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Oral mucosa immunity: ultimate
strategy to stop spreading of
pandemic viruses
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Global pandemics are most likely initiated via zoonotic transmission to humans in

which respiratory viruses infect airways with relevance to mucosal systems. Out

of the known pandemics, five were initiated by respiratory viruses including

current ongoing coronavirus disease 2019 (COVID-19). Striking progress in

vaccine development and therapeutics has helped ameliorate the mortality

and morbidity by infectious agents. Yet, organism replication and virus spread

through mucosal tissues cannot be directly controlled by parenteral vaccines. A

novel mitigation strategy is needed to elicit robust mucosal protection and

broadly neutralizing activities to hamper virus entry mechanisms and inhibit

transmission. This review focuses on the oral mucosa, which is a critical site of

viral transmission and promising target to elicit sterile immunity. In addition to

reviewing historic pandemics initiated by the zoonotic respiratory RNA viruses

and the oral mucosal tissues, we discuss unique features of the oral immune

responses. We address barriers and new prospects related to developing novel

therapeutics to elicit protective immunity at the mucosal level to ultimately

control transmission.
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1 Zoonotic respiratory RNA viruses are linked to
global pandemics

Pandemic refers to the explosive outbreaks of communicable diseases on a global scale (1–

3). The scale, geographic location, and duration of pandemics are unpredictable (4, 5).

Historically, the most devastating pandemics were initiated by cross-species transmission of

pathogens, such as Justinian plague (541-542 AD), the Black Death (1347-1351), flu pandemics

(Spanish flu in 1918, Asian flu in 1957, Hong Kong flu in 1968, Russian flu 1977, Swine flu in

2009), and the ongoing SARS-CoV-2 COVID-19 pandemics (2019-current) (6–9). Since most

human populations are immunologically naive, wildlife pathogens that acquired a susceptibility

to humans can spread rapidly (10). Still, cross-species transmission from animal to human is

not as common and requires successful adaptation to maintain long-term human to human

transmission (11–14). Wolfe et al. summarized five progressive stages of animal microbe’s
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human adaptation: 1) exclusivity to animals; 2) obtaining non-

sustainable animal-to-human transmission; 3) limited human-to-

human transmission; 4) sustained human-to-human transmission

without the need for an intermediate host (influenza A, SARS,

MERS, SARS-CoV-2,Vibrio cholerae, and dengue virus); and 5)

exclusive circulation in humans (15). As humans encroach into the

natural habitats of wildlife and as human population, travel, and trade

increases, so does the risk of spillover events (16). Domestic animals

serve as intermediate hosts to create novel zoonotic pathogens,

increasing the chance of transmission from wildlife (17, 18).

Emergence of the pandemic 2009 H1N1 virus (pdm09 H1N1) serves

as a prime example where the novel virus was created by a triple genetic

reassortment event (influenza genes derived from North American

swine, humans, and birds) which most likely occurred in domesticated

pigs (19–21). Exceptional mutation rates and short generation times

are highly advantageous to RNA viruses, allowing them to adapt to new

host systems and break the species barrier by compatibility to host cell

receptors, cellular enzyme systems, or tissue tropism (22, 23). Mutation

rates of RNA viruses can roughly occur at rates of six orders of

magnitude greater than those of their cellular hosts (23). Across

multiple studies, a critical part of emerging pathogens (25-44%) in

humans is reported to be related to respiratory RNA viruses (24–27).

The global pandemics affecting all five continents almost

simultaneously were initiated by zoonotic respiratory RNA

viruses including influenza and the coronaviruses. Currently,

vaccines are the most efficacious measure to reduce the disease

severity and mortality of respiratory viral diseases (28, 29).

However, due to the biased immunogenicity to elicit systemic

neutralizing antibody response, vaccinations cannot stop the

spread of the virus at mucosal surfaces (30–33). Silent spread of

viruses among asymptomatic patients can further generate novel

escaping mutants (34–37) and impact public health.
2 Salivary droplets as transmission
source of zoonotic respiratory RNA
viruses

Respiratory RNA viruses primarily infect and replicate at

respiratory tracts, and the amplified viruses shed their progeny

into mucosal droplets, often spread by coughing or sneezing (38,

39). Considering the poor stability of RNA and viral envelope

structure, transmission of aerosolized particles had been,

historically, less supported (40). Due to this belief, the efficacy of

facial masks was questioned in preventing transmission of the

respiratory viruses during the initial phase of the COVID-19

pandemic (41). The role of aerosolized particles in transmission

of respiratory particles has been more supported as experiencing

explosive incidence of the COVID-19 cases in indoor environments

that are poorly ventilated, such as meatpacking factories, cruise

ships, and churches (40).

For the transmission of highly attenuated SARS-CoV-2 variant

strains, salivary droplets generated during speech have been

increasingly considered as a major transmission vehicle for the

asymptomatic carriers lacking respiratory symptoms (coughing and
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sneezing) (42, 43). While the SARS-CoV-2 virus is considered a

respiratory pathogen, the virus is known to replicate in a variety of

tissues and organs expressing the ACE2/TMPRSS receptors,

including gingival tissues and salivary glands (44).

This is also consistent with human adapted influenza viruses

and oral epithelium. It requires galactose linked to a-2,6-sialic acid,
abundantly expressed on epithelial cells of the upper respiratory

tract, including oropharynx (45). While avian influenza viruses

preferentially bind to the a-2,3-SA expressed in the human lower

respiratory tract, human adapted zoonotic influenza viruses

replicate in the oropharyngeal airway and shed into the salivary

droplets. Responsible for the 2009 pandemic, the A/(H1N1)pdm09

virus has been reported to bind to a-2,6-SA and, to a limited extent,

to a-2,3-SA (45, 46). In the case of the highly pathogenic avian

influenza virus H5N1 viruses, one of the most devastating candidate

pandemic virus strains, can also infect and replicate in cells of the

nasopharyngeal and oropharyngeal epithelia (47). Influenza is also

known to be detected in saliva (48, 49). A recent study showed no

significant difference in detection rate of influenza virus detection

rate between saliva and nasopharyngeal swabs (48).

In the case of small virus-laden droplets (<30mm), highly

sensitive laser light scattering observations have revealed that loud

speech can emit thousands of oral fluid droplets per second (43). In

a closed, stagnant air environment, they disappear from the window

of view with time constants in the range of 8 to 14 min,

corresponding to droplet nuclei of 4mm diameter, or 12 to 21mm
droplets prior to dehydration (43). Virus-laden droplets less than

30mm could even spill over conventional facial masks. Spilled RNA

virus particles maintain infectivity for hours in the air or on surfaces

and infection virus was still detected up to 28 days later (50).The

stability of coronaviruses varied between 1 hour to 24 hours

depending on the humidity and temperature (51–55). In the case

of animal coronavirus porcine enteric diarrhea virus (PEDV), the

viral RNA in air was detectable at 16.1 km (56). Actual evidence of

airborne transmission has also been demonstrated in in vitro and in

vivo models. Kormuth et al. used humidity-controlled chambers

and identified that the 2009 pandemic influenza A (H1N1) virus in

suspended aerosols stationary droplets remain infectious for an

hour across a wide range of humidities (23-98%) (57). Through a

guinea pig model, transmission of influenza A/Panama/2007/1999

(H3N2) (58) virus through the air was measured as efficient as the

fomite transmission (58). Collectively, active shedding of

respiratory RNA viruses in saliva can be a major source of

transmission from asymptomatic carriers lacking respiratory

symptoms. Stability of RNA viruses in the air and potential of

airborne transmission shows the ease of transmission of the

zoonotic respiratory RNA viruses, emphasizing the need for

induction of oral immunity (Figure 1).
3 Induction of oral immunity reduces
respiratory viruses spread

The lack of effective measures to prevent entry of viral particles

at the mucosal surfaces poses a major challenge in controlling
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zoonotic respiratory viruses. Vaccination is the most effective

strategy to control zoonotic respiratory RNA viral disease,

significantly lowering the disease severity and case-fatality rate

(59–61). However, current vaccines administered via parenteral

route cannot directly stimulate the mucosal immune system (29,

62). Systemic antibodies induced by vaccination provide partial

protection to subjects but transportation from blood to mucosal

epithelia surface is highly restricted to confer protection at mucosal

surfaces (63–65). Instead, vaccinated individuals can carry the

viruses without apparent symptoms and serve as asymptomatic

carriers (66). As viruses are more attenuated and sheds easier

without apparent symptoms, vaccination and symptom-based

intervention strategies lose their efficacy and the viruses evolve to

more divergent escaping mutants (67). The ultimate strategy to end

the current pandemic and prevent future pandemics is to control

transmission. Current efforts to control variant viruses are to induce

sterilizing immunity, which in turn provides protective immune

responses at both mucosal and systemic levels (68, 69). In theory,

sterilizing immunity aims to induce neutralizing antibodies at the

viral entry site, differentiated from the protective immunity which

refers to prevention from symptomatic infections. Sterile immunity

prevents the viral transmission, including the asymptomatic and

presymptomatic carriers (68, 70). At the phase when the viruses are

highly attenuated and asymptomatic transmission lacking

respiratory symptoms (e.g., coughing or sneezing) is more

frequent, induction of neutralizing IgA response at oral mucosa

should be considered (43). While the oral immune system is known

to be on the frontline of the gastrointestinal tract (GIT) and

respiratory tract, it has been relatively less investigated (71–74).
Frontiers in Immunology 03
Novel strategies needed to induce oral mucosal immune responses

are particularly scarce due to its unique role in preventing entry of

external pathogens and hyperactivity to diet or to air exposure.
4 The oral mucosal immune system is
driven by a unique features

Oral mucosa is the beginning of the GIT and shares anatomic

and histologic characteristics with GIT (75–77). In addition to

mucus produced by overall GIT, the oral cavity produces saliva

(32, 78). The whole saliva is originally generated from serum

exudates and supplemented with highly diverse molecules from

mucosal cells, immune cells, and microbes (78). Continuous

production and swallowing of saliva provide a mechanical

clearance of pathogens (78). Also, saliva contains host defense

proteins, primarily responsible for both adaptive and innate

humoral immune response at oral mucosa (78).

Oral mucosa, like other mucosal tissues, can be divided into three

major layers, epithelia, lamina propria, and specialized lymphoid

tissues (visual summary in Figure 2) (73, 75). The epithelial layer of

oral mucosa is stratified squamous epithelium, forming a thicker and

denser mechanical barrier than the single layer of GIT epithelia (73,

75). The top portion of the oral epithelial layer forms a level of various

levels of keratinization according to the anatomical location (73, 75).

Some areas, such as pharynx and junctional epithelium at periodontal

space, are non-keratinized and serve as a major point for the innate

defense and homeostasis in oral microenvironments (79–81). Lamina

propria (LP), a loose connective tissue containing blood and
FIGURE 1

Global transmission viral transmission patterns could be interrupted by mucosal immune responses to manage zoonotic RNA respiratory viruses.
Novel viral infections to humans are originated from animals. Especially when zoonotic respiratory RNA viruses gain human-to-human transmission
capabilities, the novel infectious agent can explosively spread through the immunologically naive human population. In the case of human
populations gaining partial immunity to the virus, systemic antibody response reduces the severity of clinical illness and mortality. However, systemic
immune response cannot block the infections/transmission of the viruses at the mucosal surfaces (e.g., upper respiratory tract and oral cavity). In
transmission of asymptomatic infection without respiratory symptoms (sneezing and coughing), virus-laden salivary droplets can act as major source
of viral transmission. Thus, induction of protective immune response at the oral mucosal surface is instrumental to control transmission of the
zoonotic respiratory RNA viruses.
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lymphatic vessels under epithelial layers, is a major inductive and

effector site for immune cells (79). Steady-state dendritic cells (DCs)

reside throughout the lamina propria and often migrate to sample

auto-, and foreign antigens derived from commensal microbes,

dietary components, mastication damage and pathogens (82). The

steady-state DCs in oral tissues are tuned to be tolerogenic to most

stimuli from the oral microenvironment, expressing low levels of

maturation markers (CD80, CD83, and CD86) (83, 84). In certain

conditions, such as invasion of pathogenic microbes, dysbiosis, or

damage associated with molecular patterns (DAMPs), the DCs are

activated andmigrate to lymphoid tissues to induce T activation, such

as buccal mucosa, salivary glands, and waldeyer’s ring, is located and

serves as major site for activation and expansion of lymphocytes (79).

Activated antigen-specific IgA secreting B cells or CD8+ T cells

relocate to the effector site, such as the epithelium, LP, and salivary

glands, to mediate immune response. But mature DCs also limit T

cell activation and promote immune tolerance in specific triggers,

such as IL-27, IL-10, vitamin A, or ligands of the aryl hydrocarbon

receptor (AhR) (85–88).

As the sIgA can block the viral replication cycle at the initial stage,

virus specific sIgAs has been thought to be the most potent target to

induce sterilizing immunity at mucosal surfaces (70). In oral mucosa,
Frontiers in Immunology 04
the sIgA is produced from plasma cells primarily residing in salivary

glands and secreted as two monomers linked by a junctional chain via

polymeric immunoglobulin receptors (pIgR) at the basolateral

membrane of epithelial cells (89–91). In mucosa, the process of class

switching to the IgA producing B cell occurs at the lymphoid tissues,

such as nasopharyngeal-associated lymphoid tissues (NALT), tear duct

associated lymphoid tissue (TALT), and peripheral lymphoid tissues.

To elicit antibodies specific to the viral antigen with high affinity, the

naive B cells go through the class switch recombination (CSR) by

CD40-CD40L ligation in presence of the TGF-b and other co-

stimulatory cytokines (IL-4,IL-5, IL-6, IL-10 and IL-21) mediated by

CD4+ helper T cells (Th) (91, 92). Meanwhile, naive B cells can activate

in response to the continuous stimuli from commensal microbes,

metabolites and dietary antigens without involvement of T cells or

hypersomatic mutations (93, 94). Two types of antigens have been

known to induce the T cell-independent activation (95–97). Type I

antigens are typically microbial products (e.g. bacterial LPS or DNA),

directly activating B cells through the toll-like receptors on the B cell

surface. Type 2 antigens are usually repetitive or highly cross-linked

structures found on the surface of encapsulated bacteria, such as

polysaccharides or glycolipids. Type II antigens do not have intrinsic

activity to stimulate, but accumulation of BCRs and cross-activation of
A

B

FIGURE 2

Comparison between oral vs gastrointestinal mucosal tissues and the cell populations contributing to overall immunity. Oral mucosa is the initial
compartment for gastrointestinal tract (GIT). Overall structure of oral mucosa is like GIT, consisted with the shares common histologic structure;
covered with commensal microbes and saliva filled with diverse antimicrobial, enzymes, and secretory IgAs (sIgAs) (A). The top layer, epithelium,
lamina propria, and specialized lymphoid tissues present distinct cells and functions according to the GI versus Oral tract (B). Oral cavity presents
unique traits (much thicker epithelial layer, presence of keratin layer, and tolerogenic dendritic cells), which can prevent vaccine antigen delivery and
induction of virus-specific immune response at oral mucosal surfaces.
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the receptors can activate B lymphocytes, leading to the production of

various cytokines, including interleukin-6 (IL-6) and tumor necrosis

factor-alpha (TNF-a). Type II antigens can only activatemature B cells.

Due to the lack of CSR, sIgAs produced by T cell independent

processes present low affinity and low specificity to antigens (98).

The source of cytokines involved in T cell independent class-switching

is thought to come from subsets of innate immune cells, such as innate

lymphoid cells (ILCs) (99). In addition to the sIgA response,

commensal microbes are instrumental for the induction and/or

tolerance of local immune responses (100–102). Oral mucosa

possesses the second largest microbial community after the gut (103,

104). The symbiotic interaction between mucosal epithelial linings and

microbes is crucial to maintain steady state of the oral mucosa

(100–102).

Microbial colonies serve as primary barriers to inhibit the

invasion of external microbes (105). Microbes and their

metabolites can also modulate the tone of immune response to

constant stimulation by the dietary and inhaled antigens (100–102).

Metabolites produced from gut microbiota have been shown to

directly influence both inflammatory cells (inflammatory Macs

(iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer

(NK) T cells, NK cells and neutrophils) and immuno-suppressive

cells (e.g., tolerogenic T cells (Treg), regulatory B cells (Breg) and

innate lymphocytes (ILCs)) (103). Accumulating evidence reveals

that the dysbiosis in oral mucosa also contributes to the disease

pathogenesis, especially for the respiratory viral infection (103, 106,

107). It is important to note that the oropharynx is the primary site

of viral replication and immune induction and major source of the

lung microbiome (103, 108). Also, infection with respiratory

viruses, such as the SARS-CoV-2, impacts on enrichment of

opportunistic pathobionts in the oral cavity (106, 109, 110). A

recent cross-sectional study showed that the COVID-19 patients

presented a distinctive microbiome profile, a decrease in the alpha-

diversity and bacterial species richness in association with symptom

severity (103).

The oral cavity maintains homeostatic inflammatory state,

created by microflora. The local microflora habituated on the oral

cavity is known to be more than 700 species of bacteria, viruses,

fungi, and protozoa (111). The main inhabitants of a healthy oral

cavity are gram positive and negative cocci and rods, such as

Firmicutes, Bacillus, Proteobacteria and Actinomycets (111–113).

In a homeostatic state, the microbial community acts as a barrier

against colonization of foreign agents and aids differentiation/

maturation of the oral immune system (114). For example,

constant production of bacterial products and damage associated

molecular patterns (DAMPs) constantly recruit and stimulate

innate immune cells (eg. neutrophil). Also, bacterial products

(LPS, DNA, or polysaccharides) serve as antigen to induce T cell

independent low affinity sIgA response during normal state. The

sIgAs produced from the healthy state play a pivotal role to prevent

overt growth of microbiome. Another important regulator of the

microbiome is the fibrin (115). Inflammation triggered by the

microbiome results in constant fibrin deposition in oral mucosa.

The fibrin activates neutrophil effector functions, harnessing

overgrowth of bacteria and activating the plasmin-mediated

fibrinolysis. Since the homeostatic inflammation is highly
Frontiers in Immunology 05
orchestrated by complex interaction among oral mucosa,

microbiota, immune cells and clotting factors, dysbiosis and/or

tissue damage created by viral infection can significantly impair the

oral immune system and promote disease progress from local

infection to the systemic illness (103, 115).

5 Induction of protective mucosal
immune response is challenging:
insights on the oral immunology

The oral mucosa is exposed to a variety of environmental

insults, including pathogens, allergens, and toxins (77, 116). The

oral mucosa is also the first line of defense against these insults, and

it is essential that the oral mucosa is able to mount an effective

immune response (77, 116). The immune response at mucosal

surfaces is mediated by a variety of cells, including dendritic cells,

macrophages, neutrophils, and B cells (117). These cells work

together to generate an immune response that is specific to the

pathogen or allergen that is being encountered (117). While the oral

mucosa is constantly stimulated by foreign intakes, the symbiotic

interactions among microbes epithelial cells and immune cells can

also send signals to the system including clotting factors and

microbiome intrusion (83, 84, 115). Due to the complexity,

induction of antigen-specific immune response at the oral

mucosal surface requires alternative approaches differentiated

from conventional parenteral prophylactic or therapeutic

strategies. The induction of mucosal immune responses is a

complex process that is not fully understood, however, it is

known that a number of factors can influence the ability of the

oral mucosa to mount an effective immune response (83, 84, 115).

These factors include: (i) the presence of pathogens or allergens; (ii)

the integrity of the oral mucosa; (ii) the presence of IgA antibodies;

(iii) the presence of cytokines; (iv) the presence of regulatory T cells

(83, 84, 115, 116). Also, the oral mucosa is home to a variety of

commensal bacteria that can interfere with the immune response

(83, 84, 115).

The first challenge for inducing mucosal immune response is the

multiple mechanical and chemical barriers. Specially, the oral cavity is

composed of multiple layers of epithelial cells, most areas covered

with keratinized cells, except the inductive sites (pharynx, tonsil,

hard/soft palate, buccal-, and sublingual mucosa) (81, 83). Also, the

continuous production and swallowing of saliva containing diverse

enzymes interferes with stable delivery of vaccine antigens and

adjuvants (118). To induce protective immune response, the

immunogen needs to overcome such barriers and persist at the site

to initiate cascades of immune responses that lead to protection, such

as homeostasis and maintenance of health.

The second barrier is to elicit protective immune responses by

overcoming oral tolerance without the risk of experiencing

hypersensitivity (83, 119, 120). Oral tolerance refers to the

process in which the immune system does not respond to orally

administered antigens (83, 119). At least two different mechanisms

have been identified to mediate development of oral tolerance (83,

119). One mechanism is the induction of regulatory T cells via

production of TGF-b but that concomitant retinoic acid signaling
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boosted this process by mucosal DCs (119). T cell anergy is another

possible mechanism induced in high-dose oral tolerance. Anergic T

cells are also known to contribute to oral tolerance (83, 119). One

method to circumvent oral tolerance could be to apply antigen in

another mucosal route, such as intranasal or sublingual route.

Additional considerations relate to inducing protective oral

immune response from by influence of commensal microbes and

microbiome derived signals (77, 82). Oral cavity maintains

homeostatic inflammatory status against commensal microbiota

(77, 121, 122). In oral vaccination, depletion of microbiota

significantly reduced Th1 and Th17 response to the heat-labile

enterotoxin of enterotoxigenic Escherichia coli as adjuvant (LT

R192G/L211A) (123). Also, individuals who displayed more diverse

gut microbiota tended to exhibit better response to vaccinations

(124). In contrast, dysbiosis can result in reduction in vaccine

efficacy (125–127). Probiotics have been suggested to enhance IgA

and memory T cell response in COVID-19 management (128).

Above issues are the major barrier in developing prophylactic/

vaccine strategies to induce oral mucosal immune system and stop

the silent spread of the zoonotic respiratory viruses via salivary

droplets. Next, we discuss novel approaches targeting influenza, and

the SARS-CoV-2 viruses, under clinical trials to prove their efficacy

in induction of oral mucosal immunity.
6 Novel approaches inducing mucosal
immune response specific to the
zoonotic respiratory RNA viruses

6.1 Delivery system

6.1.1 Direct sensitization of oral mucosa
Is the most efficient route to activate resident immune cells and

induce antigen-specific IgA response (129). Novel delivery

strategies have been designed to overcome multiple mechanical

barriers (e.g., keratinized epithelium, clearance system), proteolytic

activity of saliva, and tolerogenic mechanism of oral mucosa. A lipid

based delivery system (i.e. liposome, lipid nanoparticles, emulsion

and immunostimulatory complexes (ISCOMs)) is a promising

vehicle, formulating immunogens in water-immiscible lipid,

protecting enzymatic digestion, and enhancing absorption into

the mucosal surfaces (130, 131). For COVID-19, the lipid

nanoparticle-mRNA format was successfully introduced in an

intramuscular injection format. To induce oral mucosal immunity

to influenza and COVID-19, the lipid-based delivery system has

been tested in in vivo studies (132–137).

6.1.2 Polymer-based delivery systems
Can increase the contact time of delivered adjuvant/

immunogen, provide stability, and adjunctive effects (138, 139).

Polymers can be divided into natural (chitosan, gamma

polyglutamic acid, hyaluronic acid, and pullulan) and synthetic

(PLGA, Polyethyleneimine, poly-ϵ-caprolactone, PCL, and

Polypropylene sulfide). For influenza, the polymer-based vaccines

have already been developed and proven their efficacy in animal
Frontiers in Immunology 06
models for the mucosal influenza vaccine development (140–144).

Also, the polymeric-based nanoparticles system is under

development for COVID-19 therapeutics and vaccines (145).

6.1.3 Sublingual vaccination
Is also a method of delivering vaccines directly under the

tongue, absorbed by the mucous membranes (118, 146). Similar

to sublingual vaccination, buccal vaccination is another method of

delivering vaccines directly to the mucous membranes in the mouth

(118, 146). However, instead of placing the vaccine under the

tongue, the vaccine is placed on the inner cheek or buccal

mucosa (118, 146). Both sublingual-, and buccal mucosa contains

high level of antigen presenting cells, T-, and B-cells and attractive

target as vaccine delivery (118, 146, 147). One potential advantage

of buccal vaccination over sublingual vaccination is that it may offer

more flexibility in terms of vaccine design and formulation. The

buccal mucosa has a larger surface area than the sublingual mucosa,

which may allow for the delivery of larger doses of the vaccine or the

use of more complex formulations (148). There are ongoing

research and development efforts to create sublingual vaccines for

influenza and coronavirus (including SARS-CoV-2) (118, 149–151).

Previous preclinical studies in animals have shown promising

results for sublingual vaccines against influenza and

coronaviruses, demonstrating the induction of robust immune

responses and protection against infection. However, to date, no

sublingual vaccine for influenza or coronavirus has been approved

for use in humans. Development of the sublingual vaccines for

influenza and coronaviruses remains an active area of research,

there have been multiple clinical trials (Table 1).

6.1.4 Microbial display system
Microorganisms, such as virus, bacteria or yeast, can be used as

a vaccine delivery system. The microbial display system can leverage

their surface proteins as immunostimulants, enhancing

immunogenicity of weakly immunogenic vaccine antigens. Also,

the in vitro cultivation of vehicle microbes enables mass production

in a cost-effective way. Bacteria, varial, and fungi have been widely

investigated as delivery vehicles. The spore-based system is under

clinical trial for the COVID-19 vaccine. (NCT05239923).
6.2 Mucosal vaccines

6.2.1 Live attenuated vaccines (LAV)
AV promote direct sensitization of the mucosal surface and

have been the most efficacious way to elicit a protective immune

response in the oral mucosa (152, 153). Also, live replicating viruses

in epithelia stimulates innate and cell-mediated immunity, serving

as a self-adjuvant and preserved from the mucosal clearance system.

The LAV can be delivered via a variety of routes, including oral,

nasal, and rectal (154). Oral delivery of live attenuated vaccines is

particularly effective in inducing mucosal immunity (155–158).

This attribute has distinct benefits from the parenterally delivered

injectable vaccines, including, high efficacy at oral mucosa, ease of

administration, and cost effectiveness (28, 159, 160). Also, the LAV
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is free from the issue of delivery since the vaccine virus attaches to

the cellular receptor and is internalized into the mucosal epithelial

surface. Activation of innate intracellular signaling pathways during

internalization can add self-adjuvanting effects, mainly through the

pathogen recognition receptor (PRRs) (161). For seasonal influenza,

for example, FluMist has been used over decades as an intranasal

spray vaccine (162). Also, there have been multiple live vaccine

candidates, such as live attenuated vaccine format and or vector
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vaccines (163). However, the FluMist could not induce salivary IgA

response (164), showing that nasal activation is not always effective.

Multiple live attenuated influenza vaccines have been developed

against pandemic influenza strains H5Nx and H7N9 viruses, which is

under clinical trials (H2N2: NCT01982331; H7N9: NCT02480101;

H5Nx: NCT01841918 and NCT02229357) (165–168). As a next-

generation influenza vaccine, a chimeric hemagglutinine-based

universal influenza vaccine is also under clinical trial
TABLE 1 Clinical Trials, Study Phase, and Types of Investigations Related to Oral Mucosa.

1 Phase Study

Novel delivery system

NCT04334980 Phase I/II phase 1/2 trial evaluating the safety and immunogenicity of a sublingual influenza vaccine

NCT04625972 Phase I phase 1 trial evaluating the safety and immunogenicity of a sublingual COVID-19 vaccine

NCT04563702 Phase I phase 1 trial evaluating the safety and immunogenicity of a buccal COVID-19 vaccine

NCT04644782 Phase II phase 2 trial evaluating the safety and efficacy of a sublingual COVID-19 vaccine

Live attenuated/vector vaccine canddiates

NCT01982331 Phase II phase 2 trial evaluating theReactogenicity, Safety and Immunogenicity of a Live Monovalent A/17/California/66/395 (H2N2)Influenza
Vaccine

NCT02480101 Phase II phase 2 trial evaluating theReactogenicity, Safety and Immunogenicity of a Live Monovalent A/17/Anhui/2013/61 (H7N9) Influenza
Vaccine

NCT01841918 Phase II phase 2 trial evaluating the Safety and Immunogenicity of Live Attenuated Influenza H5 Candidate Vaccine Strain A/17/Turkey/
Turkey/05/133 (H5N2) in Healthy Thai Volunteers

NCT02229357 non-
randominzed
open label

non-randomized open label study evaluating thepriming Effects by Pandemic Live Attenuated Influenza Vaccine (LAIV Candidate
Vaccine Strain A/17/Turkey/Turkey/05/133 (H5N2)) on the Subsequent Response to Inactivated H5N1 Vaccine in Healthy Thai
Volunteers: A Non-Randomized, Open Label Study

NCT03300050 Phase I phase 1 trial evaluating the Reactogenicity, Safety, and Immunogenicity of a Live Attenuated Universal Influenza Vaccine (cH8/1N1
LAIV) Administered as a Single Priming Dose Followed Three Months Later by a Single Booster Dose of an Inactivated Universal
Influenza Vaccine (cH5/1N1 IIV) (Adjuvanted With AS03A or Unadjuvanted) in 18 Through 39 Year-old Healthy Subjects,
Contrasted With a Two Dose Schedule of an Inactivated Universal Influenza Vaccine (cH8/1N1 IIV + AS03A Followed Three Months
Later by cH5/1N1 IIV + AS03A)

NCT04619628 Phase I phase 1 trial evaluating the safety and efficacy of a COVI-VAC COVID-19 vaccine

NCT04871737 Phase I phase 1 trial evaluating the safety and efficacy of a Newcastle disease virus (NDV) vector vaccines expressing the spike protein of
SARS-CoV-2

NCT04816019 Phase I phase 1 trial evaluating the safety and efficacy of a intranasal ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccine

NCT05007275 Phase I phase 1 trial evaluating the safety and efficacy of a aerosole ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccine

NCT04839042 Phase I phase 1 trial evaluating the safety and efficacy of SC-Ad6-1 COVID-19 vaccine

Second generation vaccine: Adjuvnat-vaccine complex

NCT05385991 Phase I phase 1 trial evaluating the Safety and Immunogenicity of the ACM-SARS-CoV-2-beta With ACM-CpG Vaccine Candidate (ACM-
001), Administered Intramuscularly or Intranasally as a Booster Dose in Healthy Adults Aged 18 to 55 Years, Who Were Previously
Vaccinated Against SARS-CoV-2.

Oral antivirals/antiseptics

NCT04405570,
NCT04405739

Phase II/III phase 2/3 trial evaluating the ribonucleoside analogue inhibitor of influenza viruses, MK-4482/EIDD-280 for influenza and SARS-
CoV-2 viruses

NCT04405570 Phase Iia phase 2a trial evaluating the Safety, Tolerability and Efficacy of EIDD-2801 to Eliminate SARS-CoV-2RNA Detection in Persons With
COVID-19

NCT04497987 Phase III phase 3 trial evaluating the Efficacy and Safety of LY3819253 Alone and in Combination With LY3832479 in Preventing SARS-CoV-2
Infection and COVID-19
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(NCT03300050) (169). Since this novel antigen does not naturally

occur, it can avoid the risk of back-mutation. For COVID-19, the

COVI-VAC is under phase I clinical trial (NCT04619628).

6.2.2 Vector vaccines
Live vaccines can be designed by using viral vectors, such as

Newcastle disease virus (NV), Vestibulo stomatitis virus (VSV), and

adenoviruses (170–172). Viral vectors are genetically engineered to

express novel antigens, such as the spike protein of the SARS-CoV-

2 virus (170–173). As the LAVs, vector viruses attach and replicate

directly on the target mucosal tissue, solving the issues of delivery,

dosage, and deposition (174). Also, the replication of vector virus

triggers the innate and cell-mediated immune system, providing an

adjuvant effect for the vaccine antigen (175). A Newcastle disease

virus (NDV) vector vaccine expressing the spike protein of SARS-

CoV-2 is currently under phase I clinical study (NCT04871737). A

replication-competent chimeric VSV-SARS-CoV-2 vaccine

candidate by replacing the VSV glycoprotein (G) gene with a

coding sequence for the SARS-CoV-2 Spike glycoprotein (S)

(VSVDG-SARS-CoV-2) also has proven efficacy in a hamster

model (176). The ChAdOx1 nCoV-19 (AZD1222), developed by

AstraZeneca and first approved as an intramuscular vaccine, is now

under phase I clinical trial to be applied as intranasal vaccine

(NCT04816019) and aerosols (NCT05007275). The SC-Ad6-1 is

another adenovirus vector vaccine from Tetherex Pharmaceuticals

Corporation also under phase I clinical trial (NCT04839042).

Novel live vaccine candidates under clinical trials are highly

expected to be used to complement limitations of current parenteral

vaccines. Their efficacy on stopping transmission of viruses is still

an emerging topic in the vaccine industry and more accumulated

data will be needed.
6.3 Mucosal adjuvants

Adjuvants are substances an agent that increases specific

immune responses to an antigen (177). Mucosal adjuvants can

enhance the immunogenicity of vaccines at the mucosal surface, as

evidenced in AS03, MF59, and CpG-ODN (178–180). To enhance

the immunogenicity of the vaccines at the mucosal surface, novel

adjuvant strategies have been suggested, especially for the influenza

vaccine (181–186). Novel approaches apply the microbiome and its

byproduct as a source of innate signaling to enhance the antiviral

immune response in mucosal surfaces. For example, PMAPs from

antibiotic-killed bacteria could enhance antiviral-immune response

in intranasal mucosa (187, 188). In a hamster model, Mao et al.

applied antibiotic-killed intranasal and oral microbes to induce

vaccine-specific nasal IgA and serum IgG responses to influenza

and SARS-CoV-2 viruses in a dose-dependent manner (189).

Novel vaccines incorporate adjuvant molecules into vaccine

candidates to enhance immunogenicity and delivery system. As a

second-generation vaccine, the ACM-SARS-CoV-2-beta ACM-

CpG vaccine candidate (ACM-001) is under clinical trial

(ClinicalTrials.gov identifier: NCT05385991). The vaccine consists

of recombinant Beta spike protein co-administered with synthetic
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CpG adjuvant. Both components are encapsulated within artificial

cell membrane (ACM) polymersomes, synthetic nanovesicles

efficiently internalized by antigen-presenting cells, including

dendritic cells, enabling targeted delivery of cargo for enhanced

immune responses. The ACM vaccine has proven enhanced serum

IgG and neutralized response immunogenicity in C57BL/6 mice

and Golden Syrian hamsters. In the oral cavity, the ACM-001

vaccination could not reduce the viral peak titer but shortened

the viral shedding period (190).
6.4 Direct reduction of viral load by using
oral antivirals/antiseptics

While the threat of current and future pandemic respiratory viruses

is still ongoing, there has not been an effective strategy to induce oral

mucosal immunity, especially to novel viruses. Focusing on reducing

transmission of the viral spread through saliva droplets, direct

administration of antivirals on the oral mucosa can be a temporary

alternative strategy to reduce or block viral shedding at oral mucosa.

For example, the ribonucleoside analog inhibitor of influenza viruses,

MK-4482/EIDD-2801, reported the efficacy for both influenza and

SARS-CoV-2 viral infection (currently in phase II/III clinical trials,

NCT04405570 and NCT04405739, respectively). In a ferret model, the

MK-4482/EIDD-2801 significantly reduced the replication level of the

virus at the upper respiratory tract and completely prevented

transmission to the contact controls (191). Molnupiravir is also

antiviral under clinical trial (NCT04405570), which completely

stopped virus shedding from the COVID-19 outpatients by day five

after administration via oral route (192) and also active against other

RNA viruses, such as influenza, SARS, and MERS. Paxlovid is also an

oral antiviral test for COVID-19, reported to shorten the viral shedding

period, but it cannot prevent viral infection (193). Antivirals can also be

used as prophylaxis to prevent viral infection in the population with

high exposure risk. In the case of the influenza virus, antiviral

medications (amantadine and neuraminidase inhibitors) are allowed

to be used as chemoprophylaxis in people at high risk of influenza

complications and people with severe immune deficiencies or receiving

immunosuppressive medications (194).

For SARS-CoV-2, repurposing of antivirals as prophylaxis is

currently under clinical trial (study NCT04497987). In a stochastic

model of early-phase viral infection, the combination of antivirals that

block the viral entry and increase viral clearance was estimated to block

the small load of viral inoculum (195). Still, the use of antivirals is highly

restricted due to their potential side effects and genotoxicity (196). Also,

in a primate model, incomplete use of Remdesivir induced a longer

duration of viral shedding (197). The combination of Bromelain and

Acetylcysteine (BromAc) is under clinical trial to be used as a nebulized

form in Healthy volunteers (198). Bromelain, extracted from the

pineapple plant (Ananas comosus), contains enzymes that hydrolyze

glycosidic bonds in complex carbohydrates and has been shown to

remove the spike and hemagglutinin proteins of Semliki Forest virus,

Sindbis virus, mouse gastrointestinal coronavirus, hemagglutinating

encephalomyelitis virus, and H1N1 influenza viruses (199–201).

Acetylcysteine is known to destabilize virion structures by disulfide

bridge disruption. The combination use of two molecules unfolds the
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molecular structures of complex glycoproteins, thus allowing binding to

occur because of the high affinity between RBD and ACE2 (198).

To directly reduce/remove viral particles from the oral cavity,

antiseptics are also tested under clinical trials and considered to be

used. Povidone Iodine has especially shown its efficacy for the

oropharyngeal infection (202–204). Since Povidone Iodine has not

shown side effects, While hydrogen peroxide can provide an

antiseptic effect plus boost the innate immune response by

stimulating toll-like receptor 3; the results have been conflicting

on the reduction of viral load at the oral mucosal surface (205).
7 Future directions and synergistic
effects from current vaccines and
next-generation vaccines

As COVID-19 pandemic is not considered a “public health

emergency”, the risk of the virus spreading and evolving into new

variant strains persists. Partial immunity provided by parenteral

immunization greatly contributed to reducing the disease severity, but

cannot fully stop the spread of the virus, constantly producing novel

variant viruses. This review summarized unique characteristics of oral

mucosal immunity and discussed strategies currently under clinical trials.

Induction of the “sterilizing immunity” is not yet achieved, but there have

been remarkable advances in understanding of oral mucosal immune

system and vaccine/adjuvants. As a temporary measure to reduce active

viral replication at oral mucosa, direct application of antiseptics/antivirals

are also considered and under clinical trials. Albeit the limitations,

current parenteral vaccines are still the most effective strategy to

control pandemic viruses at this present, and emerging mucosal

strategies are needed. Even though vaccination provides only partial

immunity to mask apparent symptoms and contributes to the silent

evolution of the zoonotic respiratory RNA viruses, vaccine-induced

immunity reduces the viral load and limits the evolution pool of the

viruses, which in turn can hamper transmission. In country-scale

analyses on the SARS-CoV-2 genome, diversity of the SARS-CoV-2

virus showed an inverse correlation with the mass vaccine rate (n = 25

countries, mean correlation coefficient = −0.72, S.D. = 0.20) and viruses

isolated from vaccinated COVID-19 patients presented significantly

lower diversity in known B cell epitopes compared to those from

unvaccinated COVID-19 patients (2.3-fold, 95% C.I. 1.4-3.7) (206).

Also, pre-existing immunity built by parenteral immunization still

provides a booster effect to the mucosal immunization. There have

been multiple studies proving the combination of current parenteral

vaccinations with mucosal vaccines, providinga synergistic effect on both

systemic and mucosal responses (207–209).
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Current open questions remaining in the mucosal immune

response are 1) What is the sensitive, specific, and reproducible

analyte to quantify protective mucosal immune response? 2) what is

the complete mechanism involved in oral tolerance and

hyperactivity? 3) the most efficient and safe delivery/adjuvant

system for the oral mucosa, and 4) the oral microbiome which

can contribute elicit protective immune responses. The COVID-19

pandemic has been a unique opportunity to explore diverse

strategies against respiratory pathogens. Our current real

challenge will be a continuous effort and investment in

developing novel strategies to provoke mucosal immunity,

especially at oral mucosal sites at a populational scale.
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25. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA
viruses candidate agents for the next global pandemic? A review. ILAR J (2017) 58
(3):343–58. doi: 10.1093/ilar/ilx026

26. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global
trends in emerging infectious diseases. Nature (2008) 451(7181):990–3. doi: 10.1038/
nature06536

27. Alvarez-Munoz S, Upegui-Porras N, Gomez AP, Ramirez-Nieto G. Key factors
that enable the pandemic potential of RNA viruses and inter-species transmission: A
systematic review. Viruses (2021) 13(4). doi: 10.3390/v13040537
Frontiers in Immunology 10
28. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new
developments. Nat Rev Immunol (2021) 21(2):83–100. doi: 10.1038/s41577-020-00479-7

29. Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev
Immunol (2022) 22(4):236–50. doi: 10.1038/s41577-021-00583-2

30. Mouro V, Fischer A. Dealing with a mucosal viral pandemic: lessons fromCOVID-
19 vaccines. Mucosal Immunol (2022) 15(4):584–94. doi: 10.1038/s41385-022-00517-8

31. Houston S. SARS-CoV-2 mucosal vaccine. Nat Immunol (2023) 24(1):1. doi:
10.1038/s41590-022-01405-w

32. Russell MW, Mestecky J. Mucosal immunity: The missing link in
comprehending SARS-CoV-2 infection and transmission. Front Immunol (2022)
13:957107. doi: 10.3389/fimmu.2022.957107

33. Wang T, Wei F, Liu J. Emerging role of mucosal vaccine in preventing infection
with avian influenza A viruses. Viruses (2020) 12(8). doi: 10.3390/v12080862

34. van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A
viruses from innate and adaptive immune responses. Viruses (2012) 4(9):1438–76. doi:
10.3390/v4091438

35. Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for
immunology. Nat Immunol (2006) 7(5):449–55. doi: 10.1038/ni1343

36. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith LP, et al.
Imperfect vaccination can enhance the transmission of highly virulent pathogens. PloS
Biol (2015) 13(7):e1002198. doi: 10.1371/journal.pbio.1002198

37. Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A detailed overview of
immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their
emerging variants with escape mutations. Front Immunol (2022) 13:801522. doi:
10.3389/fimmu.2022.801522

38. Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev
Microbiol (2021) 19(8):528–45. doi: 10.1038/s41579-021-00535-6

39. Dhand R, Li J. Coughs and sneezes: their role in transmission of respiratory viral
infections, including SARS-CoV-2. Am J Respir Crit Care Med (2020) 202(5):651–9.
doi: 10.1164/rccm.202004-1263PP

40. Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, Tufekci Z, et al.
Airborne transmission of respiratory viruses. Science (2021) 373(6558). doi: 10.1126/
science.abd9149

41. Raymond JR. The great mask debate: A debate that shouldn’t be a debate at all.
WMJ (2020) 119(4):229–39.

42. Carrouel F, Gadea E, Esparcieux A, Dimet J, Langlois ME, Perrier H, et al. Saliva
quantification of SARS-CoV-2 in real-time PCR from asymptomatic or mild COVID-
19 adults. Front Microbiol (2021) 12:786042. doi: 10.3389/fmicb.2021.786042

43. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech
droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad
Sci USA (2020) 117(22):11875–7. doi: 10.1073/pnas.2006874117
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