functions in memory CD8+ T cells through an

immunometabolic reprogramming that involves mitochondrial

respiration, HK binding to VDAC, mTOR/AKT/GSK3b signaling.

Inhibition of MAM formation using nocodazole significantly reduces

mitochondrial respiration, HK expression, mTOR/AKT/GSK3b

signaling pathway, and cytokine secretion (Figure 7). However,

inhibition of mitochondrial calcium does not affect cytokine

production in CD8+ T cells (187).

PDK4 has been identified as a novel modulator of MAM integrity

and mitochondrial quality control (97). Genetic deletion of PDK4 in

activated CD4+ T cells significantly diminishes MAM formation,

SOCE, and mitochondrial calcium transfer compared to control cells.

A novel PDK4 inhibitor, GM-10395, also ameliorates SOCE,

mitochondrial calcium, and T cell activation. The anti-inflammatory

effects of PDK4 suppression have been demonstrated in DSS-induced

colitis animal models and naïve T cell transfer colitis models in vivo

(49) (Figure 7; Table 3).
4 Future perspectives and conclusion

Over the past few decades, a wealth of scientific knowledge has been

generated about the pathophysiology of inflammatory bowel disease

(IBD).While the exact mechanisms behind the onset of IBD are complex

and subject to debate, immune dysregulation between effector T and

regulatory T cells appears to be a major contributing factor.

Experimental studies in IBD have characterized colitogenic T

cells, which undergo rapid metabolic reprogramming when exposed

to an inflammatory environment. This metabolic adaptation, also

known as the Warburg effect, was first observed in cancer cells, but

recent research has shown that cellular metabolism is closely linked

to the activation, differentiation, and functions of CD4+ T cells.

Additionally, mitochondria play a vital role not only in ATP

production, but also in redox balance and Ca2+ signaling in T cells.

In this review, we suggest that metabolic regulation, specifically

targeting the mitochondrial fitness of CD4+ T cells, has the potential

to be a next-generation therapy for autoimmune diseases, such as

IBD. Supporting this approach, preclinical evidence from animal

studies shows that healthy mitochondria from mesenchymal stem

cells can redirect the fate of T cells from Th17 effector to Foxp3+

Treg cell and can also display immunosuppressive effects on animal

models of graft-versus-host disease (188, 189).

Presently, the only clinical trials targeting mitochondria are the

MARVEL studies (Mitochondrial Anti-oxidant Therapy to Resolve

Inflammation in Ulcerative Colitis), NCT04276740, and

NCT05539625, which utilize mitoQ to inhibit mitochondrial ROS.

However, other preclinical studies mentioned in this review, which

have demonstrated successful results, should also be considered for

clinical trials.
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Emerging evidence shows that gut microbiota signaling to

mitochondria plays a pivotal role in maintaining intestinal

homeostasis through metabolic regulation and T-cell activation.

Bacterial metabolites, such as short-chain fatty acids and hydrogen

sulfide, communicate with colonic epithelial and immune cells, and

impact on their metabolic, epigenetic, and genetic functions. However,

this topic is not covered here as it is beyond the scope of the

present review.

However, autoimmune diseases like IBD are complex and

multifactorial, and identifying their etiology can be challenging due

to highly variable symptoms and underlying mechanisms. Despite the

pathological importance of T cells, other immune cells such as

monocytes, macrophages, neutrophils, dendritic cells, and innate

lymphoid cells are also implicated in IBD (190). Metabolic

reprogramming also plays a significant role in their activation and

differentiation (191). Thus, it is important not to overlook the clinical

therapeutic approach towards modulating the metabolic regulation of

these distinct immune cell populations. In addition, personal genetic

backgrounds can also present significant obstacles to developing

effective IBD therapeutics (192). Therefore, future studies should

focus on developing reliable biomarkers for mitochondrial quality

and translating these findings into personalized medication.

Moreover, because mitochondrial fitness is believed to be crucial to

metabolic homeostasis and energy status, combinatorial strategies

using non-drug-based (e.g. diet or lifestyle) or drug-based

medications for metabolic syndromes in conjunction with current

IBD medications could have a profound impact on patients with IBD,

especially those who have reached a plateau in drug efficacy. With

continued research in this area, we can look forward to a future where

patients with IBD have more effective and personalized

treatment options.
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