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The combined signatures
of telomere and immune
cell landscape provide a
prognostic and therapeutic
biomarker in glioma

Xu Han1, Zihan Yan1, Kaiyu Fan1, Xueyi Guan1, Bohan Hu1,
Xiang Li1, Yunwei Ou1, Bing Cui2, Lingxuan An3*,
Yaohua Zhang2* and Jian Gong1,4*

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 2Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology,
Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,
3Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich,
Munich, Germany, 4Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
Background: Gliomas, the most prevalent primary malignant tumors of the

central nervous system in adults, exhibit slow growth in lower-grade gliomas

(LGG). However, the majority of LGG cases progress to high-grade gliomas,

posing challenges for prognostication. The tumor microenvironment (TME),

characterized by telomere-related genes and immune cell infiltration, strongly

influences glioma growth and therapeutic response. Therefore, our objective

was to develop a Telomere-TME (TM-TME) classifier that integrates telomere-

related genes and immune cell landscape to assess prognosis and therapeutic

response in glioma.

Methods: This study encompassed LGG patients from the TCGA and CCGA

databases. TM score and TME score were derived from the expression signatures

of telomere-related genes and the presence of immune cells in LGG,

respectively. The TM-TME classifier was established by combining TM and TME

scores to effectively predict prognosis. Subsequently, we conducted Kaplan-

Meier survival estimation, univariate Cox regression analysis, and receiver

operating characteristic curves to validate the prognostic prediction capacity

of the TM-TME classifier across multiple cohorts. Gene Ontology (GO) analysis,

biological processes, and proteomaps were performed to annotate the

functional aspects of each subgroup and visualize the cellular signaling

pathways.

Results: The TM_low+TME_high subgroup exhibited superior prognosis and

therapeutic response compared to other subgroups (P<0.001). This finding could

be attributed to distinct tumor somatic mutations and cancer cellular signaling

pathways. GO analysis indicated that the TM_low+TME_high subgroup is

associated with the neuronal system and modulation of chemical synaptic

transmission. Conversely, the TM_high+TME_low subgroup showed a strong

association with cell cycle and DNA metabolic processes. Furthermore, the
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classifier significantly differentiated overall survival in the TCGA LGG cohort and

served as an independent prognostic factor for LGG patients in both the TCGA

cohort (P<0.001) and the CGGA cohort (P<0.001).

Conclusion: Overall, our findings underscore the significance of the TM-TME

classifier in predicting prognosis and immune therapeutic response in glioma,

shedding light on the complex immune landscape within each subgroup.

Additionally, our results suggest the potential of integrating risk stratification

with precision therapy for LGG.
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1 Introduction

Glioma, which accounts for approximately 80% of all malignant

brain tumors, represents one of the most commonly observed

primary brain tumors in clinical practice (1). The 2016 World

Health Organization (WHO) revision classifies glioma into four

grades. Grades II and III are collectively referred to as diffuse lower-

grade gliomas (LGG), while grade IV is known as glioblastoma

(GBM) (2). GBM is a fatal tumor with a median overall survival

(OS) of merely 15 months. In contrast, patients diagnosed with

WHO II and WHO III gliomas have median OS durations of 78.1

and 37.6 months, respectively (3). Despite advancements in

diagnostic and therapeutic outcomes, a subset of LGG patients

may experience disease progression, leading to unfavorable

therapeutic responses and a worsened prognosis.

The conventional treatment modalities for LGG encompass

surgical intervention, radiotherapy, and chemotherapy. However,

the emergence of immunotherapy has introduced a potential

revolution in clinical management and improved survival rates

for LGG patients. Nonetheless, its efficacy remains limited to a

small subset of individuals. Currently, predictive biomarkers

utilized in clinical practice include O6-methylguanine DNA

methyltransferase (MGMT) promoter methylation, 1p/19q

codeletion, and isocitrate dehydrogenase (IDH) mutation, among

others (4, 5). Nevertheless, the existing pool of investigated

biomarkers fails to provide sufficient accuracy for prognosis

prediction and optimal treatment selection.

Telomeres, the repeated TTAGGG DNA sequences located at

chromosome ends, are associated with the shelterin complex (6).

These specialized structures are essential for chromosome stability,

and aberrations in telomeres have been implicated in numerous

diseases, including various forms of cancer (7). A 2017 Mendelian

randomization study analyzing 16 telomere length-related single

nucleotide polymorphisms (SNPs) from 130 genome-wide

association studies (GWAS) revealed that genetically longer

telomeres are associated with an elevated risk of several cancers,

including lung cancer, ovarian cancer, neuroblastoma, and glioma

(8). The primary regulation of telomere length is attributed to the

telomerase complex, comprising an RNA template and the
02
telomerase reverse transcriptase (TERT) enzyme (9). Notably,

TERT exerts significant influence on angiogenesis, invasion,

epithelial-mesenchymal transformation (EMT), inflammation,

immunosuppression, and other critical gene expression profiles,

even in a telomere-independent manner. These TERT-mediated

activities may profoundly affect the dynamics and homeostasis of

the tumor microenvironment (TME) (10–12). Several studies have

validated the association between TERT promoter mutations and

the prognosis of glioma patients. In particular, individuals with

TERT promoter mutations demonstrated a more favorable

prognosis compared to those with wildtype TERT promoter,

specifically in grade II or III oligodendroglioma, 1p/19q-codeleted

patients, and IDH-mutant cases (13, 14).

In the present study, we leveraged the features of telomeres and

immune cells to establish Telomere (TM) and TME scores,

respectively. Recognizing the telomere-mediated regulation of

TME and the implications for prognosis and immunotherapy, we

developed an integrated TM-TME classifier utilizing these scores to

effectively predict prognosis and immunotherapy response.

Remarkably, distinct patient subgroups within the LGG cohort

exhibited varying prognostic outcomes, somatic mutation (SM)

landscapes, responses to therapy, and enriched pathways. These

findings hold promising implications for the improvement of

clinical disease management.
2 Methods

2.1 Source of the data

The training set for this study comprised the mRNA expression

profiles and corresponding clinical data of the TCGA LGG cohort,

which were obtained from the UCSC Xena database (https://

xena.ucsc.edu/). To validate the findings, we also acquired the

mRNAseq_693 dataset from the CGGA database, serving as the

confirmation set. Our analysis focused exclusively on LGG patients

with WHO grades II and III, utilizing the aforementioned datasets.

To visualize the TM scores within each cell, we obtained two public

single-cell RNA sequencing (scRNA-seq) cohorts, namely
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GSE70630 and GSE89567, from the Gene Expression Omnibus

repository (GEO) (15), specifically the mRNAseq_693 data set. The

analysis focused exclusively on LGG patients classified as WHO

grades II and III in the aforementioned datasets. Moreover, two

publicly available single-cell RNA sequencing (scRNA-seq) cohorts,

namely GSE70630 and GSE89567, were retrieved from the GEO

(Gene Expression Omnibus repository) to enable the visualization

of TM scores at the cellular level (16, 17). Subsequently, the bulk

RNA sequencing data underwent a log2(TPM+1) transformation

for further analyses.
2.2 Identification of prognostic telomere-
associated genes and TME cells

We utilized the URL of http://www.cancertelsys.org/telnet/to

obtain the genes associated with telomeres (18). In order to identify

prognostic-associated telomere genes in the TCGA-LGG dataset,

we performed univariate Cox regression analysis and least absolute

shrinkage and selection operator (LASSO) regression analysis on

2093 telomere-associated genes using the bootstrap approach (18,

19). We utilized the URL of http://www.cancertelsys.org/telnet/to

obtain the genes associated with telomeres (18). In order to identify

prognostic-associated telomere genes in the TCGA-LGG dataset,

we performed univariate Cox regression analysis and least absolute

shrinkage and selection operator (lasso) regression analysis on 2093

telomere-associated genes using the bootstrap approach (20, 21).

The TCGA LGG cohort incorporates the CIBERSORT algorithm,

which estimates the composition of 22 immune cells in distinct

tissues based on gene expression signatures for TME cells (22, 23).

The TCGA LGG cohort incorporates the CIBERSORT algorithm,

which estimates the composition of 22 immune cells in distinct

tissues based on gene expression signatures for TME cells.
2.3 Construction of TM score, TME score,
and TM-TME classifier

The establishment of the TM and TME scores was based on the

18 telomere-associated genes derived from the TCGA LGG cohort

and the coefficients (Coef) of five immune cells for multivariate Cox

regression analysis (24). To enhance the accuracy of both the TM

and TME models, we randomly selected 1000 samples from the

entire LGG sample pool and conducted multivariate Cox analysis

on each sample (25). Moreover, we obtained the standard deviation

(SD) values of the Coef for each gene and cell. The weights in the

respective models were determined by the ratio of the Coef to the

SD values. In summary, the following formula was employed to

calculate the TM score:

TM   score =o18
i=1

Coefi
SDi

*   exp ð genei)

Similarly, the TME score calculating formula is:

TME   score = −o5
j=1

Coefj
SDj

*   fra ð cellj)
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Where exp(genei) denotes the gene i’s expression level and fra

(cellj) denotes the cell j’s fraction. Using the median value of each

dataset’s TM and TME scores, the TM-TME classifier was then

constructed. Samples in each cohort were divided into “TM_low+

TME_high (TM_L+TME_H)”, “TM_high+TME_low (TM_H+

TME_L)”, and “Mixed” [TM_low+TME_low (TM_L+TME_L),

TM_high+TME_high (TM_H+TME_H)] groups. The “timeROC”

package was utilized for assessing the prognostic prediction power

of the TM-TME classifier using receiver operating characteristic

(ROC) curves (26, 27).
2.4 Visualization of TM score at the
single-cell level

To analyze the single-cell data, we employed Seurat objects

designed for scRNA-seq gene expression matrix, enabling clustering

analysis, annotation, and visualization (28, 29). Transcriptomes

expressing between 200 and 7000 genes were retained. To reduce

dimensionality, a principal component (PC) analysis was conducted

on the top 3000 genes exhibiting the highest variability.

Subsequently, t-SNE (t-distributed stochastic neighbor

embedding) was applied for visualizing the single-cell data. Cell

type annotations were derived using cell type markers reported in

the published literature (30, 31). The aforementioned formula

related to the TM model was utilized to compute the TM score

for each individual cell.

In addition, we utilized The Tumor Immune Single-Cell Hub

(TISCH; http://tisch.comp-genomics.org) (32, 33), an extensive

online resource providing specific single-cell RNA-seq data

related to the tumor microenvironment (TME), to systematically

investigate the diverse composition of the TME across distinct

datasets and cell types.
2.5 Weighted gene co-expression network
analysis, enrichment analysis, and
construction of the interacted network

The identification of the gene module influencing the TM-TME

classifier was achieved using WGCNA (34, 35). WGCNA analysis

was performed on the TCGA LGG expression profile, selecting the

top 5000 genes based on their median absolute deviations. To

discover potential hub genes, the key module exhibiting the

strongest association with the subgroups was determined.

Subsequent evaluation of hub genes within the co-expression

module of highest significance was conducted using Metascape

(http://metascape.org) (36), a gene function enrichment and

categorization tool. To uncover interconnected hub genes, the

MCODE algorithm was employed. Each MCODE network was

assigned a distinct color to represent the close interacting

associations between molecules. Additionally, a list of differentially

expressed proteins was inputted into an internet tool (https://

proteomaps.net/) to generate proteomaps (37).
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2.6 SM and immunotherapy response

The mutation annotation format (MAF) data pertaining to the

TCGA LGG cohort could be accessed through the TCGA database.

In order to compare the SM status within different subgroups of the

TM-TME classifier, we generated waterfall diagrams using the

“maftools” package to illustrate the mutations in the top 20 genes

(38, 39). Moreover, the tumor mutational burden (TMB) of each

LGG sample was calculated by determining the total number of

somatic mutations (SMs) per million bases in the tumor genome,

after excluding germ-line mutations. To predict the clinical

response to immune checkpoint blockade (ICB) in melanoma and

other tumor patients, the TIDE web platform incorporates relevant

ICB trials published in the literature (40, 41).
2.7 Total RNA extraction and quantitative
real-time polymerase chain reaction

We employed quantitative real-time polymerase chain reaction

(qRT-PCR) to investigate the expression patterns of 18 selected

pivotal genes in both LGG tissues and their corresponding

peritumoral tissues, which were obtained from a cohort of five

patients who underwent surgical intervention. Total RNA was

extracted using TRIZOL reagent (Life technologies, USA),

followed by reverse transcription reactions performed with a

qPCR RT Kit (Yeason, China). Subsequently, qRT-PCR was

conducted on a LightCycler 480 SYBR Green I instrument

(Roche, Manheim, Germany) to determine the expression levels

of the target genes (42). The forward and reverse primers for the 18

pivotal genes and GAPDH were provided in Supplementary Table

S3. To normalize the gene expression, the expression of GAPDH

was utilized as a reference, and the relative expression levels of the

18 key mRNAs were calculated using the 2−DDCt method.
2.8 Western blotting,
immunohistochemical, and
immunofluorescence staining

Tumor and peritumoral specimens were lysed by RIPA buffer

(Solarbio, Beijing, China) supplemented with protease and

phosphatase inhibitors. Subsequently, the lysates were subjected

to SDS-PAGE separation and transferred onto PVDF membranes.

Immunoblotting was performed using antibodies against WEE1

(CST, 13084) and b-actin (proteintech, HRP-60008).

For immunohistochemical and immunofluorescence analyses,

tumor and corresponding peritumoral tissues were obtained from

three patients. Paraffin-embedded tissues were sectioned and

subjected to heat treatment in sodium citrate buffer. Blocking of

the sections was accomplished using goat serum, followed by

overnight incubation with primary antibodies at 4°C. Subsequently,

a secondary antibody conjugated with horseradish peroxidase was

applied, and 3’-diaminobenzidine was utilized for sample

visualization. Hematoxylin was used for counterstaining, and the

sections were examined under a microscope.
Frontiers in Immunology 04
2.9 Statistical analysis

In the current study, version 4.1.2 of the R statistical software

package was utilized for all statistical analyses. The examination of

relationships between variables was conducted using both Pearson

and Spearman correlation methods. To compare different

subgroups, nonparametric tests including the Wilcoxon rank sum

test and Kruskal-Wallis rank sum test were employed. The

significance level was set at p< 0.05, and statistical significance

was denoted by “*”, “**”, and “***” for p-values less than 0.05, 0.01,

and 0.001, respectively.
3 Results

3.1 Construction of TM and TME scores

An integrated approach was employed in the TCGA LGG

cohort to estimate the telomere and immune cell status of

patients. Initially, univariate cox analysis, lasso regression analysis

of genes related to telomere maintenance (TM genes), and KM OS

estimation of immune cells were conducted (Figures 1A, B). The

results of the univariate cox analysis yielded 1198 TM genes, which

are documented in Supplementary Table S1. Subsequently, the TM

and tumor microenvironment (TME) scores were derived,

comprising 18 TM genes and five distinct immune cell types,

respectively. Supplementary Table S2 presents a comprehensive

overview of these scores. To assess the prognostic significance,

multivariate analysis was performed separately for the 18 TM genes

and the five immune cell types (Figures 2A, B). Additionally, the

interplay between the 18 telomere-associated genes and the five

TME cells in the TCGA LGG set was explored and visualized in

Figure 2E. Furthermore, KM survival curves demonstrated that

patients with low TM scores exhibited superior survival outcomes

compared to those with high TM scores, whereas the opposite trend

was observed for the TME score (Figures 2C, D).
3.2 Immune activate with different risk
score in TM score

The tumor microenvironment plays a critical role in both

tumorigenesis and the efficacy of immunotherapeutic interventions.

To gain a deeper understanding, we conducted further investigations

into the TME milieu of patients with low-grade glioma (LGG) who

were classified into high and low risk groups based on the TM score,

using the CIBERSORT algorithm. Initially, we arranged the LGG

patients in ascending order according to their TM risk scores,

visualizing the distribution of various immune cell types based on

their respective risk scores (Figure 2F). The interrelationships among

immune cells in LGG patients (Figure 2G) can provide valuable

insights into the immunemicroenvironment specific to certain tumor

types. Subsequently, we observed a higher prevalence of T cells CD4

memory resting, Monocytes, and Macrophages M2 within the

immune cell composition of LGG patients, leading us to
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hypothesize that these three cell types might exert influence on

patients’ prognoses, a supposition supported by previous

investigations (Figure 2H). Notably, the infiltration of multiple

immune cell populations correlates closely with the 18 selected

gene signatures employed in constructing the TM score model

(Figure 2I). Lastly, we employed a lollipop chart to provide a

detailed representation of the associations between genes and

immune cell infiltrations (Figure 3).
3.3 Single-cell analysis of LGG
based on TM score

To investigate the TM score within the single-cell transcriptomic

landscape of lower-grade glioma (LGG), we performed t-SNE

analysis on single-cell datasets derived from two different sources

(Supplementary Figures S1A, B). By assessing the elevated expression

levels of gene sets corresponding to specific cell type markers, namely

PTPRZ1 for tumor cells, MOBP for oligodendrocytes, and CSF1R for

macrophages (Supplementary Figures S1C, D), we successfully

classified the cells. Subsequently, we computed the TM scores

individually for each cell type (Figures 4A–D). Notably, the
Frontiers in Immunology 05
macrophages exhibited considerably higher TM scores compared to

both the tumor cells and oligodendrocytes (Figures 4E, F), thus

affirming a strong association between telomere and the immune cells

of the tumor microenvironment (TME) at the single-cell level.
3.4 Correlation analysis of 17 telomere
related genes and tumor immune
microenvironment at the single-cell level

The single-cell dataset Glioma_GSE131928_10X was acquired

from the TISCH database for the purpose of investigating the 17

selected genes (GATA5, which is not present in the dataset), within

the TME (43). Within the GSE131928 dataset, a total of 27 cell

clusters and 8 distinct cell types were identified, including

malignant cells, monocytes/macrophages, oligodendrocytes,

exhausted CD8+ T cells (referred to as CD8+Tex), and others.

Figure 5A illustrates the distribution and abundance of the various

cell types. AC-like malignant cells and CD8+Tex cells were found to

predominantly express MSN, whereas MT3 exhibited predominant

expression in malignant cells, AC-like malignant cells, MES-like

malignant cells, OPC-like malignant cells, and oligodendrocytes,
A

B

FIGURE 1

Construction of TM and TME scores. (A) Lasso regression analysis was performed for selected 1198 TM genes in the TCGA LGG cohort. Ultimately,
the TM score was developed using 18 telomere-associated genes. (B) The CIBERSORT method was utilized to determine the abundance of 22
different types of immune cells in the TCGA LGG cohort. Kaplan-Meier (KM) survival curve analysis was performed for the remaining types of
immune cells after excluding 3 types of immune cells with low levels. Only the types of immune cells whose p-values were< 0.05 were presented in
KM overall survival curves shown on the right-hand side (favorable and unfavorable prognostic factors are respectively denoted by the colors purple
and red). The TME score was determined using a combination of activated NK cells, plasma cells, monocytes, mast cells, and eosinophils.
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with minimal expression observed in NPC-like malignant cells and

immune cells, CD8+Tex (Figures 5B, 6).
3.5 TM-TME was an independent
prognostic indicator for the LGG cohort

Based on the aforementioned findings, we developed a TM-

TME classifier by utilizing the median value of TM and TME scores
Frontiers in Immunology 06
for each dataset. To evaluate the prognostic prediction power of the

TM-TME classifier, KM OS curves were employed. The patient

cohort was categorized into four subgroups based on the TM-TME

classifier: TM_L+TME_H, TM_L+TME_L, TM_H+TME_H, and

TM_H+TME_L. Notably, the TM-TME classifier demonstrated

statistically significant prognostic implications in the TCGA LGG

cohort (Figure 7A). It was observed that the prognostic significance

is heavily influenced by both TM and TME scores. In light of the

marginal prognostic disparities between TM_L+TME_L and
A B

D

E F G

IH

C

FIGURE 2

TM and TME score development and performance in LGG. (A, B) The multivariate cox regression-based forest plot showed 18 telomere-associated
genes and 5 TME cells linked to overall survival (OS). (C, D) Kaplan-Meier survival curves for subgroups characterized by high and low TM and TME
scores. (E) Heatmap showing the spearman correlation matrix of the telomere-associated genes and TME cells. The positive, negative, and
insignificant correlations are denoted respectively by the colors red, blue, and blank. (F) The ratio of infiltrating immune cells categorized by their risk
score. (G) Correlation of immune cells. (H) Differences in immune cell composition between high-risk group and low-risk group. (I) Correlation
between 18 telomere related genes and immune cells. *p<0.05, **p<0.01, ***p<0.001.
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TM_H+TME_H subgroups, a merged subgroup comprising these

two subgroups was created. Consequently, the patients were divided

into three subgroups: TM_L+TME_H, Mixed subgroup, and

TM_H+TME_L. The novel TM-TME classifier exhibited a

considerable distinction in the OS of the TCGA LGG cohort

(Figure 7B). Optimal prognostic outcomes were noted in the
Frontiers in Immunology 07
TM_L+TME_H subgroup, followed by the Mixed subgroup,

whereas the TM_H+TME_L subgroup displayed the poorest

prognosis. Similar findings were observed in the CGGA LGG

cohort (Figure 7C). To identify the gene module associated with

the TM-TME classifier, we performed WGCNA (Supplementary

Figures S2A–C). The key modules representing the TM_H+TME_L
FIGURE 3

The lollipop chart showing the correlation between 18 genes and immune cells in detail.
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subgroup were the yellow and pink modules (Figure 7D). Similarly,

we selected the brown module as the representative key module for

the TM_L+TME_H subgroup. Subsequently, functional

enrichment analysis was conducted using Metascape, applying a
Frontiers in Immunology 08
cutoff of min overlap = 3, p-value cutoff = 0.01, and min enrichment =

1.5. This analysis revealed 20 enriched pathways in the TM_H+

TME_L and TM_L+TME_H subgroups (Figures 7E, F). The

TM_H+TME_L subgroup was primarily associated with the cell
A B

D

E F

C

FIGURE 4

Single-cell analyses of the correlation between TM score and various types of cells at the single-cell level. (A, B) A t-SNE plot consisting of all cells
from the different data sets. Annotation of the cells was done using the established gene markers. (C, D) A t-SNE plot depicting all single cells, each
colored according to the TM score from the two datasets, respectively. (E, F) TM score comparisons across tumor cells, macrophages,
and oligodendrocytes.
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cycle and DNA metabolic process, while the TM_L+TME_H

subgroup exhibited a stronger association with the neuronal

system and modulation of chemical synaptic transmission. For

the identification of protein complexes, we utilized MCODE with

the following criteria: physical score > 0.132, min network size = 3,

max network size = 500, and databases as physical core

(Supplementary Figures S2D–G).

The ROC analysis demonstrated that the TM-TME classifier

effectively predicted overall survival (OS) at 3, 5, and 7 years,
Frontiers in Immunology 09
yielding area under the curve (AUC) values of 0.813, 0.795, and

0.815, respectively (Figure 8E). To investigate the comprehensive

prognostic significance of the TM-TME classifier, we performed

univariate and multivariate Cox regression analyses in the TCGA

LGG cohort. These analyses revealed that the TM-TME classifier

served as an independent unfavorable prognostic factor (Figures 8A, B).

Additionally, this finding was validated in the CGGA LGG cohort

(Figures 8C, D). Furthermore, we generated KM OS curves for the

TM-TME classifier across various TCGA LGG clinical subtypes
A

B

FIGURE 5

Telomere related genes expression in LGG TME-associated cells. (A) GSE131928 annotation of all cell types and percentage of each cell type.
(B) Percentages of 17 telomere related genes in LGG.
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(Supplementary Figure S3). These curves demonstrated the effective

prognostic prediction of the TM-TME classifier in the majority of

TCGA LGG clinical subtypes. Therefore, the TM-TME classifier

exhibits broad applicability for predicting prognosis in LGG.
3.6 Distinct SM landscapes across
TM-TME subgroups

Immune checkpoint therapy confers long-term clinical benefits to

patients in the field of oncology (44). Consequently, we investigated the
Frontiers in Immunology 10
expression profiles of crucial checkpoint genes and major

histocompatibility complex (MHC) across distinct subgroups within

the TM-TME paradigm. Notably, within the TCGA LGG cohort,

significant variations in expression were observed for most checkpoint

genes andMHC components (Figures 9A, B). Interestingly, the TM_H

+TME_L subgroup exhibited elevated expression levels of MHCs and a

majority of checkpoint genes, including BTN2A1, BTN2A2, CD274,

CD276, CD86, CTLA4, among others.

The occurrence and accumulation of somatic mutations (SMs)

span an individual’s lifetime, with a proposed theory suggesting that

the progressive accumulation of genetic mutations contributes
FIGURE 6

Expressions of 17 telomere related genes in LGG.
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to the onset and progression of cancer (45). In addition, we explored

the landscape of SMs across different subgroups within the TM-

TME context. To illustrate this, Figures 9C, D presents a waterfall

diagram showcasing the top 20 genes with the highest mutation
Frontiers in Immunology 11
frequencies in the TM_L+TME_H and TM_H+TME_L subgroups.

In comparison to the TM_H+TME_L subgroup, the TM_L

+TME_H subgroup exhibited a higher incidence of both gene

mutations and mutations occurring in patients. The mutation rate
A

B

D

E F

C

FIGURE 7

Analysis of the prognostic significance and enrichment of the TM-TME classifier. (A) Kaplan-Meier overall survival curves of the TCGA LGG tumors
classified into four diverse subgroups as per the TM-TME classifier. (B, C) KM-OS curves of the training dataset (TCGA LGG cohort) and validation set
(CGGA LGG cohort) based on the TM-TME classifier. (D) A heatmap depicting the association between the subgroups of the TM-TME classifier and
the module eigengenes. The Pearson correlation coefficients as well as the P values are displayed in each cell. (E, F) Top 20 pathways enriched in
TM_H+TME_L subgroup and TM_L+TME_H subgroup, respectively.
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in the TM_L+TME_H subgroup reached 99.32%, whereas the

TM_H+TME_L subgroup had a mutation rate of 92.81%.

Furthermore, distinct differences between the subgroups were

observed in terms of higher frequencies of IDH1 mutations (94%

in the TM_L+TME_H subgroup and 52% in the TM_H+TME_L

subgroup), TP53 mutations (56% in the TM_L+TME_H subgroup
Frontiers in Immunology 12
and 37% in the TM_H+TME_L subgroup), and ATRX mutations

(47% in the TM_L+TME_H subgroup and 21% in the TM_H

+TME_L subgroup). Integrating the TM-TME classifier with tumor

mutational burden (TMB) using the median TMB value in patients

from the TCGA LGG cohort, we discovered a negative association

between TMB and patients’ prognoses in the dataset (Figure 9E).
A B

D

E

C

FIGURE 8

TM-TME classifier relationships with clinical characteristics in LGG. (A, B) Univariate and Multivariate Cox analyses of clinical characteristics and
TM-TME classifier in TCGA LGG cohort. (C, D) Univariate and Multivariate Cox analysis of clinical characteristics and TM-TME classifier in CGGA LGG
cohort. (E) OS-ROC curves over 3, 5, and 7 years on the basis of the TM-TME classifier in the TCGA LGG cohort.
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3.7 TM-TME classifier guided LGG
therapy approaches

Immunotherapy-based strategies currently dominate as the

prevailing therapeutic approaches for cancer. We employed TIDE

to predict the response to immunotherapy in various subgroups of
Frontiers in Immunology 13
the tumor microenvironment (TM-TME). Notably, the responder

group exhibited lower TM and TME scores in contrast to the non-

responder group (Figures 9F, G). In specific subgroups, namely

TM_L+TME_H, Mixed, and TM_H+TME_L, the response rates to

immunotherapy were 59%, 44%, and 19%, respectively (Figure 9H).

Of particular interest, the TM_L+TME_H subgroup demonstrated
A

B D

E F G

I

H

J

C

FIGURE 9

The TCGA-LGG cohort-related TM-TME classifier shows associations with immune checkpoints and somatic mutation. (A) Immune checkpoint
genes with differential expression across various TM-TME classifier subgroups. (B) The differential expression levels of major histocompatibility
complex (MHC) among TM-TME classifier subgroups. (C, D) Differences in mutations between the TM_H+TME_L subgroup and the TM_L+TME_H
subgroup (the top 20 mutated genes). (E) KM-OS curves among four groups divided by TMB and TM-TME classifier. *p<0.05, **p<0.01,
****p<0.0001. (F, G) The TM and TME scores have different distributions among those who respond to immunotherapy and those who do not
respond. (H) Comparison of immunotherapy responses across different TM-TME classifier groups in TCGA LGG cohort. (I, J) Functional analysis
proteomaps of immunotherapy responders and non-responders in TM_H+TME_L, TM_L+TME_H subgroups. Polygons represent each KEGG
pathway, with their sizes reflecting the protein ratio in each.
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a significantly higher likelihood of benefiting from immunotherapy

compared to the other two subgroups. To visually depict and

differentiate the underlying processes among LGG patients in

distinct groups, proteomaps were utilized (Figures 9I, J). Notably,

the proteomaps of the TM_L+TME_H subgroup and responder

groups exhibited a remarkably high level of similarity, while a

similar observation was made between the TM_H+TME_L

subgroup and non-responder groups. This indicates the effective

characterization of the TME in LGG patients and the ability of the

TM-TME classifier to predict the outcome of immunotherapy.
3.8 The expression levels of 17
prognostic risk genes

Using our bioinformatics analysis findings as a basis, we

conducted additional investigations into the expression patterns

of the 18 prognostic risk genes within five LGG tissues as well as

their corresponding peritumoral tissues among patients. Employing

qRT-PCR at the transcriptional level, we observed noteworthy

disparities in the expression levels of four genes (ARHGAP,

MAP3K1, SP110, and WEE1) between LGG and peritumoral

tissues. However, no significant differences were detected in the

expression levels of the remaining genes. Notably, GATA5 was

undetectable in both LGG and peritumoral tissues as determined by

qRT-PCR analysis (Figure 10).
3.9 The expression levels of WEE1 in LGG

We conducted a random selection of a specific gene, WEE1, to

investigate its protein expression patterns. Our analysis utilizing

Western blotting (WB), immunohistochemistry (IHC), and

immunofluorescence staining revealed a substantial elevation of

WEE1 levels within the tumor tissues, in comparison to the

corresponding adjacent tumor tissues. These findings strongly

suggest that WEE1 holds great promise as a potential therapeutic

target for glioma treatment (Figures 11, 12).
4 Discussion

Telomeres have a crucial impact on the advancement of lower-

grade glioma and the modulation of the tumor microenvironment

(TME) (46). Limited investigations have explored the joint

utilization of telomere and TME signatures to forecast prognosis

and treatment response. The development of multi-omics has

greatly improved the diagnostic and predictive accuracy of

diseases (47, 48). In this novel investigation, we present the

inaugural integration of telomere and TME signatures, resulting

in the development of a TM-TME classifier capable of enhancing

clinical categorization and refining treatment strategies.
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In our study, we established the TM score utilizing the 18 genes

associated with telomeres. Previous investigations have indicated

the upregulation of ABCC3 (ATP binding cassette subfamily C

member 3) in glioma patients (49). The hypomethylation of ABCC3

has been observed in LGG patients with epilepsy, which is

associated with unfavorable prognoses (50). Furthermore, the

methylation of GATA5 (GATA binding protein 5) has been

identified in 27.8% of glioblastoma patients and is strongly

correlated with poor outcomes in primary glioblastoma cases

(51). Activation of the PI3K/Akt signaling pathway by IGF2BP2

(also known as Imp2, Insulin-like growth factor 2 mRNA-binding

protein 2) promotes glioma progression, while its inhibition

sensitizes glioma cells to temozolomide treatment (52). Glioma

cell proliferation, invasion, and tumor propagation have been found

to be facilitated by IGF2BP3, as observed by Jin et al. (53). Extensive

research has shown that MAP3K1 plays a crucial role in cell

migration, growth, and apoptosis, and its dysregulation is closely

associated with adverse outcomes in various malignancies,

including glioma (54–57). Some genes, such as CABP4, DUSP10,

LPIN3, were reported for the first time to be associated with glioma.

The immune system plays a crucial role in cancer development

and the advancement of immunotherapy (58). Extensive research is

currently being conducted on exosome-based immunotherapy (59,

60). It is noteworthy that metabolic molecules exert a substantial

influence on the immune environment, thereby impacting disease

progression (61–63). Moreover, the equilibrium of cytokines holds

significant sway over the advancement of diseases (64). To better

understand the role of immune cells in lower-grade glioma,

subsequently, we developed the TME score based on five TME

cells: eosinophils, activated mast cells, monocytes, plasma cells, and

activated NK cells. These cells are all associated with a favorable

prognosis in LGG patients. Eosinophils, derived from myeloid

progenitors, have been found to correlate with improved

prognoses in several solid tumors, including glioma, colon cancer,

and lung cancer, due to their infiltration and degranulation (65–67).

Mast cells suppress the signal transducer and activator of

transcription 3 (STAT3) pathway by downregulating glycogen

synthase kinase 3b (GSK3b), thereby diminishing the

proliferation, migration, and invasion of glioma cells (68).

Monocytes are found in the spleen, blood, and bone marrow (69).

They encompass three subtypes: monocytes, repolarized

monocytes, and monocytes that differentiate into macrophages

(70). Wang et al. observed a decrease in invasive monocyte

counts and a subtype-dependent increase in macrophage/

microglia numbers during glioma recurrence, as determined by a

gene signature associated with the TME (71). The expression of B

cell and plasma cell signature genes has been positively correlated

with overall survival (OS) in patients with pancreatic cancer,

melanoma, and lung adenocarcinoma. However, elevated

expression levels of these genes have been associated with poorer

clinical outcomes in patients with glioblastoma and clear cell renal

cell carcinoma (72–74).
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The TM-TME classifier was established based on the TM and

TME scores. Analysis using Gene Ontology (GO) indicated that the

TM_L+TME_H subgroup is associated with neuronal system

function and the modulation of chemical synaptic transmission.

Notably, studies have demonstrated that gliomas can perturb

neuronal plasticity and development within the TME, leading to
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aberrant neuronal connections with tumor cells through neuronal

glioma synapses (75, 76). On the other hand, the TM_H+TME_L

subgroup exhibits a stronger correlation with cell cycle regulation

and DNA metabolic processes. Previous research by Roth et al. has

highlighted the role of glycosylation, lipid metabolism, and

carbohydrate metabolism in promoting tumor malignancy,
FIGURE 10

The relative expression levels of 17 genes (except GATA5) in five LGG tissues and the corresponding peritumoral tissues of patients. *p<0.05, ns
represents no significant difference.
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thereby identifying novel therapeutic targets (77). Consistently, our

findings reveal a poorer prognosis in the TM_H+TME_L subgroup.

Interestingly, patients assigned to the TM_L+TME_H

subgroup displayed the most favorable prognosis, which was

positively associated with higher tumor mutational burden

(TMB). TMB has emerged as a potential biomarker for

predicting the efficacy of immune checkpoint blockade (ICB)

therapy. Hence, the TM_L+TME_H subgroup exhibits a higher

rate of immune response to treatment. In contrast, the TM_H

+TME_L subgroup exhibited the poorest prognosis, accompanied

by the lowest immune response rate. These results are in line with

previous perspectives on the relationship between TMB and

immunotherapy (78).
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In brief, we have delineated the combined molecular profiles of

telomeres and immune cells in the tumor microenvironment

(TME). This comprehensive analysis provides a fresh perspective

on the classification of low-grade gliomas (LGGs) and offers

accurate prognostic predictions as well as insights into the

effectiveness of immune-based therapies. Nonetheless, it is

important to acknowledge the limitations of our study. Firstly, the

sample size utilized in our investigation was relatively small, which

may impact the generalizability of our findings. Secondly, the

inclusion of 18 telomere-associated genes in our analysis poses a

significant challenge in terms of experimental validation. Besides,

the migratory capacity and drug resistance of tumor cells are closely

associated with adverse prognosis and recurrence, thus
A B

C

FIGURE 11

(A) WB for WEE1 in tumor tissues and peritumoral tissues from one patient. (B) The expression level of WEE1 in tumor tissue and peritumoral tissue.
(C) IHC for WEE1 in paired tumor tissues and peritumoral tissue from three patients. **p<0.01.
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necessitating further experimental elucidation of underlying

mechanisms (79, 80). Lastly, the absence of an LGG-specific

dataset for assessing the performance of our classifier, despite its

validation in the TCGA and CCGA cohorts, is a notable constraint.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found within the article/Supplementary Material.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethical Review Committee of Beijing Tiantan
Frontiers in Immunology 17
Hospital. The patients/participants provided their written

informed consent to participate in this study.

Author contributions

XH and JG conceived the study and collected and analyzed the

data. XH wrote the manuscript. JG, YZ, LA provided technical

guidance and experimental guidance. XH, ZY, KF, XG, BH, XL, YO,

BC contributed to data collection, analysis and interpretation, and

manuscript writing. All authors contributed to the article and

approved the submitted version.

Funding

This research was funded by the National Natural Science

Foundation of China (No.81870834 and No.62276027).
FIGURE 12

Immunofluorescence staining for WEE1 in paired tumor tissues and peritumoral tissue from three patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1220100
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2023.1220100
Acknowledgments

We sincerely thank YZ and BC from Beijing Institute of Brain

Disorders for experimental guidance.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Immunology 18
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1220100/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The expression analysis of marker genes using single cell analysis. (A, B) t-SNE
plot of cells from two datasets, respectively, with each color and number coded

to indicate the associated cell types. (C, D) DotPlots show the expression levels
of marker genes in each cluster of two datasets, respectively.

SUPPLEMENTARY FIGURE 2

WGCNA analysis and construction of interactive network. GO enrichment

analysis was applied to each MCODE network. The same color nodes
represent an interactive network and perform similar biological functions. (A)
Clustering of sample data to detect outliers. (cutHeight =160) (B) Analysis of the
scale-free fit index (left) and the mean connectivity (right) for various soft-

thresholding power value. (C) Dendrogram of 5000 selected genes clustered

based on a dissimilarity measure (1-TOM) together with assigned module
colors. (D) Seven MCODE components were constructed with the screened

hub genes in TM_high+TME_low subgroup. (E) Each interactive network with
different colors own different score values in TM_high+TME_low subgroup. (F)
Eleven MCODE components were constructed with the screened hub genes in
TM_low+TME_high subgroup. (G) Each interactive network with different

colors owns different score values in TM_low+TME_high subgroup.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier overall survival curves of TM-TME classifier in diverse LGG
clinical subtypes in TCGA LGG cohort (A–J).
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