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Nanotechnology-enhanced photodynamic therapy (PDT) and immunotherapy

are emerging as exciting cancer therapeutic methods with significant potential

for improving patient outcomes. By combining these approaches, synergistic

effects have been observed in preclinical studies, resulting in enhanced immune

responses to cancer and the capacity to conquer the immunosuppressive tumor

microenvironment (TME). Despite challenges such as addressing treatment

limitations and developing personalized cancer treatment strategies, the

integration of nanotechnology-enabled PDT and immunotherapy, along with

advanced photosensitizers (PSs), represents an exciting new avenue in cancer

treatment. Continued research, development, and collaboration among

researchers, clinicians, and regulatory agencies are crucial for further

advancements and the successful implementation of these promising

therapies, ultimately benefiting cancer patients worldwide.

KEYWORDS

nanotechnology, photodynamic therapy, immunotherapy, photosensitizers, cancer
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1 Introduction

In 2020, there will be approximately 19.3 million new cases of cancer and 10 million

cancer-related deaths globally, making cancer the primary cause of death (1). Surgical,

chemotherapeutic, and radiotherapeutic interventions are the traditional cancer treatment

approaches. Although significant advancements have been made in cancer treatment, these
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conventional methods frequently result in serious side effects, limited

therapeutic efficacy, and the development of drug resistance (2).

Consequently, there is an ongoing need for innovative and effective

cancer treatment approaches.

PDT is a minimally invasive cancer treatment that uses a PS, a

particular wavelength of light, and oxygen to generate reactive oxygen

compounds that can cause tumor cell death (3). Upon absorbing a

photon, a PS transitions from its ground state (S0) to an excited

singlet state (S1 or S2). The S2 state quickly decays to S1 via internal

conversion, and the unstable S1 either emits light (fluorescence) or

generates heat, or may even undergo intersystem crossing to a more

stable triplet state (T1). T1, with a longer lifetime, can lead to

phosphorescent emission and energy transfer to O2 to generate

singlet oxygen (1O2) – a process referred to as type II PDT.

Alternatively, T1 can react with intracellular substrates to form

radicals that further react with H2O or O2 to produce other

reactive oxygen species (ROS) like hydroxyl and superoxide

radicals - known as the type I PDT process. In most cases, the

predominant photosensitizing mechanism involves the formation of
1O2, causing PDT destruction to biological tissues and cells (4).

PDT has demonstrated promising results in the treatment of

different malignancies, including superficial bladder cancer, early

and obstructive lung cancer, Barrett’s esophagus, head and neck

cancers, and skin cancer (4, 5). Immunotherapy, on the other hand,

aims to harness the immune system of patients to combat cancer by

activating the immune system’s cells to recognize and eliminate

cancer cells (6). Several immunotherapy approaches, including

immune checkpoint inhibitors, cancer vaccines, and adoptive T

cell therapy, have demonstrated remarkable effectiveness in the

treatment of malignancies like melanoma and non-small cell lung

cancer (7, 8). Although immune checkpoint therapy offers

numerous advantages, a considerable proportion of patients with

different cancer types do not respond effectively to immune

checkpoint inhibitors (9). This lack of sensitivity can be attributed

to their tumors’ low immunogenicity, which limits the therapeutic

potential of this approach for these particular patients (10, 11).

Recent studies have highlighted the potential synergistic effects of

combining PDT and immunotherapy (12). PDT can induce

immunogenic cell death (ICD), which promotes the release of tumor

antigens and enhances the activation of antigen-presenting cells (13,

14). This process can stimulate a robust immune response and improve

the efficacy of immunotherapy (15, 16). Furthermore, combining PDT

and immunotherapy can overcome the limitations of each individual

treatment modality, such as the hypoxic TME in PDT and the low

response rates of some patients to immunotherapy (17).

Nanotechnology is now recognized as a promising instrument for

improving the delivery, efficacy, and safety of cancer therapeutics,

including PSs and immunotherapeutic agents (18). The integration of

PDT and immunotherapy has resulted in promising advances in

cancer treatment (19–21). The use of nanotechnology to improve the

safety and effectiveness of PSs and immunotherapeutic agents has

opened new avenues for further exploration. This article provides a

thorough analysis of the applications of nanomedicine in PDT and

immunotherapy. In addition, this article also discusses the advantages
Frontiers in Immunology 02
of nanomedicines as PSs. Finally, the challenges and prospective

future developments in the field of nanomedicine-driven

photodynamic tumor immunotherapy are highlighted.
2 PSs for PDT

2.1 First-generation PSs

The pioneering PSs, known as first-generation PSs, largely

comprise hematoporphyrin derivative (HpD) and Photofrin.

Hematoporphyrin was one of the first agents discovered to have

photosensitizing properties and was later developed into HpD and

Photofrin to enhance its effectiveness in PDT (3). HpD and Photofrin

are complexes of various porphyrin derivatives. The primary

characteristic of these PSs is the presence of porphyrin structures,

which absorb light, particularly in the red region of the electromagnetic

spectrum, and interact with molecular oxygen to generate ROS that

induce cell death (22). Despite their effectiveness in causing photo-

damage to cells, these first-generation PSs have limitations. They have a

relatively weak absorption at therapeutic wavelengths (>600 nm),

limiting the depth of tissue penetration. Moreover, these agents also

have low tumor selectivity, leading to damage to healthy tissues.

Prolonged skin phototoxicity is another drawback, with patients

becoming sensitive to light for several weeks after treatment (23).
2.2 Second-generation PSs

Due to the drawbacks of the first-generation PSs, more research

was conducted on the second-generation PSs with strong 1O2

production and near-infrared (NIR) activation. Second-generation

PSs include both porphyrinoid and non-porphyrinoid compounds

(Figure 1) (24). The former consists of macrocyclic structures like

porphyrin, chlorins, bacteriochlorins, phthalocyanines, pheophorbides,

bacteriopheophorbides, Porphycene, and texaphyrins, whereas the

latter comprises anthraquinones, phenothiazines, xanthenes,

cyanines, and curcuminoids (24). Metalated derivatives such as

aluminum phthalocyanine tetrasulfonate (AlPcS4), Si (IV)-

naphthalocyanine (SiNC), zinc phthalocyanine (ZnPC), and tin ethyl

etiopurpurin (SnET2) are also included, although metalation doesn’t

consistently enhance photodynamic activity (25). Second-generation

PSs are superior to HpD in terms of 1O2 quantum yields, tumor-to-

normal tissue concentrations, and antitumor effects (26). They also

offer practical advantages like shorter tissue accumulation time,

enabling same-day treatment and making PDT more convenient for

out-patient procedures. Furthermore, these PSs exhibit a reduced

window of cutaneous photosensitivity (27). Several factors, including

lipophilicity, the type and number of charged groups, charge-to-mass

ratio, and the type and number of ring and core substituents, influence

the properties of the PSs (28). Most of the second-generation PSs,

particularly those with porphyrin ring structures, are hydrophobic,

affecting their administration, biodistribution, and pharmacokinetic

profile (11). Although hydrophobicity enables cellular penetration,
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extreme hydrophobicity could cause aggregation in aqueous solution,

compromising its pharmacokinetics and photophysical properties.

Moreover, it could restrict solubility in physiological solvents and

body fluids, thus limiting clinical applications. Hence, a balance

between hydrophilicity and lipophilicity is critical for a clinically

successful PS. This balance can be achieved by introducing

hydrophilic polar substituents in the lead PS structure to synthesize

amphiphilic derivatives. Other modifications, such as oxidation,

extension, or modification of the porphyrin ring system to carry a

central ion, can also enhance photophysical and pharmacological

properties (29).
2.3 Third-generation PSs

Present research primarily focuses on the development of

third-generation PSs that are expected to enhance tumor

specificity, minimize generalized photosensitivity, and be

ac t i va ted wi th longer -wave l eng th l i ght (30) . These

improvements could be accomplished by modifying existing
Frontiers in Immunology 03
PSs with biological conjugates like peptides, antibodies, or

antisense molecules for tumor-specific targeting, or by

chemically conjugating or encapsulating PSs in efficient

delivery vehicles or carriers (31–33). In essence, these third-

generation PSs represent advancements over their second-

generation counterparts in terms of improved delivery and

targeting abilities. Specifically, they are designed to bind

selectively to tumor cells or elements of the TME, consequently

boosting tumor localization while reducing phototoxicity to

healthy tissue.
3 Nanotechnology in PDT

Nanotechnology has emerged as a promising instrument for

enhancing the delivery, efficacy, and safety of PSs in PDT (4). The

application of nanoparticles as carriers of drugs offers several

advantages, including improved solubility and stability, controlled

drug release, and tumor-specific delivery of PSs (34). Additionally,

targeted delivery of PSs and immunotherapeutic agents can be
frontiersin.org
FIGURE 1

Structures of some second-generation PSs (24). Reproduced with permission from (24).
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achieved using nanoparticles functionalized with specific ligands or

antibodies, which can reduce off-target toxicity and enhance

therapeutic efficacy (35). Nanoparticle-based systems have also

been used to co-deliver PSs and immunotherapeutic agents,

leading to a more potent and coordinated antitumor immune

response (36, 37).
3.1 Organic nanoparticles

Organic nanoparticles like micelles, liposomes, and dendrimers

have been extensively investigated for PS delivery in PDT.

Liposomes are spherical vesicles composed of phospholipid

bilayers, which can encapsulate both hydrophilic and

hydrophobic PSs (38). Micelles are self-assembled aggregates of

amphiphilic molecules that can solubilize hydrophobic PSs within

their hydrophobic core (39). Dendrimers are highly branched, tree-

like polymers with a high degree of molecular uniformity and

tunable surface functional groups, which can be used to conjugate

PSs (39). Chen et al. developed a hybrid protein oxygen nanocarrier

with chlorine e6 (Ce6) for oxygen self-sufficient PDT, which

substantially decreased tumor hypoxia and improved the efficacy

of PDT and the infiltration of CD8+ T cells at the cancer location

(40). The increased PDT caused strong ICD and effectively

inhibited primary tumors and suppressed pulmonary metastasis

by stimulating more dendritic cells (DCs), NK cells, and cytotoxic T

lymphocytes (CTLs) by increasing the release of damage-associated

molecular patterns (DAMPs) (Figure 2A). A recent study improved

the efficacy of PDT by using oxygen-laden hemoglobin (Hb) loaded

auxiliary liposomes in conjunction with indocyanine green (ICG)

modified gold nanospheres (41). Upon reaching the hypoxic tumor

environment, the oxygen is rapidly released from the Hb, aiding the

ICG in generating robust ROS and enhancing the immune

response’s intensity (Figure 2B).
3.2 Inorganic nanoparticles

Inorganic nanoparticles, such as gold nanoparticles, silica

nanoparticles, and quantum dots (Figure 3), have also been

investigated for PS delivery (45, 46). Gold nanoparticles

(AuNCs) can be easily functionalized with various ligands and

PSs, allowing for targeted delivery and controlled release (47).

Silica nanoparticles are highly biocompatible and can be modified

with various functional groups to improve PS loading and release

(43). Quantum dots, semiconductor nanoparticles with size-

tunable optical properties, can act as both PSs and imaging

agents in PDT (44). Manganese dioxide (MnO2) can stimulate

the overproduction of hydrogen peroxide in tumor cells, resulting

in the production of oxygen (48). Additionally, AuNCs act as

intrinsic inorganic PSs that can induce ROS production, and the

use of gold-based nanomedicines can enhance the effectiveness of

other PSs in PDT due to the presence of a localized electric field

(42, 49).
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4 Advanced PSs for PDT

4.1 Nanoparticles improve PS properties

4.1.1 Enhanced solubility and stability
Many PSs exhibit poor solubility and stability in aqueous

environments, which can limit their clinical application.

Nanoparticles can improve the solubility and stability of PSs by

encapsulating them within their hydrophobic core or conjugating

them to the nanoparticle surface (50, 51). For example, liposomal

formulations of the PS verteporfin have shown improved solubility

and stability, resulting in enhanced PDT efficacy in preclinical

studies (52). Huang et al. designed a dual-functional drug

conjugate comprised of protoporphyrin IX and NLG919, a strong

indoleamine-2,3-dioxygenase (IDO) inhibitor, to enhance the

biocompatibility and tumor accumulation of the drug conjugate

(PpIX-NLG@Lipo) (Figure 4A). In vitro and in vivo experiments

demonstrated the strong ROS generation ability of PpIX-NLG@

Lipo, which directly damages cancer cells through PDT.

Concurrently, PpIX-NLG@Lipo induces ICD to stimulate the

host immune system. Moreover, by interfering with IDO activity,

PpIX-NLG@Lipo amplifies PDT-induced immune responses,

resulting in an increased infiltration of CD8+ T lymphocytes at

the tumor site and ultimately inhibiting both primary and distant

tumors (53).

4.1.2 Controlled release and distribution
Nanoparticles can be designed for controlled payload

release, which improves the therapeutic index of PDT by

maintaining optimal PS concentrations at the tumor site (56). By

incorporating stimuli-responsive nanoparticles that release their

payload in response to specific triggers, such as pH, temperature,

or light, the spatiotemporal control of PS release can be further

enhanced (57). This approach can potentially overcome the

aggregation-caused quenching (ACQ) effect often seen in PDT, as

well as increase the efficacy of the treatment by facilitating ROS

diffusion (58, 59). Nanosized metal-organic Frameworks (nMOFs)

incorporate PSs as structural units, producing adjustable and

permeable structures that surmount the ACQ effect and permit

significant PS loads (60, 61). These permeable structures not only

efficiently disperse PSs but also promote ROS diffusion, thus

improving the efficacy of PDT (58, 62). Cai et al. developed in

situ tumor vaccines composed of MOF-based nanoparticles

(PCNs), immunologic adjuvants (CpG), and hypoxia-inducible

factor inhibitors (acriflavine) (54). To accomplish superior tumor

targeting, the PCN-CpG-acriflavine surface was coated with

hyaluronic acid (HA) to identify the increased CD44 receptor on

the surfaces of tumor cells. In the research they conducted, self-

assembled PCNs were made up of zirconium ions and H2TCPP,

and the well-dispersed H2TCPP inside the framework counteracted

the ACQ effect, resulting in equivalent PDT efficacy. In addition, the

complementary impact of PDT-generated tumor-associated

antigens (TAAs) and CpG resulted in robust immune responses

(Figure 4B). Zhang et al. developed a hybrid cytomembrane (FM)-
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coated nMOF for photoactivatable immunotherapy of cancer to

further enhance immune responses. FMs originate from DCs and

tumor cells (63). The FMs not only exhibited exceptional tumor-

targeting capacity because of their self-targeting properties toward

homologous tumors but also facilitated tumor-specific immune

responses related to the presence of extremely expressed tumor

antigens. In addition, the DC-derived immunomodulatory

molecules in FMs improved the presentation of antigen and

encouraged antigen-specific T cell reactions.

Compared to normal tissues, solid tumors exhibit unique TME

characteristics, including low pH, acute hypoxia, and increased

glutathione (GSH) amounts (64). Designing intelligent, stimuli-

responsive nanomedicines with TME-sensitive chemical linkages or

components can therefore efficiently regulate cargo discharge. In

addition to advanced nMOFs, TME-responsive nanoparticles can
Frontiers in Immunology 05
effectively surmount the ACQ by cleaving the TME-sensitive linkers,

allowing for the quick dissolution of PSs at the tumor location and

significantly boosting the generation of ROS (65). To facilitate PDT-

based cancer immunotherapy, Wang et al. designed a pH-responsive,

multipurpose nanoplatform (Figure 4C). This nanoplatform is

composed of a pH-sensitive diblock copolymer (PDPA),

pheophorbide A (PPa) attached to PDPA, and an inhibitor of the

anti-programmed death-1 (PD-1)- anti-programmed death-ligand 1

(PD-L1) interaction (55). Due to the ACQ effect, the nanoplatform’s

hydrophobic core encases PPa, reducing phototoxicity during blood

circulation. The rapid micelle dissociation induced by PDPA’s

“proton sponge effect” upon delivery to the mildly acidic TME

restores PPa’s photoactivity. Consequently, irradiation-activated

PPa generates ROS via PDT, inducing an immune response by

stimulating the expression of NF-kB and HSP70.
B

A

FIGURE 2

(A) Schematic depiction of oxygen-augmented immunogenic PDT with C@HPOC for eliciting the anti-metastatic and abscopal effect (40). Copyright
2018, American Chemical Society. (B) The antitumor mechanism of FAL-ICG-HAuNS plus FAL-Hb-lipo. Schematic illustration of enhanced
immunogenic cancer cell death and anticancer effect induced by endoplasmic reticulum-targeting photothermal/photodynamic therapy (41).
Copyright 2013, Nature.
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4.2 Conjugation with targeting ligands

PSs can be conjugated with targeting ligands, such as antibodies,

peptides, or small molecules, to enhance their tumor specificity and

uptake (66, 67). Targeted delivery of PSs can be achieved using

nanoparticles functionalized with specific ligands or antibodies that

recognize receptors overexpressed on tumor cells or within the

TME (68, 69). This strategy can improve the selectivity of PDT,

reducing off-target toxicity and enhancing therapeutic efficacy. For

example, folic acid-functionalized gold nanoparticles loaded with

the PS chlorin e6 have demonstrated improved targeting and PDT

efficacy in folate receptor-overexpressing cancer cells (70) A PS

conjugated with an epidermal growth factor receptor (EGFR)-

targeting peptide demonstrated improved PDT efficacy in EGFR-

overexpressing cancer cells (71).

Due to the enhanced penetration and retention (EPR) effect that

results from tumor vessel permeability, nanoparticles accumulate in

tumor cells (72–74). Song et al. reported the development of PS-

conjugated immune checkpoint inhibitor nanoparticles. As shown

in Figure 5A, because of the EPR effect, these nanoparticles collect

within tumors, Targeted delivery of PS and checkpoint inhibitor
Frontiers in Immunology 06
slowed tumor regrowth, prevented lung metastasis, and increased

CD8+ T cells systemically (75). The hybrid nanoparticles that

release PS and glucocorticoid-induced tumor necrosis factor

receptor family-related protein, or poly (lactic-co-glycolic acid)

(GITR-PLGA), utilize the immune activating role of PDT and

GITR-PLGA-mediated suppression of immunosuppression to

increase the amount of anti-tumor CD8+ T cells in the tumor (16).
4.3 Dual-function PSs and nanoparticles

Dual-function PSs have attracted considerable interest because of

their multifunctional characteristics, that make them appropriate for

imaging and treatment using PDT. This integrated method enables

continuous tracking of the therapy process, enhancing the efficiency

and precision of PDT (77). ICG is a well-known example of a dual-

function PS. It is a water-soluble tricarbocyanine dye with widespread

use in medical diagnostics for its fluorescence imaging capabilities

(78). In recent years, researchers have also discovered its potential for

PDT applications. ICG has shown efficacy in both in vitro and in vivo

experiments, showing its potential for imaging and treating
FIGURE 3

(A) A schematic illustration of controlled release enabled by a smart polymer, poly(N-isopropylacrylamide), coated on the surface of Au nanocages,
and release profile of Dox from the system shown in above, as triggered by a NIR laser (42). Copyright 2016, Future Medicine Ltd. (B) Characteristics
of controlled-release of mesoporous silica nanoparticles, and Characteristics of controlled-release of mesoporous silica nanoparticles (43).
Copyright 2022, Future Medicine Ltd. (C) Schematic illustration of the nanovectors preparation protocol and their enzyme sensitive behavior, and
Schematic illustration of the nanovectors delivering GeM to pancreatic cancer cells (44). Copyright 2017, American Chemical Society.
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malignant tumors simultaneously (79). Porphysomes, another

example of dual-function PSs, are self-assembled porphyrin-lipid

nanoparticles. These unique structures exhibit excellent

photoacoustic imaging and PDT properties. Porphysomes have
Frontiers in Immunology 07
been shown to generate a strong photoacoustic signal in response

to laser irradiation, allowing for high-resolution imaging of targeted

tissues. Moreover, porphysomes can generate cytotoxic ROS upon

light activation, leading to targeted destruction of cancer cells (80).
FIGURE 5

(A) PpIX-1MT chimeric peptide nanoparticles target tumor areas via the EPR effect, activate CD8+ T cells through cascade activations, and effectively
inhibit primary tumors and lung metastasis while enabling in situ PDT to trigger apoptosis and caspase-3 production (75). Copyright 2018, American
Chemical Society. (B) Illustration of NIR light-mediated PDT strategy for the enhanced cellular ablation in tumor microenvironment (76). Copyright
2018, American Chemical Society.
FIGURE 4

(A) Schematic illustration of PpIX-NLG@Lipo for combined PDT and IDO blockade (53). Copyright 2019, Ivyspring International. (B) Schematic
illustration of the preparation procedure and the working principle of PCN-ACF-CpG@HA to integrate PDT, antihypoxic signaling, and CpG adjuvant
as in situ tumor vaccine (54). Copyright 2019, John Wiley and Sons. (C) Schematic illustration of the acid-activatable micelleplexes for PD-L1
blockade-enhanced photodynamic cancer immunotherapy (55). Copyright 2016, American Chemical Society.
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4.4 Upconversion nanoparticles for
deep-tissue activation

The restricted absorption of light into tissues limits treatment to

surface tumors or requires invasive procedures for deeper tumors

(27, 81). To overcome this limitation, researchers have explored

strategies such as the use of upconversion nanoparticles (UCNPs),

which convert NIR light to higher-energy light that is visible,

allowing deeper tissue penetration without damaging surrounding

tissues (82, 83).

UCNPs are nanoscale materials that convert low-energy light to

high-energy light by sequentially exciting multiple photons via an

anti-Stokes emission process. Compared with downconverted

nanoparticles, UCNs can absorb NIR light and have a relatively

high depth of tissue penetration, while the light can be converted

into strong ultraviolet or visible light, enabling the activation of PSs

in deep tissues (84). When coupled with PSs, UCNPs can extend the

tissue penetration depth of PDT, improving its efficacy in the

treatment of deep-seated tumors (85–89).

UCN-based PDTs have been extensively studied for tumor

therapy due to their ability to improve tissue penetration depth.

A study by Ai et al. utilized this feature by constructing Ce6-loaded

UCNs combined with HA and MnO2 nanosheets to enhance NIR

light-mediated PDT (Figure 5B). By converting 808 nm light

excitation into 655 nm emissions, the Ce6-loaded UCNs

efficiently generated sufficient 1O2 to induce deep-tissue cellular

ablation. Additionally, the surface-anchored HA inhibited tumor
Frontiers in Immunology 08
recurrence post-PDT treatment by producing M1-type

macrophages instead of M2-type macrophages (76).
5 Combining PDT and immunotherapy

5.1 Immunomodulatory effects of PDT

PDT has been demonstrated to elicit ICD, increasing immune

responses, which stimulates the immune system against dying

cancer cells (90, 91). When combined with Adoptive T cell

therapy, Cancer vaccine, and Immune checkpoint inhibitor, the

ideal mechanism is currently speculated as Figure 6 (92–94). ICD

promotes the release of DAMPs and TAAs, which act as danger

signals to activate antigen-presenting cells (APCs) and initiate an

immune response (95). PDT can activate APCs, such as DCs,

through the release of DAMPs and the upregulation of

costimulatory molecules. When immature DCs migrate from

peripheral organs to neighboring draining lymph nodes, they

gather antigens from the surrounding fluid, convert them into

peptides, and then present the peptide major histocompatibility

complex (MHC) at T cell receptors (TCR) triggering T cell

activation, thereby priming and activating tumor-specific CTLs

(96, 97). PDT has been reported to enhance the infiltration of T

cells into the TME by modulating the expression of chemokines and

adhesion molecules, thereby promoting the attraction of CTLs

along with additional immune cells to the tumor location (98).
FIGURE 6

PDT triggers systemic antitumor immunity. This combination stimulates ICD and fosters an inflammatory environment at the primary tumor location,
thereby releasing TAAs. These TAAs are then processed and introduced by dendritic cells to naive T cells, facilitating the growth and multiplication of
tumor-specific effector T cells in lymphoid organs. The tumor-specific effector T cells infiltrate not only in primary but also in distant tumors. When
combined with Adoptive T cell therapy, Cancer vaccine, and Immune checkpoint inhibitor, the mechanisms are as follows: (A) Ps is loaded into
cytotoxic T cells; upon intravenous injection, they accumulate in the tumor tissues (92). (B) TAAs are utilized as a vaccine to enhance tumor-
associated immune responses by dendritic cells presenting antigens to T cells (93). (C) Integration with PD-1 checkpoint blockade boosts the
formation and infiltration of tumor-specific effector T cells in primary and distant tumors (94). The mechanisms (A–C) illustrate part of the drug
mechanism of this therapy. Reproduced with permission from (92–94).
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5.2 Types of immunotherapy used in
combination with PDT

5.2.1 Immune checkpoint inhibitors
In preclinical investigations, the combination of PDT with

immune checkpoint inhibitors such as anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA4), anti-PD-1, anti-PD-L1

antibodies and IDO inhibitor demonstrated synergistic effects (94,

99). This review synthesizes recent investigations into the utilization

of nanomaterials in the combination of PDT with immune

checkpoint inhibitors (Table 1). The combination boosts the

immune system’s response to tumors and can surmount the

immunosuppressive TME (105, 106). Liu et al. developed an

effective approach to eliminate metastatic malignancies by

combining oxygen-boosted PDT with checkpoint blockade

therapy (107). Using a light-activated hydrogel with Ce6-modified

CAT, biodegradable polymer, and an immune adjuvant, which

induced strong ICD and regulated macrophage polarization,

leading to a significantly enhanced immune response. This was

achieved by raising the intratumoral CD8+ T cell accumulation.

Wang et al. created a sequential delivery strategy to enhance

therapeutic efficacy. They initially assembled a biocompatible

polymer nanoparticle system by combining dextran-modified

HAase (DEX-HAase) with pH-responsive linkers. Due to the

second infusion of Ce6@liposome and irradiation, the remodeled

TME enhanced the efficacy of PDT after the initial infusion of DEX-

HAase nanoparticles. Notably, the intensified PDT induced a robust

immune response, which increased by combining it with PD-L1

blockade therapy after the third anti-PD-L1 administration. This

sequential infusion of therapeutic agents facilitated synergistic

PDT-immunotherapy, effectively suppressing the growth of both

primary and distant tumors (102).

Furthermore, nMOFs can efficiently load immune checkpoint

inhibitors into their open channels due to their high co-loading

capacity. For example, Lin et al. constructed H4TBC-based nMOFs to

encapsulate IDO inhibitors within their highly porous structure,

inducing systemic antitumor immunity (100). Their results showed

that H4TBC-based nMOFs provided both PDT and ICD, and when

combined with checkpoint blockade therapy using an IDO inhibitor,

enhanced T cell infiltration in the TME. In another study, Zhang et al.

developed benzoporphyrin-based nMOFs composed of a Zr6 cluster

and PS (TBP) in combination withaPD-1 to inhibit tumormetastasis

(108). The TBP effectively avoided the ACQ effect due to its good

dispersion in the nMOF structure, thereby facilitating PDT. Based on

these advantages, TBP-mediated PDT induced a strong ICD to

recruit tumor-infiltrating CTLs. Importantly, the combined

application of aPD-1 restored the activity of CTLs suppressed in

the immunosuppressive TME. In another study, Lin et al. constructed

a cationic nMOF (W-TBP) highly loaded with anionic CpG through

electrostatic interaction to enhance cancer immunotherapy (109).

The combination of aPD-1 with antigen availability significantly

improved the penetration and stimulation of CTLs in bilateral

tumors, resulting in potent cancer immunotherapy.
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5.2.2 Cancer vaccines and adoptive T cell therapy
Combining PDT with cancer vaccines, which aim to motivate

the immune system to identify and target tumor antigens, is

possible. In preclinical models, the combination of PDT and

cancer vaccines has demonstrated improved antitumor efficacy

and immune memory (12, 110–113). Table 2 summarizes the

representative results of the current combination of PDT with

cancer vaccines. In a mouse model, one study examined the

combination of PDT and TLR5 agonist flagellin-adjuvanted

tumor-specific peptide vaccination (FlaB-Vax) for increased PD-1

blockade-mediated melanoma inhibition. Results show the

combination therapy significantly increased tumor-infiltrating

effector memory CD8+ T cells and systemic IFNg secretion,

improving the therapeutic benefits of PD-1-targeting checkpoint

inhibitor therapy for malignant melanoma (93).

Adoptive T cell therapy (ACT) involves the diversion of ex vivo

expanded or genetically engineered T cells into a patient to target

cancer cells. Combining PDT with ACT has shown potential for

increasing T cell infiltration and activation in the TME, leading to

improved antitumor responses (114). Blaudszun et al. introduced a

combined photodynamic and cancer immunotherapy strategy

involving the adoptive transfer of PS-loaded cytotoxic T cells (PS-

OT-1 cells). They loaded OT-1 cells with temoporfin, a clinically

useful porphyrin derivative, to create PS-OT-1 cells. Remarkably,

under visible light irradiation in culture, PS-OT-1 cells produced a

substantial quantity of ROS in an efficient manner. In addition, the

combination of PDT and ACT with PS-OT-1 cells resulted in

substantially increased cytotoxicity in comparison to ACT alone

with unloaded OT-1 cells (92).
5.3 Preclinical and clinical studies on
combined treatment strategies

Several preclinical studies have demonstrated the potential of

combining PDT with immunotherapy, resulting in improved

antitumor effects and long-lasting immune responses (36, 101). In

a mouse model of melanoma, the combination of PDT and anti-

PD-1 therapy led to enhanced tumor regression and improved

survival rates (99, 115, 116). Another study showed that combining

PDT with a cancer vaccine increased antitumor immunity and

prevented tumor recurrence in a mouse model of colon cancer

(117). Bao et al. targeted IRDye700 to subcutaneous murine 4T1

tumors using a Fab portion of an antibody that attaches to CD276,

an antigen specifically expressed on tumor cells. While targeted NIR

therapy reduced tumor regeneration, PD-L1 expression on tumor

cells increased significantly. By combining CD276-targeted NIR-

PIT and anti-PD-L1 therapy, they were able to prevent

subcutaneous tumor regrowth and lung metastasis (69). Hao et al.

developed a combined therapy approach using PDT and immune

checkpoint blockade to optimize tumor control. They incorporated

a 25% thermosensitive polymer 407 hydrogel as a co-delivery

platform for this treatment strategy. NIR PDT at 808 nm
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irradiation, along with CTLA4 and PD-L1 checkpoint blockade,

suppressed solid tumor growth and extended the survival rate of

colorectal tumor-bearing mice. This was achieved by eliciting a

range of immune responses, including macrophage and DCs

phagocytosis of tumor debris, acute inflammation induction,

leukocyte infiltration, as well as maturation and activation of DCs

(20). In the study by Santos and colleagues, the use of PDT with

redaporfin successfully eradicated all observable tumor tissue.

Subsequently, the application of an immune checkpoint inhibitor

contributed to a sustained complete response in the clinical setting.

This particular case exemplifies the potential effectiveness of such a

combined therapeutic approach, laying the foundation for the

development of a novel treatment strategy (118).
6 Challenges and future directions

6.1 Overcoming side effects

Potential side effects of PDT, including skin photosensitivity,

pain, and edema, stem from prolonged presence and systemic

distribution of PSs (119). Addressing these concerns,

nanotechnology provides targeted PS delivery, reducing off-target

phototoxicity. Biodegradable CaCO3/MnO2-based nanocarriers

have been successfully used to transport PSs, demonstrating

significant advancements over potentially toxic gold-based

nanomedicines (120). These nanoparticles, engineered to

accumulate in tumors through the enhanced EPR effect, limit PS

exposure in healthy tissues (103). Surface modifications with

tumor-specific ligands further enhance nanoparticle specificity,

minimizing non-target skin photosensitivity (4, 104). Some

nanoparticles also provide controlled PS release in response to

stimuli such as pH, temperature, or enzymes, localizing PS

activation to the treatment area (121).
6.2 Personalized cancer
treatment strategies

An emerging trend in cancer treatment is the development of

personalized medicine, which tailors treatments to the distinctive

features of a patient’s tumor (122, 123). The combination of PDT

and immunotherapy allows for a more tailored approach by

considering factors such as TME, immune profile, and response

to treatment (94, 124). Identifying predictive biomarkers and

developing treatment algorithms based on individual patient

profiles will be crucial for improving patient outcomes (124).
6.3 Translational research for
clinical implementation

Translating preclinical research findings into clinical practice

remains a challenge for the field. Issues such as regulatory approval,

manufacturing, and standardization of treatment protocols need to

be addressed to ensure the successful clinical translation of
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nanotechnology-enabled PDT and immunotherapy (18, 125).

Collaborative efforts between researchers, clinicians, and

regulatory agencies are necessary to accelerate the development

and approval of these innovative therapies (126, 127).

In conclusion, the exciting interplay of nanotechnology-enabled

PDT, advanced PSs, and immunotherapy heralds a promising new era

in cancer treatment. The potential to overcome limitations such as

tissue penetration and side effects, coupled with the opportunity to

develop personalized cancer treatment strategies, paves the way for

successful clinical translation. At the heart of this revolutionary

approach lies the convergence of several disciplines. Material science,

molecular biology, and biomedical engineering come together to

optimize nanomaterials for improved delivery and activation of PSs,

enhancing biocompatibility and maximizing therapeutic payloads.

Moreover, an in-depth understanding of the TME is vital to design

nanoparticles capable of navigating and penetrating these complex

terrains effectively. Simultaneously, insights from the intersection of

immunology and oncology spotlight the potential of leveraging PDT to

stimulate potent immune responses against tumors. This accentuates

the exciting prospects of integrating PDT and immunotherapy for

comprehensive cancer treatment. Furthermore, the introduction of

machine learning and computational modeling can advance

nanotherapeutic design by predicting biological interactions, leading

to more effective and targeted therapies. The translation of these

advancements from lab to clinic necessitates meticulous testing and a

thorough understanding of regulatory pathways. This underlines the

significance of collaborative efforts between researchers, clinicians, and

regulatory agencies. Ultimately, the future of PDT and nanotechnology,

through this multi-disciplinary collaboration, holds immense potential

in revolutionizing cancer therapy, improving patient outcomes, and

providing benefits to cancer patients worldwide.
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95. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in
cancer and infectious disease. Nat Rev Immunol (2017) 17(2):97–111. doi: 10.1038/
nri.2016.107

96. Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor
vaccines using photodynamic therapy. Cancer Res (2002) 62(6):1604–8.

97. Liu J, He S, Luo Y, Zhang Y, Du X, Xu C, et al. Tumor-microenvironment-
activatable polymer nano-immunomodulator for precision cancer photoimmunotherapy.
Adv Mater (2022) 34(8):e210665. doi: 10.1002/adma.202106654

98. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface
expression and release of heat shock proteins: relevance for tumor response. Cancer
Res (2005) 65(3):1018–26. doi: 10.1158/0008-5472.1018.65.3

99. Zhang R, Zhu Z, Lv H, Li F, Sun S, Li J, et al. Immune checkpoint blockade
mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway
synergizes with photodynamic therapy to elicit antitumor immunity and
antimetastatic effects on breast cancer. Small (Weinheim an Der Bergstrasse
Germany) (2019) 15(49):e1903881. doi: 10.1002/smll.201903881

100. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, et al. Chlorin-based
nanoscale metal-organic framework systemically rejects colorectal cancers via
synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am
Chem Soc (2016) 138(38):12502–10. doi: 10.1021/jacs.6b06663

101. Mroz P, Hashmi JT, Huang Y-Y, Lange N, Hamblin MR. Stimulation of anti-
tumor immunity by photodynamic therapy. Expert Rev Clin Immunol (2011) 7(1):75–
91. doi: 10.1586/eci.10.81

102. Wang H, Han X, Dong Z, Xu J, Wang J, Liu Z. Hyaluronidase with pH-
responsive dextran modification as an adjuvant nanomedicine for enhanced
photodynamic-immunotherapy of cancer. Adv Funct Mater (2019) 29:1902440.
doi: 10.1002/adfm.201902440

103. Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced
anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev (2017)
46(12):3830–52. doi: 10.1039/c6cs00592f

104. Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, et al. Perfluorocarbon
nanoparticles enhance reactive oxygen levels and tumour growth inhibition in
photodynamic therapy. Nat Commun (2015) 6:8785. doi: 10.1038/ncomms9785

105. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune
tolerance. Cell (2008) 133(5):775–87. doi: 10.1016/j.cell.2008.05.009

106. Cramer GM, Moon EK, Cengel KA, Busch TM. Photodynamic therapy and
immune checkpoint blockade(dagger). Photochem Photobiol (2020) 96(5):954–61.
doi: 10.1111/php.13300

107. Meng Z, Zhou X, Xu J, Han X, Dong Z, Wang H, et al. Light-triggered in situ
gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv
Mater (2019) 31(24):e1900927. doi: 10.1002/adma.201900927

108. Zeng J-Y, Zou M-Z, Zhang M, Wang X-S, Zeng X, Cong H, et al. p-extended
benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis.
ACS Nano (2018) 12(5):4630–40. doi: 10.1021/acsnano.8b01186

109. Ni K, Luo T, Lan G, Culbert A, Song Y, Wu T, et al. A nanoscale metal-organic
framework to mediate photodynamic therapy and deliver cpG oligodeoxynucleotides to
enhance antigen presentation and cancer immunotherapy. Angew Chem Int Ed Engl
(2020) 59(3):1108–12. doi: 10.1002/anie.201911429
frontiersin.org

https://doi.org/10.3390/polym15061490
https://doi.org/10.1021/jacs.8b01072
https://doi.org/10.1002/adma.201900499
https://doi.org/10.1038/bjc.1993.375
https://doi.org/10.1002/adma.201901513
https://doi.org/10.3390/molecules25225239
https://doi.org/10.7150/thno.70308
https://doi.org/10.7150/thno.70308
https://doi.org/10.1002/adma.201701460
https://doi.org/10.1021/acs.molpharmaceut.8b00997
https://doi.org/10.1016/j.biomaterials.2015.09.038
https://doi.org/10.1562/0031-8655(2003)077%3C0431:TCTOTE%3E2.0.CO;2
https://doi.org/10.1562/0031-8655(2003)077%3C0431:TCTOTE%3E2.0.CO;2
https://doi.org/10.1039/c0nr00834f
https://doi.org/10.1039/c2tb00287f
https://doi.org/10.1155/2016/5274084
https://doi.org/10.1021/acsnano.7b09112
https://doi.org/10.1021/acsnano.7b09112
https://doi.org/10.1021/acs.bioconjchem.8b00068
https://doi.org/10.1021/cr900236h
https://doi.org/10.2147/IJN.S318678
https://doi.org/10.3390/cancers14153840
https://doi.org/10.1038/nmat2986
https://doi.org/10.1021/cr900300p
https://doi.org/10.1016/j.biomaterials.2011.05.007
https://doi.org/10.1021/acsnano.7b00715
https://doi.org/10.7150/thno.5284
https://doi.org/10.1021/acs.accounts.8b00242
https://doi.org/10.1039/d1cs00343g
https://doi.org/10.1016/j.biomaterials.2022.121875
https://doi.org/10.3390/cancers13174437
https://doi.org/10.3390/biomedicines9010069
https://doi.org/10.1111/imr.12574
https://doi.org/10.1158/2326-6066.CIR-17-0055
https://doi.org/10.3390/pharmaceutics15041295
https://doi.org/10.3390/pharmaceutics15041295
https://doi.org/10.3390/cells9112432
https://doi.org/10.7150/thno.14792
https://doi.org/10.1038/nri.2016.107
https://doi.org/10.1038/nri.2016.107
https://doi.org/10.1002/adma.202106654
https://doi.org/10.1158/0008-5472.1018.65.3
https://doi.org/10.1002/smll.201903881
https://doi.org/10.1021/jacs.6b06663
https://doi.org/10.1586/eci.10.81
https://doi.org/10.1002/adfm.201902440
https://doi.org/10.1039/c6cs00592f
https://doi.org/10.1038/ncomms9785
https://doi.org/10.1016/j.cell.2008.05.009
https://doi.org/10.1111/php.13300
https://doi.org/10.1002/adma.201900927
https://doi.org/10.1021/acsnano.8b01186
https://doi.org/10.1002/anie.201911429
https://doi.org/10.3389/fimmu.2023.1219785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jia et al. 10.3389/fimmu.2023.1219785
110. Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in
photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim
Biophys Acta Rev Cancer (2019) 1872(2):188308. doi: 10.1016/j.bbcan.2019.
07.003

111. Fang L, Zhao Z, Wang J, Zhang P, Ding Y, Jiang Y, et al. Engineering
autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor
surgical bed. Sci Adv (2020) 6(25):eaba4024. doi: 10.1126/sciadv.aba4024

112. Ji J, Fan Z, Zhou F, Wang X, Shi L, Zhang H, et al. Improvement of DC vaccine
with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell
carcinoma. Oncotarget (2015) 6(19):17135–46. doi: 10.18632/oncotarget.3529

113. Trempolec N, Doix B, Degavre C, Brusa D, Bouzin C, Riant O, et al.
Photodynamic therapy-based dendritic cell vaccination suited to treat peritoneal
mesothelioma. Cancers (Basel) (2020) 12(3):545. doi: 10.3390/cancers12030545

114. Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends In
Immunol (2015) 36(8):494–502. doi: 10.1016/j.it.2015.06.004

115. Kleinovink JW, van Driel PB, Snoeks TJ, Prokopi N, Fransen MF, Cruz LJ, et al.
Combination of photodynamic therapy and specific immunotherapy efficiently
eradicates established tumors. Clin Cancer Res (2016) 22(6):1459–68. doi: 10.1158/
1078-0432.CCR-15-0515

116. Xu J, Yu S, Wang X, Qian Y, WuW, Zhang S, et al. High affinity of chlorin e6 to
immunoglobulin G for intraoperative fluorescence image-guided cancer photodynamic
and checkpoint blockade therapy. ACS Nano (2019) 13(9):10242–60. doi: 10.1021/
acsnano.9b03466

117. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with
immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer
immunotherapy. Nat Commun (2016) 7:13193. doi: 10.1038/ncomms13193

118. Santos LL, Oliveira J, Monteiro E, Santos J, Sarmento C. Treatment of head and
neck cancer with photodynamic therapy with redaporfin: A clinical case report. Case
Rep Oncol (2018) 11(3):769–76. doi: 10.1159/000493423
Frontiers in Immunology 15
119. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of
photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol (2020) 17
(11):657–74. doi: 10.1038/s41571-020-0410-2

120. Liu Y, Pan Y, Cao W, Xia F, Liu B, Niu J, et al. A tumor microenvironment
responsive biodegradable CaCO3/MnO2- based nanoplatform for the enhanced
photodynamic therapy and improved PD-L1 immunotherapy. Theranostics (2019) 9
(23):6867–84. doi: 10.7150/thno.37586

121. Chen Q, Chen J, Yang Z, Xu J, Xu L, Liang C, et al. Nanoparticle-enhanced
radiotherapy to trigger robust cancer immunotherapy. Adv Mater (2019) 31(10):
e1802228. doi: 10.1002/adma.201802228

122. Kim S, Kim SA, Nam G-H, Hong Y, Kim GB, Choi Y, et al. In situ
immunogenic clearance induced by a combination of photodynamic therapy and
rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit
systemic antitumor immunity against intraocular melanoma and its metastasis. J
Immunother Cancer (2021) 9(1):e001481. doi: 10.1136/jitc-2020-001481

123. Kaneko K, Acharya CR, Nagata H, Yang X, Hartman ZC, Hobeika A, et al.
Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/
PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against
breast cancers. J Immunother Cancer (2022) 10(9):e004793. doi: 10.1136/jitc-2022-004793

124. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven
biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer
(2016) 16(5):275–87. doi: 10.1038/nrc.2016.36

125. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev
Cancer (2005) 5(3):161–71. doi: 10.1038/nrc1566

126. Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, et al. A review of
nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J
Control Release (2020) 326:628–47. doi: 10.1016/j.jconrel.2020.07.003

127. Shams F, Golchin A, Azari A, Mohammadi Amirabad L, Zarein F, Khosravi A,
et al. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep (2022)
49(2):1389–412. doi: 10.1007/s11033-021-06876-y
frontiersin.org

https://doi.org/10.1016/j.bbcan.2019.07.003
https://doi.org/10.1016/j.bbcan.2019.07.003
https://doi.org/10.1126/sciadv.aba4024
https://doi.org/10.18632/oncotarget.3529
https://doi.org/10.3390/cancers12030545
https://doi.org/10.1016/j.it.2015.06.004
https://doi.org/10.1158/1078-0432.CCR-15-0515
https://doi.org/10.1158/1078-0432.CCR-15-0515
https://doi.org/10.1021/acsnano.9b03466
https://doi.org/10.1021/acsnano.9b03466
https://doi.org/10.1038/ncomms13193
https://doi.org/10.1159/000493423
https://doi.org/10.1038/s41571-020-0410-2
https://doi.org/10.7150/thno.37586
https://doi.org/10.1002/adma.201802228
https://doi.org/10.1136/jitc-2020-001481
https://doi.org/10.1136/jitc-2022-004793
https://doi.org/10.1038/nrc.2016.36
https://doi.org/10.1038/nrc1566
https://doi.org/10.1016/j.jconrel.2020.07.003
https://doi.org/10.1007/s11033-021-06876-y
https://doi.org/10.3389/fimmu.2023.1219785
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers
	1 Introduction
	2 PSs for PDT
	2.1 First-generation PSs
	2.2 Second-generation PSs
	2.3 Third-generation PSs

	3 Nanotechnology in PDT
	3.1 Organic nanoparticles
	3.2 Inorganic nanoparticles

	4 Advanced PSs for PDT
	4.1 Nanoparticles improve PS properties
	4.1.1 Enhanced solubility and stability
	4.1.2 Controlled release and distribution

	4.2 Conjugation with targeting ligands
	4.3 Dual-function PSs and nanoparticles
	4.4 Upconversion nanoparticles for deep-tissue activation

	5 Combining PDT and immunotherapy
	5.1 Immunomodulatory effects of PDT
	5.2 Types of immunotherapy used in combination with PDT
	5.2.1 Immune checkpoint inhibitors
	5.2.2 Cancer vaccines and adoptive T cell therapy

	5.3 Preclinical and clinical studies on combined treatment strategies

	6 Challenges and future directions
	6.1 Overcoming side effects
	6.2 Personalized cancer treatment strategies
	6.3 Translational research for clinical implementation

	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


