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Potential therapeutic targets of
macrophages in inhibiting
immune damage and
fibrotic processes in
musculoskeletal diseases
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Yuehong Li1, Zijia Feng1 and Changfeng Fu1*

1Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China, 2Department
of Gastroenterology, The First Hospital of Jilin University, Changchun, China
Macrophages are a heterogeneous cell type with high plasticity, exhibiting

unique activation characteristics that modulate the progression and resolution

of diseases, serving as a key mediator in maintaining tissue homeostasis.

Macrophages display a variety of activation states in response to stimuli in the

local environment, with their subpopulations and biological functions being

dependent on the local microenvironment. Resident tissue macrophages

exhibit distinct transcriptional profiles and functions, all of which are essential

for maintaining internal homeostasis. Dysfunctional macrophage

subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute

to the pathogenesis of diseases. In skeletal muscle disorders, immune and

inflammatory damage, as well as fibrosis induced by macrophages, are

prominent pathological features. Therefore, targeting macrophages is of great

significance for maintaining tissue homeostasis and treating skeletal muscle

disorders. In this review, we discuss the receptor-ligand interactions regulating

macrophages and identify potential targets for inhibiting collateral damage and

fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for

modulating macrophages to maintain tissue homeostasis.
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1 Introduction

The hallmark features of musculoskeletal disorders include persistent pain, tissue

damage, and limited mobility (1, 2). Therefore, suppressing chronic inflammation and

immune responses that cause collateral tissue damage in skeletal muscle disorders, as well

as fibrosis resulting from the progression to the terminal stages of the disease, are important

therapeutic targets for treating musculoskeletal disorders (3–5).
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Macrophages comprise an incredibly diverse and heterogeneous

group of cells (6). As their microenvironment constantly changes,

macrophages are subject to various regulatory mechanisms that

modulate their functional states to new set points in response to

tissue alterations or environmental challenges (7, 8). Macrophages

of different subpopulations and functional states play crucial roles

in the pathogenesis and recovery of various musculoskeletal

disorders (9). However, current treatments for musculoskeletal

disorders do not always effectively restore the function of affected

tissues, and existing therapeutic approaches lack specificity,

necessitating the development of personalized, targeted treatment

methods (10). The emergence of personalized treatment strategies

in cancer therapy, such as immune checkpoint therapy (e.g., PD-1,

PD-L1, and CTLA-4 inhibitors) and adoptive T cell therapy (e.g.,

CAR-T cells), provides inspiration for personalized treatment of

musculoskeletal disorders (11, 12). The remarkable clinical success

of immune checkpoint therapy and adoptive T cell therapy, as well

as the improved understanding of immune cell biological functions,

has greatly spurred interest in the field of targeted immunotherapy

for musculoskeletal disorders (13–15).

Macrophages are central pathophysiological links in many

disease states, such as the chronic inflammation and immune

responses caused by their persistent activation, leading to the

continuous progression of conditions like Osteoarthritis (OA),

Rheumatoid arthritis (RA), and Systemic lupus erythematosus(SLE)

(16, 17). Moreover, some studies have reported that macrophages in

Systemic Sclerosis (SSc) can transform into myofibroblasts, playing

an important role in the terminal stages of musculoskeletal disorders

(18). In this review, we discuss recently discovered targets and

mechanisms involving macrophage receptor-ligand interactions

that activate or inhibit collateral tissue damage and fibrosis, as well

as some ongoing clinical studies targeting macrophages for the

treatment of musculoskeletal disorders. We aim to identify

potential therapeutic targets for suppressing macrophage-induced

collateral tissue damage and fibrosis.
2 Roles of macrophage
subpopulations in immune-
inflammatory injury and
pathological fibrosis

Macrophages play a crucial role in the initiation and resolution

phases of inflammation, immune response, and pathological

fibrosis in musculoskeletal system diseases (Figure 1) (19, 20).

Monocyte-derived macrophages can differentiate into various

macrophage phenotypes upon recruitment to tissues (21, 22).

Changes in macrophage subpopulations and functions during

inflammation and immune response are continuous, but

corresponding surface markers are lacking (23). Therefore, in

diseases of the musculoskeletal system, it is common to classify

the course of the disease into different stages, namely, the initial

stage of the acute phase, the inflammatory phase, the progressive

phase of the subacute period, and the degenerative stage of the

chronic period (24, 25). At different stages of the disease,
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musculoskeletal diseases exhibit dist inct cl inical and

pathophysiological features (26). For instance, during the acute

phase, which is often accompanied by severe inflammatory

responses, pain, and functional impairment, symptoms usually

manifest as pain, redness, increased heat, and restricted function.

At this stage, macrophages promote inflammatory responses by

secreting inflammatory mediators such as tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), and interleukin-6 (IL-6).

However, the progressive, subacute, and degenerative stages often

accompany the ongoing progression of the disease and regressive

changes, mainly manifesting as persistent chronic inflammation

and tissue fibrosis (27, 28). Researchers typically classify

macrophages into M1 pro-inflammatory and M2 anti-

inflammatory macrophages based on their phenotypic and

functional characteristics.
2.1 Abnormal function of M1 macrophages
and their impact on immune
inflammatory injury

Abnormal phagocytosis of M1 macrophages in autoimmune

diseases may lead to imbalanced inflammation and immune

responses (29). In various autoimmune diseases, such as

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),

and multiple sclerosis (MS), activation of M1 macrophages and

sustained pro-inflammatory responses may exacerbate disease

progression (30).
2.1.1 Abnormal phagocytic function of M1
macrophages and immune inflammatory injury

Efficient phagocytosis by macrophages limits the release of

intracellular PAMPs driving inflammation, thereby maintaining

immune homeostasis (31, 32). In musculoskeletal diseases such as

RA and SLE. The expression of inhibitory receptors, such as TIM-3,

PD-1, CD32b, and CD200R, can suppress the activation and

phagocytic function of macrophages by binding to corresponding

ligands (33, 34). As a result, the phagocytic capacity of macrophages

against pathogens and cell debris is inhibited [28;29]. Additionally,

cytokines like IL-4, IL-10, and TGF-b, along with metabolic

substances such as lipopolysaccharide (LPS) and high-density

lipoprotein (HDL), can induce macrophage polarization towards

M2 phenotype, and suppress macrophage activation and phagocytic

function by binding to specific receptors (35–37). Furthermore,

macrophage phagocytic capacity for pathogens and cellular debris is

inhibited (38, 39). Impaired macrophage phagocytosis promotes the

accumulation of uncleared apoptotic or necroptotic cells in

autoimmune diseases (40). Increased apoptotic cells promote the

production of autoantigens and antibodies, further exacerbating

inflammation (41). M1 macrophages produce large amounts of pro-

inflammatory cytokines, such as tumor necrosis factor-a (TNF-a),
interleukin-1b (IL-1b), and interleukin-6 (IL-6), which intensify

inflammation and cause tissue damage, playing a key role in chronic

inflammation in RA, where their release of inflammatory cytokines

leads to joint damage and disease worsening (42).
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2.1.2 Abnormal aggregation of M1 macrophages
and disruption of immune tolerance

Abnormal accumulation of M1 macrophages may lead to the

breakdown of immune tolerance, exacerbating the body’s attack on

its own tissues (43, 44). The aberrant accumulation of M1

macrophages can regulate immune responses and tissue damage

by affecting the activation and function of T cells (45, 46). In certain

autoimmune musculoskeletal diseases, such as rheumatoid arthritis

(RA), systemic lupus erythematosus (SLE), and multiple sclerosis

(MS), the activation and accumulation of M1 macrophages lead to

excessive Th1 and Th17 responses, thereby exacerbating tissue

inflammation and damage (47–49). M1 macrophages produce
Frontiers in Immunology 03
large amounts of pro-inflammatory cytokines (such as TNF-a,
IL-1b, and IL-6), causing massive release of PAMPs, thereby

intensifying inflammation and tissue damage (50, 51). M1

macrophages can stimulate cell apoptosis, increase vascular

permeability, and recruit more immune cells by producing

inflammatory chemokines (such as CCL-2, CCL-3, and CXCL-

10), creating a vicious cycle that further exacerbates the course of

autoimmune diseases (29, 52, 53). Therefore, interventions

targeting the recruitment and abnormal accumulation of M1

macrophages may have potential value in the treatment of

musculoskeletal diseases such as RA, SLE, and MS (17, 54).

Furthermore, in some fibrosis-related musculoskeletal diseases
FIGURE 1

Macrophage-induced immune-inflammatory injury and pathological fibrosis in musculoskeletal disorders. Macrophage phagocytic function is
impaired in musculoskeletal disorders, thereby inhibiting the clearance of apoptotic cells. Increased apoptotic cells promote the production of
autoantigens and antibodies, exacerbating inflammation. Moreover, macrophages promote the migration and abnormal activation of T cells,
including increased Th1/Th17 differentiation and downregulated Treg differentiation, ultimately leading to B cell abnormal activation. Imbalance in
M1/M2 macrophage ratio also participates in autoimmunity. Abnormal M1 macrophage activation promotes the production of pro-inflammatory
cytokines, such as IL-6, iNOS, TNF-a, and IL-1b, thereby promoting inflammation in target organs. Reduced M2 polarization impairs the production
of anti-inflammatory cytokines and immune tolerance. Additionally, M2 macrophage receptor-ligand interactions can also cause epithelial-to-
mesenchymal transition (EMT) and fibrosis in autoimmune diseases (e.g., SSc).
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such as scleroderma (SSc), the abnormal polarization of M2

macrophages leads to an overactive TGF response, thereby

promoting pathological tissue fibrosis (55).
2.2 Abnormal immunoregulatory function
of macrophages and their impact on
immune tolerance

Macrophages, vital components of the immune system, can

activate T cells and regulate their function (56). However, an

abnormal M1/M2 macrophage ratio may disrupt the immune

balance, leading to overactivation or suppression of the immune

system and potentially causing disruption of Immune Tolerance

(57, 58).

2.2.1 Abnormal antigen-presenting function
of macrophages and disruption of
immune tolerance

Macrophages are vital antigen-presenting cells (APCs) that can

activate T cells by expressingmajor histocompatibility complex (MHC)

molecules and presenting antigen fragments to T cell receptors (TCRs)

(56). Macrophages can also regulate T cell polarization and function by

expressing co-stimulatory molecules like CD80/CD86 and CD40, and

by secreting cytokines such as IL-12 and IL-23 (56, 59). Macrophages

can differentiate into different subtypes based on various stimulating

factors and microenvironment conditions. M1 macrophages exhibit

pro-inflammatory and immune-activating functions, promoting Th1

and Th17 cell differentiation and activation through the production of

pro-inflammatory cytokines like IL-12 and IL-23 (60, 61). Conversely,

M2 macrophages demonstrate anti- inflammatory and

immunoregulatory functions, augmenting the function of regulatory

B cells and regulatory T cells (Trg), and inhibiting Th1 and Th17 cell

proliferation and differentiation through the production of anti-

inflammatory cytokines like IL-10 and TGF-b (62). Moreover,

studies have shown that the small protein RELMa, secreted by M2

macrophages, plays a crucial role and mechanism in IL-4-induced

inflammatory responses. A deficiency in RELMa leads to a significant

reduction in the number of FoxP3+ regulatory T cells. Macrophages

expressing RELMa can directly promote the proliferation of regulatory

T cells, thus limiting type 2 inflammatory responses (63).

2.2.2 Abnormal immunoregulatory function
of macrophages and disruption of
immune tolerance

Abnormal innate immune response is an important cause of the

collapse of autoimmune tolerance and macrophages are crucial

components of the innate immune system (64). M2 macrophages

possess strong anti-inflammatory and immune tolerance properties

(6, 44). M2a, M2b, and M2c macrophages are anti-inflammatory

intermediate macrophage subpopulations with immunoregulatory

functions, mainly regulating inflammation and immune responses

and participating in tissue repair and regeneration through the

production of factors such as TGF-b, IL-6, and IL-10 (8, 53). M2a

macrophages can enhance immune tolerance by secreting anti-
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inflammatory cytokines such as IL-10 and TGF-b, which induce T

cells to polarize toward Th2 and inhibit T cell immune responses

(65, 66). M2b macrophages are capable of secreting high levels of

IL-10 and TGF-b and low levels of IL-12, which strongly regulate

immunity and have anti-inflammatory effects. They inhibit the

activation and differentiation of T cells such as Th1 and Th17

and NK cells, thereby reducing the risk of diseases such as

autoimmune myositis (65, 67). Moreover, IgG4 can induce the

transformation of M2a macrophages to an M2b-like phenotype by

cross-linking the FcgRIIb receptor, thereby enhancing their ability

to inhibit T cells (68). M2c macrophages can also induce immune

tolerance by expressing inhibitory ligands such as PD-L1 to inhibit

the activation and proliferation of T cells (68).Therefore, abnormal

M1/M2 macrophage ratios may disrupt immune balance, leading to

excessive activation or suppression of the immune system and,

consequently, musculoskeletal diseases (17, 54). Macrophage

migration and abnormal activation are related to T cell activation

(53), including M1 macrophages producing pro-inflammatory

cytokines like IL-12 and IL-23, which promote Th1 and Th17 cell

differentiation (6). Conversely, M2 macrophages produce anti-

inflammatory cytokines such as IL-10 and TGF-b, significantly
enhancing the regulatory function of regulatory B cells, increasing

Treg cell generation, and limiting T cell proliferation and

differentiation into Th1 and Th17 cells (57, 58).
2.3 Abnormal function of M2 macrophages
and their impact on tissue fibrosis

M2 macrophages are a macrophage subpopulation with tissue

repair functions (44, 69, 70). If the factors causing tissue injury are

not resolved, tissue inflammation induces macrophage polarization

towards M2 type through IL-4 and IL-13-triggered signaling

pathways such as STAT6 (8).

2.3.1 Abnormal function of different M2
macrophage subsets and their impact on
tissue fibrosis

M2a macrophages have the ability to inhibit inflammatory

responses, promote tissue repair, and fibrosis. However, if

persistently overactivated, they could lead to excessive tissue

reconstruction and scar formation, resulting in pathological

fibrosis.M2a macrophages express factors like TGF-b1, PDGF,
and matrix metalloproteinases (71). These factors can promote

the activation of myofibroblasts and the deposition of extracellular

matrix, leading to fibrosis (71). In another study, it was found that

M2a macrophages release exosomes containing factors such as

TGF-b1, PDGF, and matrix metalloproteinases during

pathological fibrosis (72). These factors can regulate the activation

of myofibroblasts and deposition of extracellular matrix

components, resulting in tissue fibrosis, promoting smooth

muscle cell migration and adhesion, and causing vascular

remodeling and pathological fibrosis (72–74). Moreover, research

has found that by inhibiting histone deacetylase (HDAC) with

Trichostatin A (TSA), the expression of pro-inflammatory and pro-
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fibrotic molecules in M2a macrophages can be reduced. This

process also inhibits the activation of myofibroblasts, alleviating

pathological fibrosis (75). It has been observed that M2b

macrophages can mitigate tissue fibrosis by significantly

inhibiting the proliferation, migration, and differentiation into

myofibroblasts (MFs) of cardiac fibroblasts (CFs) through the

suppression of the mitogen-activated protein kinase (MAPK)

signaling pathway. Furthermore, they reduce the expression of

fibrosis-related proteins such as collagen protein I (COL-1) and

a-smooth muscle actin (a-SMA). This suggests that M2b

macrophages may be utilized in protective treatments against

pathological fibrosis (76, 77). M2c macrophages are generally

considered to be macrophages with anti-inflammatory and tissue

repair functions. However, if overactivated after an injury, M2c

macrophages could promote excessive scar formation and fibrosis.

They can lead to pathological fibrosis by enhancing the epithelial-

mesenchymal transition of interstitial cells (78). Furthermore, by

significantly reducing the M2c subgroup of M2 type macrophages

through targeting M2 macrophages, pulmonary fibrosis can be

effectively improved (79). Therefore, different subgroups of M2

type macrophages have dual immunomodulatory functions in

musculoskeletal diseases. They can both inhibit autoimmune

responses and promote tissue repair, but may also cause excessive

fibrosis, atrophy, and disruption of immune tolerance.
3 Potential targets of macrophage
receptor-ligand interactions

Macrophages are highly plastic and heterogeneous cells that utilize

various surface receptors and secreted molecules to monitor and

respond to environmental changes (51). Studies on receptor-ligand

interactions between macrophages and other components of the

immune microenvironment have identified key interactions that

regulate macrophage function and abundance, maintaining tissue

homeostasis and suppressing autoimmune inflammation and fibrosis

(29, 80). Therefore, we have outlined a series of macrophage receptor-

ligand interactions with therapeutic potential as potential treatment

targets (Figure 2), along with their signaling pathways, biological

benefits, and preclinical/clinical trials (Table 1).
3.1 Recruitment and aggregation:
regulation of macrophage cell abundance

Recruitment and accumulation of macrophages are related to

the prognosis and treatment effects of musculoskeletal disorders.

The accumulation of macrophages in blood vessels and interstitial

tissue is a significant feature of acute and chronic inflammatory

musculoskeletal disorders (9). Macrophages that accumulate in

damaged musculoskeletal tissues are primarily derived from bone

marrow monocytes (107), and their local proliferation is a

characteristic of inflammatory damage (108).

Various chemokines (such as CCL-2, CCL-5, CXCL-9, CXCL-

10) and cytokines (such as IL-4, IL-10, IL-13, IL-1, TGF-b) play
Frontiers in Immunology 05
roles in the recruitment and polarization of macrophages (44, 109–

111). Chemokine axes like CCL-2-CXCR-2, CCL-5-CCR-5, and

CSF-CSF-1R, and cytokine interactions like IL-10-IL-10R, TGF-b-
TGF-bR play key roles in the recruitment and function of

suppressive macrophages (110, 112–114). These studies

demonstrate the importance of monocyte recruitment for the

generation of M1 pro-inflammatory macrophages (31–33) and

establish that infiltration of M1 pro-inflammatory macrophages is

a major cause of tissue damage in musculoskeletal disorders (115–

117) and establish that infiltration of M1 pro-inflammatory

macrophages is a major cause of tissue damage in musculoskeletal

disorders (34–36). In preclinical studies, targeting these pathways

has led to a significant reduction in the recruitment and

accumulation of blood monocytes (85, 118, 119). In preclinical

studies, targeting these pathways has led to a significant reduction

in the recruitment and accumulation of blood monocytes (120,

121). The reduction of macrophage infiltration, inhibition of

immune cell arrival at the site of inflammation, and suppression

of inflammatory responses can mitigate tissue damage (51, 81, 84).

Although there are clear reasons to target CCR-5, clinical studies on

patients with active rheumatoid arthritis (RA) have shown that oral

CCR-5 antagonist AZD5672 provides no clinical benefits,

suggesting that the use of CCR-5 antagonists alone is unlikely to

be a viable treatment strategy for RA (82).

Research shows that M1 macrophages play a key role in the

development of Duchenne muscular dystrophy (DMD). Inhibiting

CCR-2 suppresses the recruitment of inflammatory monocytes

(precursors of M1 macrophages) and slows the progression of

DMD (83). In addition, patients with tenosynovial giant cell

tumors caused by genetic translocation-induced CSF1

overexpression have shown clinical efficacy when treated with the

CSF-1R inhibitor pexidartinib, with an ORR of 39% (86). However,

the use of IL-1a/b inhibitors as monotherapy for treating knee

osteoarthritis with synovitis has limited therapeutic effects (122,

123). The suboptimal therapeutic effect of macrophage chemokine

blockade might be due to the heterogeneity of macrophage

populations in the immune microenvironment and the

differential effects of these targeting strategies (51, 124).

Furthermore, the activation of the complement cascade can

drive the recruitment of monocytes to damaged tissues, resulting in

the deposition of complement component C3b and the local release

of effective chemotactic molecules C3a and C5a (125). The

complement system plays a role in promoting macrophage

recru i tment in chronic inflammatory demyel inat ing

polyneuropathy (CIDP), generating a pro-inflammatory

environment and mediating demyelination (126–128).
3.2 Phagocytic Checkpoint Receptor-
Ligand Interactions

Macrophages’ phagocytosis and clearance of apoptotic cells are

essential for suppressing autoimmune diseases (129). In

musculoskeletal disorders such as rheumatoid arthritis (RA) and

systemic lupus erythematosus (SLE), the expression of
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phagocytosis-related receptors on macrophages (e.g., Fc receptors

and complement receptors) may change, thereby affecting their

phagocytic capacity (130, 131).

Anti-phagocytic signals in tissue cells, such as CD47 and CD24,

interact with signal regulatory protein-alpha (SIRP-a) and sialic

acid-binding immunoglobulin-like lectin 10 (SIGLEC10), both of

which are highly expressed on monocytes and macrophages,

leading to the inhibition of macrophages’ phagocytic function

towards apoptotic cells (88, 132). For example, CD47 acts as a

self-marker on red blood cells, interacting with SIRPa on

macrophages to inhibit the phagocytosis of red blood cells (87).
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Although immune checkpoint therapy is primarily used for

cancer treatment, its application in autoimmune diseases has been

explored in recent years (133–135). Therefore, CD47-SIRPa axis-

targeted therapies are currently being investigated in various clinical

trials, with blockade of this pathway enhancing macrophages’ ability

to phagocytose and clear apoptotic cells (136, 137). Studies using

mouse models of autoimmune diseases have found that CD47-SIRPa
and CD24-SIGLEC10 polymorphisms affect macrophages’

phagocytosis of apoptotic cells, suggesting that modulating the

CD24-SIGLEC10 axis may have potential value in various

musculoskeletal disorders (87, 88). Although there are not yet
FIGURE 2

Targeting macrophage receptor-ligand interactions. Macrophage functions are regulated by various receptor-ligand interactions, which have been
grouped according to their roles in macrophages: regulating macrophage cell recruitment, modulating phagocytic activity, activating macrophage
immune functions, inhibiting macrophage immune functions, and regulating macrophage fibrotic activity. CCR2: C-C chemokine receptor type 2;
CCL: Chemokine (C-C motif) ligand;IL-10R: Interleukin-10 receptor;IL-10: Interleukin-10;TGF-bR: Transforming growth factor-beta receptor;TGF-b:
Transforming growth factor-beta;CSF1R: Colony-stimulating factor 1 receptor;CSF: Colony-stimulating factor;SIRP a: Signal regulatory protein a;
CD47: Cluster of differentiation 47;GPR84-GNB2: G protein-coupled receptor 84 - G protein subunit beta 2;ADMAP: Adhesion and degranulation
promoting adapter protein;SIGLEC10: Sialic acid-binding immunoglobulin-like lectin 10;CD24: Cluster of differentiation 24;LILRB: Leukocyte
immunoglobulin-like receptor, subfamily B;MHCI: Major histocompatibility complex class I;PPAR: Peroxisome proliferator-activated receptor;IL-33R:
Interleukin-33 receptor;IL-33: Interleukin-33;LRP5/6: Low-density lipoprotein receptor-related protein 5/6;WNTpro: Wnt protein;Frizzled pro:
Frizzled protein;PDGFR: Platelet-derived growth factor receptor;PDGF: Platelet-derived growth factor;Sialec: Sialic acid-binding immunoglobulin-
type lectin;TREM2: Triggering receptor expressed on myeloid cells 2;MARCO: Macrophage receptor with collagenous structure;SR-A: Scavenger
receptor class A;TIM-3: T cell immunoglobulin and mucin-domain containing-3;LAIR: Leukocyte-associated immunoglobulin-like receptor;LILRB:
Leukocyte immunoglobulin-like receptor, subfamily B;TNF: Tumor necrosis factor;PRRS: Porcine reproductive and respiratory syndrome;TLR10:
Toll-like receptor 10;PAMPS/DAMP: Pathogen-associated molecular patterns/Damage-associated molecular patterns.
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Preclinical/Clinical Studies References

tion
tory

Inhibition of CCR2 suppresses recruitment of
inflammatory monocytes (precursors of M1
Macrophages) and slows the progression of
DMD

(81)

Blood Oral CCR5 antagonist AZD5672 shows no
clinical benefit in the treatment of RA

(82)

Clinical efficacy observed with pexidartinib, a
CSF1R inhibitor, in the treatment of
tenosynovial giant cell tumor, with an ORR of
39%

(83)

Reduction in macrophage infiltration,
inhibition of immune cell migration to
inflammatory sites, and suppression of
inflammation contribute to tissue damage
attenuation

(84)

Importance of monocyte recruitment in the
generation of M1 pro-inflammatory
macrophages

(85)

ry
Limited therapeutic effect as a monotherapy in
treating knee osteoarthritis with synovitis

(86)

Inhibition of macrophage phagocytosis of
erythrocytes; increased macrophage clearance
of apoptotic cells by blocking ITIM pathway

(87)

une
une

\ (88)

(Continued)

Z
h
u
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
3
.12

19
4
8
7

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
7

Regulatory
Types

Receptor-
Ligand

Receptor
Categories

Major
Receptor

Distribution

Signaling
Pathways

Macrophage
Polarization

Biological Effects

Recruitment
Regulation

CCR2- CCL2 GPCR monocyte、
Macrophage

PI3K/Akt;MAPK:
ERK1/2、JNK、
p38;NF-kB

Induction of M1-
type Macrophage
Polarization

Promoting M1 Macrophage Forma
and Migration; Inducing Inflamma
Response and Tissue Damage.

CCR5- CCL5 GPCR T cells、
Macrophage、
DC

PI3K/Akt;MAPK:
ERK1/2、JNK、
p38;NF-kB

Induction of M1-
type Macrophage
Polarization

Recruitment and Accumulation of
Monocytes

CSF1R- CSF Single-pass
Transmembrane
Receptor of RTK

Macrophage PI3K/Akt、
MAPK:ERK1/2、
JNK和p38、JAK/
STAT

Induction of M1-
type Macrophage
Polarization

M1 Pro-inflammatory Macrophage
Infiltration as a Major Cause of
Musculoskeletal Tissue Damage

IL10R- IL10 Transmembrane
Proteins of Type II
Cytokine Receptor
Family

Macrophage、
T cells、NKC

JAK/STAT Induction of M2-
type
Macrophage,
Inhibition of
M1-type
Macrophage
Activation

Anti-inflammatory and Immune-
regulatory Functions; Maintaining
Immune Homeostasis

TGFbR-TGFb RSK Family Receptors Macrophage、
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Dependent
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Inhibition of
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Macrophage
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Strong Pro-inflammatory Effects;
Potential Uncontrolled Inflammato
Response and Tissue Damage

Phagocytic
Checkpoints

SIRPa- CD47 Transmembrane
Proteins of
Immunoglobulin
Superfamily

Macrophage、
DC、neuron

SHP-1 and SHP-2
PTP Pathway via
ITIM

Indirect Effects
on Macrophage
Polarization

Decreasing Macrophage Phagocytic
Activity in the Immune
Microenvironment

SIGLEC10-
CD24-

CD24:Glycoprotein
SIGLEC10:
Transmembrane

CD24:广泛分布

SIGLEC10:
SHP-1 and SHP-2
PTP Pathway via
ITIM

Indirect Effects
on Macrophage
Polarization

Anti-phagocytic, Inhibition of Imm
Cell Activation; Prevention of Imm
Cell Overactivation
r
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Paridiprubart shows potential for rheumatoid
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matrix metalloproteinases MMP-1 and MMP-
3, cartilage and synovial proliferation, acute
phase inflammation markers CRP and ESR,
pro-inflammatory cytokine production in
monocyte-derived macrophages, and increase
phagocytic function
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CD40L monoclonal antibody Toralizumab
blocks CD40 signaling, providing protection in
multiple sclerosis and potential treatment for
systemic lupus erythematosus
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Immunoglobulin
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DC、B cells
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\ Induction of M1-
type Macrophage
Polarization

Decreasing Macrophage Phagocytic
Activity in the Immune
Microenvironment

LILRB1-MHC I Inhibitory Receptors
of the Leukocyte
Immunoglobulin-like
Receptor Family
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monocyte、DC

SHP-1 and SHP-2
PTP Pathway via
ITIM

Indirect Effects
on Macrophage
Polarization

Inhibiting Macrophage Activation,
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Microenvironment, Preventing Imm
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Homeostasis

Immune
Stimulation

PRRs-PAMP/
DAMP

TLRs、CLRs、
NLRs、RLRs
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DC
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kB and IRF
Signaling
Pathways; NLRs
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Caspase-1 Pathway

Induction of M1-
type Macrophage
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and Type I Interferon Production

TLR4- LPS/
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Dependent
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and MAPK
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Activation of TLR4 Signaling May L
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TNFR- TNF TNFR1 Widely
distributed、
TNFR2:
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endothelial
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TNFR1 Activation
of Downstream
NF-kB, MAPK,
PI3K/Akt, and
JNK Signaling
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Induction of M1-
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Inducing Inflammatory Response,
Causing Immune Damage
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of the Tumor Necrosis
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CD40:T cells、
B cells、
Macrophage、
DC.
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p38 MAPK
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TREM2 plays a key role in modulating
microglial function and neuroinflammation;
TREM2 mutations or functional defects are
closely related to the onset and progression of
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MARCO+ monocytes are potent effector cells
for skin and lung fibrosis in SSc, with their
presence correlating with disease onset and
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SR-A plays a key role in chronic inflammatory
diseases; SR-A neutralizing antibody is a
potential candidate drug for improving
rheumatoid arthritis-associated osteolysis
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mediated inflammatory responses
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Immune
Suppression

TREM2-
Anionic
molecules

Transmembrane
Immunoglobulin,
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Triggering Receptor
Family (TREM
Family)

Macrophage、
Microglial cells

Activation of SYK,
PI3K/AKT, and
ERK Signaling
Pathways via TAM

Induction of M2-
type Macrophage
Polarization

Inhibiting Inflammatory Response,
Suppressing Pro-inflammatory Cyto
Production in Macrophages, Increa
Arginase 1 Expression, and Express
IFNg to Inhibit T-cell Function,
Promoting Neuroprotection and
Regulating Cell Survival

MARCO-
Polyanionic
ligands

Transmembrane
Glycoprotein, Member
of the Scavenger
Receptor Family

Macrophage
(Especially on
the surface of
plasma cell like
macroscopic).

Induction of M1-
type Macrophage
Polarization

Regulating Macrophages, Leading to
Inhibition of Natural Killer Cell and
cell Activation, and Increased Infiltr
of Regulatory T-cells (Treg Cells),
Exhibiting Immunosuppressive Fun
in the Immune Microenvironment

SR-A—
macromolecular
ligand

Transmembrane
Glycoprotein, Member
of the Macrophage
Scavenger Receptor
Family

Macrophage MAPK、NF-kB
、JAK/STAT

Induction of M1-
type Macrophage
Polarization

Participating in the Clearance of
Endogenous Waste, Alleviating
Inflammatory Response, and Inhibi
Immune Damage through Suppress
T-cell Function

TIM3- galectin
9

Transmembrane
Immunoglobulin,

Member of the TIM
Family

Macrophage、
TC、DC、
NKC、BC,

Induction of M2-
type Macrophage
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Inhibiting the Activation and Effect
Functions of T-cells and Other Imm
Cells, Limiting the Development of
Chronic Inflammation and Immune
Damage

Siglec- sialic
acid

Transmembrane
Glycoprotein, Member
of the Siglec Family
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Monocyte

ITIM-Mediated
Activation of
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Inhibition
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\ Inhibiting Inflammatory Response a
Cytokine Production, Reducing
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and Chemotaxis, Regulating T-cell
Antigen-Presenting Cell Interaction
Suppressing Immune Damage
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ines IL-13 and TGF-b1, Leading to
logical Fibrosis Development

Polarized M2 macrophages produce IL-13 and
TGF-b1, enhancing profibrotic cytokine
production and promoting fibrosis onset and
progression
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tly Regulating Macrophage
ation without Affecting Infiltration,
ively Counteracting Inflammation
ibrosis Disease Progression

PPAR agonists effectively counteract
inflammation and disease progression,
improving tissue inflammation and fibrosis

(103)
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ation Exacerbating Inflammatory
nse, Leading to Fibrosis
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In some fibrotic diseases, CCL2/CCR2
signaling has been implicated in the
pathological process, and its inhibition has
therapeutic potential
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ating Macrophages and Inducing
blasts to Transition to a Pro-fibrotic
ated State

Consistent antifibrotic activity of TGFb-
blocking agent pirfenidone in various animal
models
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lasts, and extracellular matrix
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Drugs and small molecule inhibitors targeting
the Wnt signaling pathway have shown
therapeutic effects in animal models of fibrotic
diseases; inhibition of Wnt signaling has
antifibrotic therapeutic potential
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many clinical trial reports on CD24-SIGLEC10-targeted therapies for

autoimmune diseases, existing research provides a foundation for

further exploration in this field (88, 138). In the future, more studies

and clinical trials may focus on the application of CD47-SIRPa and

CD24-SIGLEC10 axes in autoimmune diseases.

Despite the promise of CD47 and SIRPa as clinical targets, the

widespread expression of CD47 has led to different off-target effects

and responses, posing challenges for the development of clinical

treatments targeting these molecules (139, 140). Recent research has

identified additional phagocytic checkpoints that alter

macrophages’ phagocytic function. One such checkpoint is the G-

protein coupled receptor GPR84 and its signaling partner GNB2,

which interact with the anti-phagocytic factor APMAP expressed

on tissue cells, resulting in enhanced phagocytosis in APMAP-

deficient cells (89, 141, 142). When APMAP is knocked out, the

level of CD47 on the cell surface decreases, making it easier for

macrophages to recognize and engulf them (89, 143). Adipocyte

plasma membrane-associated protein (APMAP) is ubiquitously

expressed in all cell lines and various types of musculoskeletal

disorders (89), APMAP deficiency synergizes with CD47-blocking

monoclonal antibodies to enhance phagocytic function, promotes

the engulfment of apoptotic cells, suppress antigen presentation-

induced autoimmune responses, limit immune-inflammatory

damage, and contribute to tissue homeostasis maintenance (144–

146). Another phagocytic checkpoint is the LILRB1 on the surface

of macrophages, which is an inhibitory immunoglobulin-like

receptor. It can bind to MHC class I molecules expressed on

tissue cells, reducing macrophages’ phagocytic activity in the

immune microenvironment (90, 147, 148). Thus, these newly

discovered receptor-ligand interactions may become important

therapeutic targets in the future.
3.3 Immunoregulation

Similar to the modulation of T cells through the activation and

inhibition of checkpoint receptors, the immunostimulatory and

immunosuppressive roles of macrophages are also regulated by

various modulatory molecules (30, 149, 150). Macrophages express

multiple receptors that interact with various ligands on different

cells in the immune microenvironment, which have been shown to

reduce the extent and duration of inflammatory responses and, in

some cases, contribute to the resolution of fibrosis (16, 84). In this

section, we discuss the newly discovered macrophage activation and

inhibitory receptors that may play important roles in limiting

immune damage in musculoskeletal disorders.
3.3.1 Immune stimulatory receptor-
ligand interactions

The activation of M1 macrophages is mainly stimulated by

pathogen-associated molecular patterns (PAMPs) and cytokines

produced by Th1 cells, such as interferon-g (IFN-g). Type I and II

interferon responses mediate immune damage responses through

intrinsic cellular cytotoxicity and immune activation (70, 151, 152).

Pattern recognition receptors (PRRs) are primarily expressed on
Frontiers in Immunology 11
antigen-presenting cells (APCs), including macrophages and

dendritic cells (153, 154). The interaction between PRRs and

PAMPs/DAMPs activates macrophages and dendritic cells, leading

to the expression of pro-inflammatory cytokines and other

immunoregu l a to ry mo l e cu l e s and enhanc ing the i r

immunostimulatory effects (154–156).

Co-stimulatory molecules of the tumor necrosis factor (TNF)

receptor superfamily play an essential role in initiating T cell

responses in dendritic cells (DCs) (157–159). Pro-inflammatory

cytokines can be induced in macrophages by stimulating Toll-like

receptor 7 (TLR7) and TLR9 with CL097 or the interferon gene

stimulator (STING) (160, 161). Preclinical studies have shown that

activation of PRRs can cause immune damage (91, 162), suggesting

that these PRRs are essential targets for immunotherapy (91,

155).TLR agonists are critical targets for immunotherapy because

they bridge the gap between the innate and adaptive immune

systems (92, 163). Currently, ligands for different members of the

TLR family are being studied as potential therapeutic agents, both as

monotherapies and in combination with other immunotherapies.

Paridiprubart (NI-0101) is a humanized anti-TLR4 monoclonal

antibody (93). Paridiprubart has potential in rheumatoid arthritis

research by promoting macrophage apoptosis and inhibiting Th1

responses to reduce macrophage accumulation (93). Adalimumab,

an anti-TNF biologic antirheumatic drug, has been shown in vitro

to block the interaction of TNF with p55 and p75 cell surface TNF

receptors, reduce the concentrations of matrix metalloproteinase

MMP-1 and MMP-3, reduce cartilage and synovial proliferation,

and decrease the concentrations of acute-phase inflammatory

reactants (CRP and ESR), reduce the production of pro-

inflammatory cytokines by monocyte-derived macrophages and

increase phagocytosis (164–166), all of which alleviate the

inflammatory response and limit immune damage.

MHCII and co-stimulatory molecules expressed on

macrophages (such as CD40, CD80, and CD86) promote T cell

activation (92, 167). CD40L-CD40 binding can activate dendritic

cells (DCs), and activated DCs promote T cell differentiation and

trigger effective CTL responses by enhancing the expression of B7

molecules and the secretion of cytokines such as interleukin-12 (IL-

12) (168, 169). Various STING and CD40 agonists are also being

tested in clinical trials, either as monotherapies or combination

therapies. Bleselumab (ASKP 1240) is a human anti-CD40

monoclonal antibody (mAb) that binds human CD40 with high

affinity and inhibits immune responses by blocking the interaction

between CD40 and its ligand CD40L (170, 171). Ruplizumab (BG

9588) is a humanized monoclonal anti-CD40L (TNF Receptor)

IgG1 antibody with potential for use in systemic lupus

erythematosus research (94). Toralizumab (IDEC-131) is a

humanized monoclonal antibody (mAb) targeting CD40L

(CD154) that specifically binds to human CD40L on T cells,

thereby blocking CD40 signaling. Toralizumab, as an

immunosuppressive agent, has been shown to be safe and

effective in multiple sclerosis research (172), and also has

potential for use in active systemic lupus erythematosus (SLE)

research. Therefore, it is necessary to better understand the

mechanistic basis of their modes of action to optimize their

immunotherapeutic efficacy. When developing therapeutic
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strategies targeting these receptors, factors such as the duration of

receptor-ligand interactions, the type of exposed cells, and the

nature of the inflammatory environment in the immune

microenvironment should be carefully considered.

3.3.2 Immune inhibitory receptor-
ligand interactions

Inhibitory receptors on macrophages suppress the activation of

pro-inflammatory myeloid cells, skewing their function towards an

immunosuppressive phenotype. M2 macrophages primarily create

an anti-inflammatory environment in the immune milieu by

producing anti-inflammatory cytokines, such as IL-10 and TGF-

b, which help maintain tissue homeostasis (173, 174). Their

activation is mainly regulated by cytokines produced by Th2 cells,

such as IL-4 and IL-13 (51, 175). In this section, we highlight several

novel inhibitory receptors with promising therapeutic potential.

PRR-dependent immune injury responses are mainly driven by

interferons. However, other studies have shown that interferons can

also exert immunosuppressive effects (176–178). Chronic interferon

signaling can increase the expression of immune checkpoint ligands

such as PDL1 and PDL2 and immunosuppressive molecules,

thereby limiting immune injury (179, 180). Scavenger receptors

are widely expressed on immune cells, particularly macrophages,

and exert immunosuppressive effects through phagocytosis and

regulation of inflammatory responses (181). In the immune

microenvironment, TREM2-mediated signaling pathways in

macrophages suppress the production of pro-inflammatory

cytokines, increase the expression of arginase-1, and express IFNg
to inhibit T cell function (182–184). In neuromuscular system

neurodegenerative diseases, the TREM2 receptor on macrophages

plays a crucial role in regulating microglial function and

neuroinflammation. Mutations or functional defects in TREM2

are c lose ly re lated to the onset and progress ion of

neurodegenerative diseases (95, 185). MARCO interacts with

multiple anionic ligands, including nucleic acids, anionic proteins,

and lipids, modulating macrophages, inhibiting the activation of

natural killer cells and T cells, and increasing the infiltration of

regulatory T cells (Tregs), indicating its suppressive function in the

immune microenvironment (96, 186). Moreover, research shows

that the MARCO+ macrophage subpopulation is associated with

driving the onset and progression of diffuse cutaneous systemic

sclerosis (SSc), and MARCO+ monocyte-derived macrophages are

potent effector cells causing tissue fibrosis (96, 187). SR-A

(Scavenger Receptor-A) participates in the clearance of

endogenous waste and alleviates inflammatory responses by

inhibiting signaling pathways such as NF-kB and MAPK, and

suppresses immune injury by inhibiting T cell function. Thus,

targeting these scavenger receptors may be a promising approach

(97, 188, 189). Blocking SR-A with an anti-SR-A neutralizing

antibody may offer a hopeful treatment strategy for bone

destruction in RA (97). In addition, some receptors of the

immunoglobulin family have been found to promote inhibitory

functions. For example, TIM-3 (T cell immunoglobulin and mucin

domain-containing protein 3) is mainly expressed on T cells (CD4+

Th1, CD8+ subsets), macrophages, and dendritic cells (190). When
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TIM-3 binds to its ligand galectin-9, it inhibits the activation and

effector functions of T cells and other immune cells, thereby

exerting immunosuppressive effects (191, 192). In addition to its

inhibitory effects on Th1 cells, recent compelling experiments have

emphasized the indispensable role of TIM-3 in bone marrow cell-

mediated inflammatory responses (98). The Siglec family (Sialic

Acid-Binding Immunoglobulin-like Lectins), such as Siglec-9, upon

interaction with ligands, suppresses inflammatory responses and

cytokine production, reduces the migration and chemotaxis of

neutrophils and macrophages, and regulates the interaction

between T cells and dendritic cells, further inhibiting immune

responses (193–195). Siglec-15 is an immune receptor that plays

multiple roles in osteoclast development, bone resorption, and

macrophage-mediated T cell immune responses, serving as a

potential target for the treatment of osteoporosis (99, 196).

Additionally, LILRB2 and LILRB4, along with the related receptor

Leukocyte-Associated Immunoglobulin-like Receptor 1 (LAIR1),

are involved in the recruitment of Treg cells and regulation of

macrophage function in the immune microenvironment (197, 198).

LAIR-1 is highly expressed in CD14(+) mononuclear cells and local

CD68(+) macrophages in the synovial tissue of RA patients. Upon

TNF-a stimulation, LAIR-4 expression in helper T cells (Th)1 and

Th1 CD2(+) T cells from healthy donors is reduced. These results

suggest that LAIR-1 exerts distinct functions on T cells and

mononuclear cells/macrophages and indicates that LAIR-1 may

be a novel therapeutic target for RA (100).

The aforementioned preclinical studies demonstrate that

targeting these receptors can reverse the immune damage effects in

various musculoskeletal diseases and restore tissue homeostasis,

suggesting the potential of these receptors as macrophage-specific

targets for monotherapy or in combination with other

immunotherapeutic drugs. Consequently, various monoclonal

antibodies targeting biomolecules produced by macrophages can be

used as therapeutic options for RA. Notably, both inhibitory and

activating receptors are widely expressed in various immune and

non-immune cell subpopulations in the immune microenvironment.
3.4 Fibrosis regulation

Musculoskeletal diseases are characterized by limited activity

due to fibrosis, such as systemic sclerosis, which is a musculoskeletal

disease characterized by fibrosis of various tissues (199). Multiple

studies have linked the fibrotic features of M2 macrophages to the

pathogenesis of this disease. Myofibroblasts are generated from

various sources, including the epithelial/endothelial-to-

mesenchymal (EMT/EndMT) transition process, as well as

circulating fibrocyte-like cells derived from bone marrow stem

cells (200). Activated M2 macrophages are particularly abundant

in the blood and skin of patients with systemic sclerosis and have

been shown to be potential major sources of fibrosis. Tissue fibrosis

is an aberrant pathological process involving excessive extracellular

matrix (ECM) deposition, resulting in impaired tissue structure and

function (201). Macrophages play a crucial role in fibrosis, and

macrophage receptors and ligands associated with fibrosis are being
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investigated as potential targets for anti-fibrotic drugs. Although

current treatments for fibrotic diseases such as idiopathic fibrosis,

systemic sclerosis, and musculoskeletal disease fibrosis typically

target inflammatory responses, increasing evidence suggests that

mechanisms driving fibrosis differ from those regulating

inflammation (202).

Platelet-derived growth factor (PDGF) is a critical pro-fibrotic

factor that binds to the PDGF receptor on the surface of

macrophages, activating fibroblast proliferation and migration,

thereby increasing ECM synthesis (203). Platelet-derived growth

factors (PDGFs) occupy a central role in SSc-related fibrosis and

represent potential molecular targets for systemic sclerosis (SSc)

(199, 204). Receptor/ligand analysis of macrophage-mesenchymal

progenitor cell (MPC) cross-talk reveals that under fibrotic

conditions, transforming growth factor-b (TGF-b) is enhanced,

while platelet-derived growth factor (PDGF) signaling is enhanced

under regenerative conditions (101) providing targets for fibrosis

treatment. Interleukin-13 (IL-13) is a Th2 cell factor that can

activate the JAK-STAT pathway by acting on the IL-13 receptor

on the surface of macrophages, promoting M2 macrophage

polarization and leading to the development of pathological

fibrosis (205, 206). IL-33 is a novel pro-fibrotic cytokine that

signals through ST2, recruiting and directing inflammatory cell

function and enhancing pro-fibrotic cytokine production through

polarization of M2 macrophages in an ST2- and macrophage-

dependent manner, generating IL-13 and TGF-b1, thereby

promoting the onset and progression of fibrosis (102).

Peroxisome proliferator-activated receptors (PPARs) are

important regulators of metabolism and inflammation (207, 208).

PPARs can directly modulate macrophage activation without

affecting infiltration, effectively counteracting inflammation and

fibrosis progression (209). The pan-PPAR agonist lanifibranor has

been shown to effectively improve tissue inflammation and fibrosis

(103). C-C motif chemokine ligand 2 (CCL-2) binds to C-C motif

chemokine receptor 2 (CCR2), promoting macrophage aggregation

at damaged tissues. Macrophage infiltration exacerbates the

inflammatory response, further promoting fibrosis development.

Studies have shown that chemokine receptors CCR-2 and CX3CR1

regulate skin fibrosis in cytokine-induced systemic sclerosis mouse

models, suggesting that blocking C-C motif chemokine ligand

(CCL-24) or CCL-2 to inhibit monocyte recruitment may be an

attractive new therapy to limit SSc fibrosis manifestations (104).

Transforming growth factor-b (TGF-b) is the most important

cytokine in the pro-fibrotic process (210, 211). Macrophages

express TGF-b receptors on their surface, which, upon binding to

TGF-b, can activate macrophages and induce fibroblast

transformation into a pro-fibrotic activated state. TGF-b signaling

is considered a key pathway in almost all types of fibrosis (212).

CCL-2/CCR-2 interactions also induce fibrosis via the TGF-b
pathway (104). Since the approval of pirfenidone, targeting TGF-

b signaling has been anticipated as an effective treatment for fibrosis

(105, 212). The Wnt ligand Wnt3a enhances IL-4 or TGF-b1-
induced M2 macrophage polarization. Wnt/b-catenin signaling

works in conjunction with TGF-b signaling during fibrosis; TGF-

b signaling can induce the expression of Wnt/b-catenin superfamily

members and vice versa (106, 213). Drugs and small molecule
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inhibitors targeting the Wnt signaling pathway have demonstrated

some efficacy in animal models of fibrotic diseases (106). Thus,

inhibiting the Wnt signaling pathway may have therapeutic

potential for anti-fibrotic treatment. These receptor-ligand

interactions affecting fibrosis may become a suitable and

promising therapeutic strategy in the future. As for the Wnt/b-
catenin signaling pathway, some small molecule inhibitors have

been developed, among which MSAB is an effective and selective

inhibitor of Wnt/b-catenin signal transduction. MSAB binds with

b-catenin, promoting its degradation and specifical ly

downregulating Wnt/b-catenin target genes (214). TGFb1-IN-1
(Compound 42) is an effective orally active inhibitor of TGF-b1.
TGFb1-IN-1 inhibits the upregulation of fibrosis markers (a-SMA

and fibronectin) induced by TGF-b1, making it suitable for fibrotic

disease research. In vivo studies have shown that TGFb1-IN-1
inhibits TGF-b1-induced tissue damage and fibrosis, suppresses

the activation of epithelial-mesenchymal transition (EMT), and

improves the immune microenvironment of tissues (215). In

clinical settings, the effects of these inhibitors vary across different

diseases and conditions. Some early studies indicate that inhibitors

of the Wnt/b-catenin and TGF-b signaling pathways, such as SSc,

have shown some efficacy in certain musculoskeletal diseases (215).

However, there have yet to be large-scale, randomized controlled

trials to verify the effectiveness and safety of these drugs in a

clinical setting.
4 Targeted macrophage
therapeutic strategies

Chimeric antigen receptor T (CAR-T) cell therapy has achieved

evolutionary success in hematologic malignancies and has

expanded its application to solid tumors (216). However, adoptive

T-cell therapy (ACT) for autoimmune diseases requires a high

degree of specificity to avoid attacking healthy tissue and identifying

and targeting pathogenic T-cell subpopulations remains

challenging (217). Furthermore, in musculoskeletal diseases, the

therapeutic goal is to restore immune system balance rather than

simply enhancing or suppressing immune responses.

We have summarized the key approaches for utilizing

genetically engineered macrophages in the treatment of

musculoskeletal disorders (Figure 3). Genetically engineered

macrophages (GEMs) may minimize the impact on the immune

microenvironment and improve both innate and adaptive immune

responses, making them suitable for treating musculoskeletal

diseases such as rheumatoid arthritis and systemic lupus

erythematosus (218, 219). Lentiviral expression systems have been

validated for generating transduced monocytes and monocyte-

derived macrophages, and transgene expression has been

demonstrated to be stable over several weeks to months in vitro

and in mouse xenograft models of GBM (220). GEMs employ the

clustered regularly interspaced short palindromic repeats

(CRISPR)/Cas9 system for gene editing to correct gene mutations

and improve disease, such as by expressing TGF-bR or IL-10R to

modulate immune cell activation (221–223). Modulation of
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immune responses is also possible by using the CRISPR system to

knock out genes that cause aberrant activation of cytotoxic cell

functions, including IL-10R and PD-1R (224, 225). These results

suggest that GEMs are an ideal approach for manipulating the

immune microenvironment and suppressing immune damage.

CARs may potentially contribute to the treatment of some

common musculoskeletal genetic mutation diseases, such as cystic

fibrosis and amyotrophic lateral sclerosis.

Furthermore, the use of epigenetic RNA interference (such as

miRNA or lncRNA) can specifically reduce the expression of

particular receptors (226). This approach is achieved by

degrading the target gene’s miRNA, thereby affecting receptor

protein synthesis. The exploration and pathway analysis of

microRNAs (miRNAs) have paved the way for discovering

potential therapeutic targets (226, 227). miRNAs are small non-

coding oligonucleotides characterized by their role in gene

regulation, transcription, and immune modulation mechanisms

(228). Research on lncRNAs has underscored their importance as

both immune markers of active disease progression and immune

modulators of innate processes such as apoptosis and autophagy
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(229). Epigenetic silencing of miRNAs remodels macrophages

through receptor expression or paracrine secretion of cytokines,

such as macrophage migration inhibitory factor (230).

In addition to engineering macrophages to express cell surface

receptors, research has also focused on modulating the expression

of ligand cytokines that regulate the immune microenvironment

and immune cell activation (231, 232). Genetically engineered

macrophages secreting anti-inflammatory cytokines, such as

interleukin-4 (IL-4) and interleukin-10 (IL-10), effectively reach

the primary site, significantly alleviate inflammatory responses, and

protect tissue cells from LPS-induced functional impairment,

suggesting that these engineered macrophages may have

inhibitory effects on inflammatory damage (233, 234).

Furthermore, in preclinical models, macrophages carrying

engineered particles containing interferon-g (referred to as

“backpacks”) exhibit enhanced phagocytic activity in the immune

microenvironment, polarizing macrophages towards a pro-

inflammatory phenotype, resulting in sustained phagocytic

function enhancement and reduced self-antigen presentation

(235, 236).
FIGURE 3

Genetically engineered macrophages for the treatment of musculoskeletal disorders. There are three major categories of genetically engineered
macrophages (GEMs): firstly, those with engineered cell surface molecules, including increased expression of membrane regulatory receptors and
MOTO-CAR with TGF-bR or IL-10R receptor signaling domains, to modulate immune cell activation, reduce immune-inflammatory injury, or
enhance macrophage phagocytic checkpoints for apoptotic cell clearance, and reduce autoantigen presentation and immune-inflammatory injury;
secondly, those engineered to secrete inflammatory mediators and cytokines, such as increasing the secretion of immunoregulatory cytokines IL-4/
10 to enhance immune cell regulation and limit interferon-a (IFNa) secretion, restricting immune-inflammatory injury; finally, those that can silence
the expression of immune-stimulating receptors through epigenetics, alleviating the stimulatory effect on activated immune cells and reducing
immune-inflammatory injury.
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Concerning these strategies, future research may continue to

explore how to apply these methods in clinical settings, such as using

macrophage-based therapies in musculoskeletal diseases or other

inflammatory diseases. In addition, further research is needed on

how to precisely manipulate the polarization and function of

macrophages in vivo, such as by developing new drugs or cell

therapies. Overall, the field of genetically engineered macrophages

has opened an exciting avenue for targeting the immune damage

microenvironment in musculoskeletal diseases. However, the

heterogeneity and plasticity of macrophage subpopulations need to

be carefully analyzed in clinical and preclinical models to optimize

specific clinical responses.
5 Conclusion and perspectives

In this review, we have focused on the various functions of

macrophage receptor-ligand interactions, which serve as potential

targets for immune-related musculoskeletal disease therapies.

However, the development of such therapies is challenged by

increasing complexity on several levels.

First, all these receptor-ligand interactions are intricately

interconnected. On the one hand, macrophage receptors, upon

stimulation by ligands such as cytokines or other molecules,

activate or inhibit a series of signaling pathways, thereby

influencing macrophage polarization and function. On the other

hand, the polarization state and function of macrophages can also

affect the expression of their surface receptors, which in turn further

influences receptor-ligand interactions (237).

For instance, receptor-ligand interactions regulate multiple aspects

of macrophage polarization and function, including aggregation,

phagocytosis, and macrophage-derived products that, in turn,

regulate receptor-ligand interactions (51, 73). A second, largely

unexplored area is the determination of specific macrophage

phenotypes in particular etiologies or pathological processes by

selectively altering macrophage phenotype and function (29, 70).

Lastly, the persistence of macrophage-directed therapy effects is a

prominent challenge that will impact whether macrophage-targeted

therapies can serve as standalone treatments or only in conjunction

with other forms of therapeutic targets (238). Crosstalk among these

receptors in the immune microenvironment must be considered to

enhance efficacy and minimize off-target toxicological effects.

Additionally, due to the marked diversity and expression of human

and murine myeloid cell subpopulations, the relevance of inhibiting

receptors in human myeloid cell subpopulations requires

careful evaluation.

Macrophage-targeted therapy has several undeniable advantages in

the treatment of musculoskeletal diseases: first, macrophages can

suppress excessive immune responses and restore immune system

balance in the treatment of musculoskeletal diseases through the release

of anti-inflammatory cytokines and promotion of regulatory T-cell

proliferation, among other pathways (44, 239). Second, macrophages

exhibit high plasticity and can differentiate into subtypes with distinct

functions and phenotypes in response to environmental signals and

stimuli. By modulating macrophages ex vivo, they can be directed to

differentiate into immune-regulatory phenotypes, ultimately improving
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musculoskeletal disease conditions (8). Lastly, macrophage therapy

allows for personalized treatment plans for each patient. Ex vivo

modulation and genetic engineering of macrophages can provide

patient-specific treatment strategies to address different types of

musculoskeletal diseases, enhancing specificity for disease treatment

while minimizing the impact on healthy tissues (240, 241).

In conclusion, the field of immune therapy for musculoskeletal

diseases has already provided benefits to many patients, and these studies

will enable the next wave of musculoskeletal disease immunotherapies

targeting macrophage subpopulations to further enhance immune

responses and clinical outcomes. The beneficial effects of adoptive

polarized macrophage transfer therapy are currently being evaluated,

with significant improvements observed in several different animal

models. Another promising strategy is the treatment of autoimmune

diseases with miRNA-based epigenetic therapies. The high plasticity of

macrophages allows them to alter their effector functions, and therefore,

they can potentially be manipulated to inhibit chronic inflammatory

immune damage and fibrotic processes.
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