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Background: Cuproptosis, a novel mode of cell death associated with the

tricarboxylic acid (TCA) cycle, is relevant to the development of cancer.

However, the impact of single-cell-based Cuproptosis-associated lncRNAs on

the Tumor immune microenvironment (TIME) of Pancreatic adenocarcinoma

(PAAD) and its potential value for individualized immunotherapy has not

been clarified.

Methods: 14 immune-related CRGs were screened by exploring the interaction

between differentially expressed Immune-Related Genes (IRGs) and

Cuproptosis-Related Genes (CRGs) in PAAD. Next, the expression amount and

expression distribution of CRGs in single-cell samples were analyzed by focusing

on 7-CRGs with significant expressions. On the one hand, MAP2K2, SOD1, and

VEGFA, which were significantly differentially expressed between PAAD sites and

normal tissues adjacent to them, were subjected to immunohistochemical

validation and immune landscape analysis. On the other hand, from these 7-

CRGs, prognostic signatures of lncRNAs were established by co-expression and

LASSO-COX regression analysis, and their prognostic value and immune

relevance were assessed. In addition, this study not only validated the hub

CRGs and the lncRNAs constituting the signature in a PAAD animal model

t reated with immunotherapy-based combinat ion therapy us ing

immunohistochemistry and qRT-PCR but also explored the potential value of

the combination of targeted, chemotherapy and immunotherapy.

Results: Based on the screening of 7-CRGs significantly expressed in a PAAD

single-cell cohort and their co-expressed Cuproptosis-Related lncRNAs (CRIs),

this study constructed a prognostic signature of 4-CRIs named CIR-score. A

Nomogram integrating the CIR-score and clinical risk factors was constructed

on this basis to predict the individualized survival of patients. Moreover, high and

low-risk groups classified according to the median of signatures exhibited

significant differences in clinical prognosis, immune landscape, bioenrichment,
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tumor burden, and drug sensitivity. And the immunohistochemical and qRT-PCR

results of different mouse PAAD treatment strategies were consistent with the

trend of inter-group variability in drug sensitivity of hub CRGs and CIR-score. The

combination of immunotherapy, targeted therapy, and chemotherapy exhibited

a better tumor suppression effect.

Conclusion: CIR-score, as a Cuproptosis-related TIME-specific prognostic

signature based on PAAD single cells, not only predicts the prognosis and

immune landscape of PAAD patients but also provides a new strategy for

individualized immunotherapy-based combination therapy.
KEYWORDS

cuproptosis, single-cell sequence, immunotherapy, tumor immune microenvironment,
pancreatic cancer, prognostic signature
1 Introduction

Worldwide, PAAD ranks seventh in cancer-related deaths (1).

As a highly fatal disease, PAAD mortality is expected to continue to

rise in the coming decades, with more than 800,000 deaths expected

by 2040 (2). A major feature of human PAAD is the lack of effective

anti-tumor immunity. Multiple immunosuppressive and evasion

mechanisms, established from the early steps of tumor

transformation, effectively protect PAAD from immunity (3).

Suppressive TIME, consisting of multiple immune cell

populations and stromal components in tumor islets, is not only

a fertile ground for PAAD development, progression, and

metastasis but also a great obstacle to immunotherapy (4). Single-

cell sequencing, as a technique for analysis at the individual cellular

level, overcomes the problem of cellular heterogeneity (5). It not

only better reflects how the different cell populations that makeup

TIME regulate different tumor states from a more microscopic

perspective, but also has important implications for unraveling the

mechanisms of cancer progression and immunotherapeutic

response (6, 7).

Cuproptosis refers to a novel form of cell death in the TCA cycle

through the binding of copper to lipoacylase leading to subsequent

protein aggregation, proteotoxic stress, and ultimately cell death (8,

9).CRGs and lipoacylated proteins abundance are highly correlated

in human tumors, and cell lines with high levels of lipoacylated

proteins are sensitive to copper-induced cell death (10).

Considering the increased demand for copper by cancer cells, this

suggests the potential value of copper ion carrier therapy in tumors

with this metabolic profile. Previous studies have shown that serum

copper ion concentrations are significantly elevated in patients with

PAAD (11). Furthermore, in a mouse model of PAAD, not only did

tumor growth rates increase significantly in those chronically

exposed to elevated copper levels, but the copper chelator TTM

delayed angiogenesis in precancerous lesions and the growth of

advanced tumors to some extent (12).
02
lncRNAs are non-coding RNAs greater than 200 nucleotides in

length and transcribed by RNA polymerase II. lncRNAs’ aberrant

expression of oncogenic or tumor suppressive effects, high tissue and

disease specificity, and ability to modulate TIME make them

potential candidates for biomarker and cancer vaccine

development (13, 14). lncRNAs not only participate in RNA

regulatory mechanisms and control the expression of their

downstream target genes, but can also mediate a range of multiple

cellular processes through chromatin reprogramming, cis- or trans-

regulation of neighboring genes, and post-transcriptional regulation

of mRNA processing (15). In the current PAAD studies,

proliferation and metastasis have been clearly shown to be affected

by the negative regulation of the miR-34 transcriptional pathway by

lncRNA HOTAIR (16), the negative regulation of HIF-1a pathway

by the reduced expression of lncRNA ENST00000480739 (17), the

miR-448 sponge pathway participated by lncRNA PVT1 (18), the

inhibition of the oncogene E-cadherin pathway by lncRNA

MALAT1 (19), and the regulation of the HOX gene pathway by

lncRNA HOTTIP (20). Apart from affecting PAAD proliferation

and metastasis, lncRNAs can also regulate TIME via macrophages

(21), PD-1 on the surface of T cells (22), etc. In the field of PAAD,

Chen H et al. have conducted some studies on the prognostic value

of Cuproptosis-associated lncRNAs (23), but there is still a gap in the

exploration of Cuproptosis-associated lncRNAs and their

characteristic TIME based on PAAD single-cell data.

Given the limited evidence for effective early detection and

therapeutic interventions for PAAD, a unified predictive approach

needs to be incorporated into strategies for early detection and

guiding treatment. In this study, CRGs with immune-related

potential prognostic value were screened using differential

expression levels and the degree of interaction with IRGs as

indicators. The immune landscape of high- and low-expression

cohorts of these genes were analyzed on the one hand, and the

differences in expression and distribution of these genes in different

cell clusters were explored individually at the single-cell level on the
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other. Subsequently, a prognostic signature of 4-CRIs named CIR-

score was constructed based on the 9most prognostic CRIs screened.

This new Cuproptosis-related prognostic signature not merely

reflects the tumor load, immune landscape, and immune

checkpoint sensitivity of PAAD but also well predicts patient

survival and drug sensitivity. Finally, a cohort of four PAAD

mouse models with different treatment regimens was used to

validate hub lncRNAs of signature and differentially expressed

CRGs with prognostic value. The promising tumor suppressive

effect demonstrated by immunotherapy combined with targeted

therapy and chemotherapy also provides innovative therapeutic

options for PAAD.
2 Materials and methods

2.1 Data acquisition and processing

The overall flow of this study is shown in the figure (Figure 1). A

total of 53 CRGs were summarized from previous studies (10, 24).

This method of summarizing CRGs has been used by Cai Z et al. in

the field of renal clear cell carcinoma (25). A total of 2350 IRGs were

screened from the Gene Set Enrichment Analysis database (GSEA,

https://www.gsea-msigdb.org/gsea/index.jsp) based on 10 tumor

immune-related datasets. A total of 2483 IRGs were downloaded

from the Immport database (Updated. July 2020, https://

www.immport.org). 178 PAAD samples and 4 normal tissue

samples were obtained from The Cancer Genome Atlas Program

(TCGA, https://portal.gdc.cancer.gov/). The samples were collated

for quantitative gene expression data and clinical data.
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Transcriptomic data of 167 normal pancreatic tissues were

obtained from the Genotype-Tissue Expression Project database

(GTEx, https://gtexportal.org/). The cohorts of TCGA-PAAD and

GTEx were matched. Single-cell data were obtained from

GSE212966 and GSE205049 in the Gene Expression Omnibus

database (GEO, https://www.ncbi.nlm.nih.gov/geo/).
2.2 Screening and interaction analysis of
CRGs and IRGs

The 877 IRGs obtained by taking the intersection of two

databases, GSEA and Immport, were subjected to analysis of

variation and Univariate COX in the TCGA-PAAD cohort

(p=0.05). 71 differentially expressed IRGs with prognostic values

were obtained. The String database (https://cn.string-db.org) and

Cytoscape software (version 3.9.0) were used to explore the

interaction between the two groups of 53 CRGs and 71 IRGs, and

only genes with intergroup interactions were retained.

Immunohistochemical results of differentially expressed CRGs

were obtained through the Human Protein Atlas database (HPA,

https://www.proteinatlas.org/).
2.3 Immune landscape of differentially
expressed CRGs

The TIME evaluation (StromalScore, ImmuneScore, and

ESTIMATEScore) of the three immune-related CRGs with

significant differential expression was evaluated using the
FIGURE 1

The flowchart of our study process.
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“ESTIMATE” package. “CIBERSORT” was used to obtain the

results of immune cell infiltration in different groups with high

and low expression of CRGs. The correlation between different

immune cells and the expression of different CRGs was obtained by

Spearman correlation analysis, and the correlation coefficients and

p-values were calculated. The “ggplot2” package was used to draw a

Lollipop plot of the correlation between genes and immune cells.

The “limma” package and the “corrplot” package were used to plot

the correlation heat map between different CRGs and

immune checkpoints.
2.4 Expression and distribution of CRGs in
single cells

Single-cell RNA sequencing (scRNA-seq) count matrices for all 6

PAAD samples were downloaded from GSE212966. These 6 matrices

were combined into 1 Seurat object using the CreateSeuratObject

function (“Seurat” R package, version 4.3.0). Single cells with more

than 2500 or less than 200 genes detected per cell or with a percentage

of mitochondria-derived UMI counts greater than 5%were considered

low-quality cells and filtered out for further analysis. Single-cell data

from 6 PAAD samples were normalized on the basis of the first 2000

high-variable genes (HVG). Subsequently, similar cells were identified

using the FindNeighbors function in the “Seurat” package. The

FindClusters function (resolution=0.4) was used to identify the major

cell clusters. Based on this, UMAPnon-linear dimensionality reduction

is performed on these cell clusters. The results of the dimensionality

reduction were visualized using DimPlot. Cell clusters were identified

using the “SingleR” package, and annotation of cell clusters was done

based on marker genes obtained from previous studies. Finally, the

accuracy of the annotation is verified using the plotScoreHeatmap

function. Using the FeaturePlot function, the expression and

distribution of the target CRGs are marked on the UMAP map. In

addition, GSM6567169 and GSM6567170 with incomplete data and

GSM6567167 with too low quality were deleted, and the same analysis

as above was done for 3 single cell samples (GSM6567165,

GSM6567166, and GSM6567171) with normal tissues adjacent to

PAAD from GSE212966 as controls. Furthermore, single-cell

sequencing data from the 9-case PAAD samples and their

neighboring 9-case normal tissue samples of GSE205049 were

included in the study. They were combined into one Seurat object

for cancer tissues and one Seurat object for normal tissues using the

same data analysis methods described above. The GSE205049 dataset

was used as a complement and support to the results of the analysis of

the top CRGs based on the samples from GSE212966.
2.5 Identification of Cuproptosis-
associated lncRNAs signature with
prognostic significance in PAAD

7 CRGs that were both co-expressed with IRGs and significantly

expressed in PAAD single-cell data were screened. Wilcoxon test was

used to obtain lncRNAs with co-expression relationships with these 7

CRGs (correlation coefficient >0.4, p<0.001). “ggalluvial” and
Frontiers in Immunology 04
“ggplot2” packages were used to draw a correlation Sankey diagram.

Next, to furtherfiltrate prognosis-related lncRNAs, we collected 9CRIs

by univariate Cox regression analysis (p< 0.05). Least absolute

shrinkage and selection operator (LASSO) regression analysis and

lambda spectra were used to screen prognosis-associated lncRNAs to

prevent overfittingwhen constructing prognostic riskmodels. The area

under the ROC curve (AUC) was calculated for these models. When

the AUC value reached the maximum value, the model was indicated

as the best candidate. Based on the 4 CRIs identified, a new PAAD risk

scoring model was identified. This model was named The

Cuproptosis-related Immune Risk Score (CIR-score) in this study,

and the risk score for each PAAD patient can be derived using the

following equation (b: coefficients, Exp: gene expression level):.

CIRscore = S(bi � Expi)

In addition, to demonstrate the superiority of the signature in

distinguishing between high and low-risk groups of patients, the

“scatterplot3d” package was used to perform a principal component

analysis (PCA) to visualize the distribution pattern of the CIR-score

in the PAAD sample.
2.6 Independent prognostic and clinical
correlation analysis

The CIR-score was analyzed by univariate and multifactorial

Cox regression. The 1-, 3-, and 5-year ROC curves were plotted

using the “timeROC” package. The ROC curves of CIR-score and

clinical indicators were obtained in the same way as above. The

Concordance Index (C-index) was calculated for the CIR-score and

clinical indicators, respectively, to evaluate the predictive power of

the signature. The prognosis of individual PAAD patients was

evaluated by plotting the CIR-score-related Nomogram with the

“regplot” package. The calibration curves of the Nomogram were

plotted using the Calibrate function. Whereafter, the TCGA-PAAD

cohort were randomly grouped into a train set and a test set. The

randomness of the grouping was demonstrated by performing a

round-robin for clinical traits and obtaining p values (p>0.05) for

the differences in clinical traits between the train and test sets. The

“pheatmap” package was used to map the differences in CIR-score

expression patterns between the TCGA-PAAD cohort, the training

set, and the test set for the high and low-risk groups. “survival” and

“survminer” packages were used to compare the survival differences

between high and low-risk groups. Overall survival (OS) and

progression-free survival (PFS) of PAAD patients were analyzed

separately using the Kaplan-Meier (KM) method. Besides, clinical

traits were grouped and cycled for each group to compare survival

differences between high and low-risk groups with different

clinical characteristics.
2.7 Immune microenvironment
landscape analysis

The “GSEABase” package was used to perform a single sample

Gene Set Enrichment Analysis (ssGSEA) of immune-related
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functions in the high- and low-risk groups. The results of the

“CIBERSORT” package were used to compare the differences in the

infiltration of all 22 immune cell types in the high and low-risk

groups. Spearman correlation analysis was used to calculate

correlation coefficients and p-values by the immune cell cycle and

to plot the correlation between the 4 immune cells with the most

significant differences and the CIR-score. Considering that the

TISIDB database (http://cis.hku.hk/TISIDB/) is an integrated

repository portal for tumor-immune system interactions. To

explore the correlation between CIR-score and immune

checkpoints, this study summarized the specific immune

checkpoint genes of these four immune cells from the TISIDB

database. The “corrplot” package was used to visualize the

correlations separately.
2.8 Functional analysis and tumor mutation
burden analysis

The “limma” package was used to screen the differentially

expressed genes (DEGs) in high and low-risk groups (∣log2FC∣>1,
FDR<0.05). GO and KEGG analyses of DEGs were performed by

enrichGO function and enrichKEGG function. Among them, GO

analysis included 3 domains of biological process (BP), cellular

component (CC), and molecular function (MF). Next, tumor

mutation burden (TMB) values were obtained for each sample

based on the mutation data downloaded and collated from the

TCGA-PAAD cohort. The TMBs of the high- and low-risk groups

were compared, and the differences were visualized as violin plots

using the ggviolin function. The samples were divided into high and

low TMB groups according to the median, and the survdiff function

and ggsurvplot function were used to analyze the difference in OS

between the high and low mutation load groups. On this basis,

survival curves for TMB combined with patient risk were plotted in

the same way to further explore the correlation between CIR-score

and TMB. Moreover, considering Tumor Immune Dysfunction and

Exclusion (TIDE, http://tide.dfci.harvard.edu/) is a database that

allows estimating multiple published transcriptomic biomarkers

based on tumor pre-treatment expression profiles to predict

patient response. Its scoring of PAAD samples was used to

analyze differences in potential immune escape potential between

high and low-risk groups.
2.9 Drug sensitivity analysis

Immunotherapy sensitivity scores for the TCGA-PAAD cohort

were downloaded from The Cancer Immunome Atlas (TCIA,

https://www.tcia.at/home) database. The TCIA database provides

comprehensive immune next-generation sequencing data (NGS)

from TCGA and other data sources for 20 solid cancer genomic

analysis results. The “ggpubr” package was used to compare the

immunotherapy sensitivity of different risk groups by combining

the expression of CRGs, hub lncRNAs, and CIR-score size for each

sample. The “pRophetic” package was used to calculate the
Frontiers in Immunology 05
difference in Half Maximal Inhibitory Concentration (IC50) of

the different drugs between the different groups, the lower the

IC50, the more sensitive the patient was to the drug.
2.10 Validation of hub CRGs and lncRNAs
in the immune, targeted combination
chemotherapy mouse PAAD model

2.10.1 Mice and drugs
6-8 week female mice (C57BL/6). Mouse pancreatic cancer

PANC-02 cells. Nanoalbumin paclitaxel (Jiangsu Hengrui

Pharmaceutical Co., Ltd., Specification: 100 mg, Lot No.:

220310AF), Gemcitabine, Recombinant Human Vascular

Endothelial Inhibitor Injection (Shandong Xiangsheng

Biopharmaceutical Co., Ltd., Specification: 15 mg/3 ml, Lot No.:

202109053), PD-1 monoclonal antibody (Jiangsu Hengrui

Pharmaceutical Co., Ltd., Specification: 200 mg, Lot No.

202009043A). The above drugs were dissolved and diluted with

saline to the desired concentration.

2.10.2 PAAD model preparation
The cultured mouse pancreatic cancer cells PANC-02 cell

suspension was collected at a concentration of 5×107 cells/ml and

inoculated subcutaneously in the right axilla of mice at 0.1 ml each.

The mice transplanted tumors were measured with vernier calipers

to measure the diameter of the transplanted tumors, and the

animals were randomly grouped when the tumors grew to 100

mm³. At the same time, each group of mice started to administer the

drug, with 6 mice in each group.

2.10.3 Grouping and drug administration regimen
The experimental groupings in this study were a, b, c and d.

Group-a was the model control group; group-b was the

chemotherapy group; group-c was the Recombinant human

endostatin + immunotherapy group (PD-1 Monoclonal Antibody

group); and group-d was the combination of Recombinant human

endostatin + immunotherapy (PD-1 Monoclonal Antibody) +

chemotherapy group. The model control mice in group-a were

administered with saline intravenous injection, 3 times on days 1, 4,

and 7 after grouping. The chemotherapy mice in group-b were

treated with Nanoalbumin Paclitaxel injection (20 mg/kg) and

Gemcitabine (50 mg/kg) for 3 times on days 1, 4, and 7 after

grouping. The Recombinant human endostatin + immunotherapy

mice in group-c were treated with Recombinant human endostatin

(20 mg/kg) for 15 consecutive days and PD-1 Monoclonal Antibody

(200 mg/20g) for 3 times on days 1, 4, and 7 after grouping. The

Recombinant human endostat in + immunotherapy +

chemotherapy mice in group-d were treated with a combination

of Recombinant human endostatin (20 mg/kg) for 15 consecutive

days, PD-1 Monoclonal Antibody (200 mg/20g) for 3 times on days

1, 4, and 7 after grouping and Nanoalbumin Paclitaxel (20 mg/kg) +

Gemcitabine (50 mg/kg) for 3 times on days 1, 4, and 7 after

grouping. More detailed grouping and dosing regimen are shown in

a table (Supplementary Table S1).
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2.10.4 In vivo imaging
The tumor marker probe HGC675 (BioActs, LOT: AQN00037)

was injected into the tail vein at 0W, 1W, and 2W of administration,

respectively, 200 ml/each, and fluorescence in vivo imaging was

performed at the small animal in vivo 3D imaging system IVIS®

Spectrum (PerkinElmer) 4 h after injection. Excitation wavelength:

635 nm, emission wavelength: 670 nm.

2.10.5 Immunohistochemical detection
of hub CRGs

After the tumor tissues of each group of mice were rinsed, fixed,

and dehydrated, the tissues were paraffin-embedded and the wax

blocks were fixed on a microtome for continuous sectioning (4 mm
thick). Routine immunohistochemistry was performed to detect the

expression of 3 hub CRGs in PAAD tumor tissues under 4 different

dosing regimens. Antibody information: rabbit anti SOD1

(proteintech, 10269-1-AP) at a dilution ratio of 1:500. rabbit anti

VEGFA (proteintech, 19003-1-AP) at a dilution of 1:100. Dilution

ratio 1:1000 for mouse anti MEK2 (proteintech, 67410-1-Ig). The

kit used MaxVision-mouse/rabbit (Fuzhou Maishin Biotechnology

Co., KIT-5010). DAB was used for color development, hematoxylin

contrast staining, and observation under light microscopy.

Image-Pro Plus (version 6.0) was used to analyze the

immunohistochemical results.

2.10.6 Tissue detection of hub lncRNAs
Total RNA was extracted from tissues using TRIzol reagent

(Invitgen, MA, USA). extracted RNA was subjected to quantitative

polymerase chain reaction using the One Step TB Green™

PrimeScript™ RT-PCR Kit II (SYBR Green). qRT-PCR was

performed with SYBR Green PCR Master Mix (Vazyme) in a

fluorescent quantitative PCR cycler (ABI Step one plus Real time-

PCR system, USA). GAPDH was used as an internal control, and

the results of each sample were normalized to GAPDH expression.

The sequences of the primers are shown in Supplementary Table S2.
2.11 Statistical analysis

All data analyses were performed using R software (version

4.2.1, http://www.R-project.org) and GraphPad Prism software

(version 8.0.2). Where not explicitly mentioned, thresholds for

statistical significance were considered as P< 0.05, with P values

being bilateral.
3 Results

3.1 Development of immune-related CRGs

First, a total of 4833 IRGs were summarized from the Immport

database and the 10GSEA tumor immune-related subsets. 310 of them

with significant differences constituted the IRGs cohort by comparing

the mRNA expression levels between tumor tissues in the TCGA-

PAAD cohort and adjacent normal tissues in the GTEx cohort

(Figure 2A, Supplementary Table S3). Then, 53 CRGs were
Frontiers in Immunology 06
summarized from the study of Tsvetkov P and Ge EJ, constituting

the CRGs cohort (Supplementary Table S4). The within-group

relationships between the IRGs cohort and the CRGs cohort were

eliminated, and only the between-group interaction relationships were

retained. The results showed that 14CRGs interacted significantly with

35 IRGs (Figure 2B, Supplementary Table S5). Among these 14

immune-related CRGs, MAP2K2, SOD1, and VEGFA were most

significantly differentially expressed between the TCGA-PAAD

cohort and the GTEx cohort (Figure 2C-E). Next, to analyze the

reliability of the differences, immunohistochemical results from the

HPA database were selected for validation (Figure 2F). Among them,

the immunohistochemical results of MAP2K2 and VEGFA were

consistent with the mRNA differential expression results. MAP2K2

staining in normal pancreatic tissues (Staining: High, Intensity: Strong,

Quantity:>75%) was significantly higher than that in PAAD tissues

(Staining: Low, Intensity:Weak,Quantity: 75%-25%). VEGFA staining

in normal pancreatic tissue (Staining: High, Intensity: Strong,

Quantity:>75%) was also significantly higher than in PAAD tissue

(Staining: Low, Intensity: Weak, Quantity: >75%). Interestingly,

however, the immunohistochemical results of SOD1 were not

completely consistent with the differential expression analysis. SOD1

was lowly expressed in exocrine cells of normal pancreatic tissues

(Staining: Low, Intensity: Weak, Quantity:>75%); moderately

expressed in endocrine cells (Staining: Medium. Intensity: Moderate,

Quantity:>75%); but also generally low in PAAD tissues (Staining:

Low, Intensity: Weak, Quantity: >75%). We speculate that the

inconsistency is related to the overall low expression of SOD1.
3.2 Immune landscape of differentially
expressed CRGs

Based on the screening of 3 genes that were differentially expressed

at the PAAD transcriptome level, their immune microenvironment

was further analyzed in the TCGA-PAAD cohort. The high and low

expression groups of MAP2K2, SOD1, and VEGFA were first scored

for TME (Figure 3A-C). The results showed that the Stromal Score,

Immune Score, and ESTIMATE Score of the low expression group of

these 3 genes were higher than the high expression group. This

indicates that for MAP2K2, SOD1, and VEGFA, the stromal cell

component and immune cell component were higher in the low

expression group than in the high expression group, suggesting that

immunosuppressive microenvironment was prevalent in the high

expression group. Interestingly, the expression of MAP2K2 and

VEGFA did not match the TME scoring. To further understand the

specific composition of TME in the high- and low-expression groups,

we analyzed the immune cell infiltration of the three CRGs (Figure 3D-

F). The results showed that T cells CD4 memory resting and T cells

CD4 memory activated were mainly distributed in the MAP2K2 low

expression group; T cells regulatory (Tregs) and NK cells activated

were mainly distributed in the MAP2K2 high expression group.

Plasma cells, T cells CD8, T cells CD4 memory activated, and Mast

cells resting were mainly distributed in the low VEGFA expression

group;MacrophagesM0 and T cells CD4memory resting weremainly

distributed in the highVEGFA expression group. And the difference of

SOD1 was not significant. To judge the accuracy of immune cell
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infiltration analysis, the correlation between MAP2K2, SOD1, and

VEGFAwith immune cells was analyzed separately (Figure 3G-I), and

the results were consistent with previous. Among them, Macrophages,

as the immune cell component associated with all three CRGs,

Macrophages M0 was positively correlated with the expression of

MAP2K2 (Cor=0.1557, P=0.0420) and VEGFA (Cor=0.2755,

P=0.0003), and Macrophages M1 was negatively correlated with the

expression of SOD1(Cor=-0.1538, P=0.0446). The 47 immune check

loci were weakly to moderately correlated with MAP2K2, SOD1, and

VEGFA (Figure 3J-L).
3.3 Expression patterns of immune-related
CRGs at single-cell level

All 6 cancer tissue samples from 6 PAAD patients of GSE212966

participated in this study. After quality control (200< nFeatureRNA<

2500, per cent.mt< 5), a total of 9431 single cells and 28435 genes were

included in the study for further analysis (Supplementary Figure S1A,
Frontiers in Immunology 07
1B). Normalization was performed on the basis of the first 2000 highly

variable genes, of which the first 10 genes are presented in the figure

(Supplementary Figure S1C). The key genes and their importance in

the first 2 principal components exhibited satisfactory between-group

variability (Supplementary Figure S1D). As shown, these cells could be

divided into 10major cell clusters (Figure 4A). Among them, the first 5

marker genes of each cell cluster had significant intergroup differences

(Supplementary Figure S1E), and these marker genes were the basis of

the annotation. By annotation, these 10 cell clusters were clearly

grouped into 7 categories (Figure 4B). In addition to Epithelial cells,

which contain cancer cells, Tissue stem cells and 5 types of immune

cells (T cells, Neutrophils, B cells, Macrophages, and NK cells) are also

present. By comparing the expression patterns of CRGs in single cells,

19 of these genes were found to be significantly expressed in PAAD

samples. Among them, COX17, FDX1, GLS, MT1E, MT1F, MT1G,

MT1X, MT2A, and PDE3B were mainly clustered in NK cell clusters

(Supplementary Figure S2A). VEGFA was mainly clustered in

Neutrophils clusters (Supplementary Figure S2B). ATOX1 was

mainly clustered in Macrophages (Supplementary Figure S2C).
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FIGURE 2

Development of immune-related CRGs. (A) Intersection of IRGs from the Immport database, 10 immune-related subsets of IRGs from GSEA and
DEGs from the TCGA-PAAD cohort (B) 14 CRGs have significant interactions with the 35 IRGs screened (Green nodes: CRGs; Red/Blue nodes: IRGs
with high/low expression in PAAD; arrows: direction of action; nodes size: HR value) (C–E) Differential expression of MAP2K2, SOD1, and VEGFA in
TCGA-PAAD cohort and GTEx cohort ("***": P<0.001) (F) Immunohistochemical results.
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MAP2K2 was mainly clustered in Epithelial cells (Supplementary

Figure S2D). SOD1, MT-CO2, UBE2D2, and UBE2D3 were

commonly and significantly expressed in PAAD monocytes

(Supplementary Figure S2E). Next, to further explore the

differentially expressed 3 CRGs at the transcriptome level, we

performed an in-depth analysis of their specific expression levels and

distribution. Among them, MAP2K2 was mainly expressed in

Epithelial cells, B cells, and T cells clusters (Figure 4C), SOD1 was
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mainly expressed in Endothelial cells and T cells clusters (Figure 4D),

and VEGFA was mainly expressed in Endothelial cells, Neutrophils

and T cell clusters (Figure 4E). The annotation accuracy was checked

and the distribution was verified by quantifying the expression

(Figure 4F, G), which was consistent with the counts results. In

addition to this, the paraneoplastic normal 3-case samples

demonstrated satisfactory quality under the same QC treatments

described above (Supplementary Figure S3). The patterns of 3
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FIGURE 3

Immune landscape of differentially expressed CRGs. TME evaluation (A–C) and immune cell infiltration (D–F) of MAP2K2, SOD1, and VEGFA high and
low expression groups ("***": P<0.001, "**": P<0.01, "*": P<0.05). Correlation of MAP2K2, SOD1, and VEGFA expression profiles with immune cells (G–

I) and 47 immune checkpoints (J–L).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1220760
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1220760
differentially expressed immune-associated CRGs, MAP2K2, SOD1,

and VEGFA, in 3 single-cell samples of normal tissues adjacent to

cancer were further analyzed as controls (Supplementary Figure S4A-

S4B). As seen in the figure, MAP2K2 wasmainly expressed in NK cells

and CMP clusters (Supplementary Figure S4C), SOD1 was commonly

and significantly expressed in all clusters (Supplementary Figure S4D),

and VEGFA was mainly expressed in monocytes and CMP clusters

(Supplementary Figure S4E). These results were validated using the

same method as above (Supplementary Figure S4F-S4G). The single-
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cell results of PAAD showed more pronounced infiltration of B cells,

macrophages, NK cells, and T cells compared to normal tissues, which

suggests that the inflammatory features of PAAD seem to change with

disease progression. Furthermore, single-cell sequencing data of the 9-

case PAAD samples and their adjacent 9-case normal tissue samples

from GSE205049 were used as external validation and support for the

above single-cell analysis results. The analysis results showed that the 9

PAAD samples could be annotated into 5 cell clusters (Supplementary

Figure S5A, 5B), whereas the 9 normal para-cancerous samples could
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FIGURE 4

Expression patterns of immune-related CRGs at single-cell level. (A) 10 major cell clusters in the scRNA-PAAD cohort (B) 7 cell types identified
based on cellular markers: Epithelial cells, Tissue stem cells, T cells, Neutrophils, B cells Macrophages, and NK cells (C-E) Expression patterns of the
differentially expressed 3 CRGs in cancer tissues: MAP2K2, SOD1, and VEGFA (F) Accuracy of cell cluster annotation identification (G) Specific
expression levels of the 3 CRGs in each cell cluster.
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be annotated into 7 cell clusters (Supplementary Figure S6A, 6B).

MAP2K2 was expressed predominantly in the NK cell, T cell, and

monocyte clusters (Supplementary Figure S5C). SOD1 was commonly

and significantly expressed across all the clusters (Supplementary

Figure S5D). VEGFA was expressed mainly in the monocyte and

NK cell clusters (Supplementary Figure S5E). Compared to normal

tissues (Supplementary Figure S6C-6E), the single-cell results of PAAD

showed more dense and more pronounced immune cells infiltration

(T cells, B cells, NK cells and monocytes) under the same filtration

conditions. This is consistent with the results of the GSE212966

analysis. Annotation accuracy heatmaps and expression distribution

violin plots demonstrated satisfactory reliability of the conclusions

(Supplementary Figures S5F, 5G, 6F, 6G). And the differential

distribution of CRGs at the single cell level in PAAD and its
Frontiers in Immunology 10
adjacent normal tissues suggests that the occurrence of Cuproptosis

is not only associated with the cancer cells themselves but also with the

type of immune cells infiltrating the inflammatory TIME in PAAD.

However, the exact mechanism needs to be further explored.
3.4 Establishment of Cuproptosis-related
signature to assess individual prognosis

A total of 37 CRIs were identified in PAAD based on the 7

CRGs (Supplementary Table S6) that had interactions with IRGs

(|PearsonR| > 0.4 and p< 0.001). And most of the CRGs were

positively correlated with CRIs (Figure 5A, Supplementary Table

S7). 9 differentially expressed CRIs with prognostic value were
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FIGURE 5

Establishment of Cuproptosis-related signature to assess individual prognosis. (A) Co-expression relationship of 7 CRGs with CRIs (B, C) Lasso-Cox
regression analysis (D) Univariate COX regression analysis demonstrating 9 CRIs and their P value and Hazard Ratio (E) Risk lncRNAs of CIR-score
and 7 CRGs correlation (F-H) PCA analysis according to CRGs, CRIs, and CIR-score.
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obtained by Lasso-Cox regression (Figure 5B, C) and one-way

regression analysis (Figure 5D), namely, LIF-AS1, AC007292.2,

AC015660.1, MEG9, LINC01133, FAM27E3, AC092171.5,

LINC01091, and AC007292.1. Based on these 9 CRIs and multi-

factor regression analysis, 4 key CRIs were extracted to construct

the signature, including AC007292.2, AC015660.1, LINC01091, and

MEG9 (Figure 5E). We named this signature of 4-CRIs as CIR-score

(Table 1). In addition, we respectively performed PCA downscaling

analysis of the TCGA-PAAD cohort according to CRGs, CRIs, and

risk lncRNAs of CIR-score (Figure 5F–H). The results showed that

the descending results conditional on the CIR-score were

significantly better than the other two groups, validating the

reliability of the CIR-score.
3.5 Validation of the independent
predictive power of the CIR-score to
assess individual prognosis

Whether the CIR-score is an indicator with independent

prognostic value was explored by performing univariate and

multifactorial Cox regression analyses in the training set of

TCGA-PAAD (Figure 6A, B). The results showed that in the

univariate Cox regression analysis, age (p=0.015, Hazard

Ratio=1.026), Grade (p=0.028, Hazard Ratio=1.383), and CIR-

score (p<0.001, Hazard Ratio=1.276) of PAAD patients were

significantly associated with prognosis correlation. The ROC

curve showed good results in evaluating the survival of PAAD

patients at 1, 3, and 5 years (Figure 6C). Additionally, the AUC of

CIR-score was the highest compared to the AUC of age, gender,

tumor grade, and clinical stage at 0.697 (Figure 6D). C-index curves

showed the same results as the former (Figure 6E). This evidence

suggests that the CIR-score has a better ability to predict prognosis

compared with other clinical characteristics. On this basis, we

constructed a Nomogram based on the CIR-score and other

clinically relevant indicators to assess the 1-, 2-, and 3-year

survival of individual patients (Figure 6F). Its calibration curve

also confirmed its good predictive power (Figure 6G).
3.6 Prognostic power and clinical
relevance of CIR-score

Based on the CIR-score, samples from the TCGA-PAAD

cohort, train set, and test set were scored separately and divided

into high- and low-risk groups based on the median
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(Supplementary Table S8). No between-group differences in

clinical risk factors between the train and test sets demonstrated

the reliability of the randomized groupings (Supplementary Table

S9). The standardized distribution of CIR-score, scatter plots of

survival time and survival status, and heat maps of expression of

risk lncRNAs were plotted for the high- and low-risk groups,

respectively (Figure 7A-C). The results showed that the survival

time and survival rate were significantly higher in the low-risk

group than in the high-risk group. The differences in the expression

levels of the 4 risk lncRNAs of the CIR-score were also consistent

with each other in the high- and low-risk groups. Furthermore,

survival analysis and Kaplan-Meier curves were performed on

samples from the TCGA-PAAD cohort, train set, and test set

respectively (Figure 7D). As expected, PAAD cases with higher

CIR-score obtained significantly worse OS in the TCGA-PAAD

cohort (p< 0.001), train set (p< 0.001), and test set (p=0.006). This is

consistent with Progression Free Survival (PFS) in the TCGA-

PAAD cohort (p= 0.004), and test set (p= 0.027) (Figure 7E).

However, the variability of PFS in the train set was not significant

(p= 0.071). We speculate that this is related to the size of the sample

size. Then, the TCGA-PAAD cohort was subjected to CIR-score

scoring, and the sample was divided into 2 groups of high and low

risk according to the median. The TCGA-PAAD cohort was

subgrouped according to different prognosis-related clinical

traits, and survival analysis was performed for each group of

samples (Figure 7F). Results showed that Survival probability was

significantly higher in the low-risk group than in the high-risk

group in the Grade 1-2 cohort (p= 0.005) and the Grade 3-4 cohort

(p< 0.001). In the Stage I-II cohort (p< 0.001), higher risk

scores were consistent with survival. In addition, in cohorts

differentiated according to TNM staging, risk scores were

consistent with survival in the T1-2 cohort (p= 0.029), T3-4

cohort (p< 0.001), and N1 cohort (p< 0.001). Nevertheless, in the

Stage III-IV cohort (p= 0.055) and N0 cohort (p= 0.058), the

differences were not significant due to insufficient sample size or

too many missing values.
3.7 Differences in the TIME landscape
between high and low-risk groups

Correlation analysis of immune activity was performed for the

high- and low-risk groups according to the CIR-score (Figure 8A).

The results showed that the immune function scores of the low-

risk group were generally higher than those of the high-risk group,

suggesting a significant state of immunosuppression in the high-

risk group. Next, the fraction of all 22 immune cells in the high-

and low-risk groups was explored (Figure 8B). The most

significant intergroup variability was found for Macrophages

M0, NK cells resting, T cells CD8, and T cells regulatory

(Tregs). Among them, Macrophages M0 and NK cells resting

were more significantly infiltrated in the high-risk group. T cells

CD8 and T cells regulatory were more significantly infiltrated in

the low-risk group. That is, Macrophages M0 (R = 0.43, p = 4.4e-

05) and NK cells resting (R = 0.27, p = 0.012) were positively

correlated with CIR-score, and T cells CD8 (R = -0.26, p = 0.015)
TABLE 1 Hub lncRNAs and their correlation coefficients of CIR-score.

lncRNA Coef

AC007292.2 -2.8982676561

AC015660.1 0.4969020144

LINC01091 -0.7786642720

MEG9 -0.8524089223
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and T cells regulatory (R = - 0.23, p = 0.035) showed a negative

correlation with CIR-score (Figure 8C-F). Besides, by

summarizing the immune checkpoint genes of different immune

cells (26), we further explored the correlation of CIR-score with

these four immune microenvironment cells (Figure 8G-J). The

results showed that the CIR-score was moderately correlated with

the immune checkpoints of Macrophage, Natural killer cell,

Activated CD8 T cell, and Regulatory T cell.
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3.8 Enrichment analysis, tumor
burden, and immune checkpoint
sensitivity prediction

To further analyze the intergroup differences between high and

low-risk groups, DEGs of high and low-risk groups were screened.

Then, GO and KEGG enrichment analyses were performed on these

DEGs. In GO analysis (Supplementary Table S10), DEGs were
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FIGURE 6

Validation of the independent predictive power of the CIR-score to assess individual prognosis. (A, B) Univariate and multifactorial Cox analysis
considering the CIR-score and clinical characteristics (C) ROC curves for 1-, 3- and 5-year overall survival (D) ROC curves for the CIR-score and
other clinical indicators (E) CIR-score and other clinical indicators c- index curves (F) A Nomogram that predicts 1-, 2-, and 3-year survival in
patients with PAAD ("***": P<0.001, "**": P<0.01, "*": P<0.05) (G) Calibration curves for this Nomogram.
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mainly enriched in signaling as well as hormone-related biological

processes (BP), cytological components (CC) such as presynapse,

and molecular biological functions (MF) related to multiple channel

activities (Figure 9A). In KEGG analysis (Supplementary Table

S11), Neuroactive ligand-receptor interaction, Pathways of

neurodegeneration-multiple diseases, and Dopaminergic synapse

related pathways were represented in a larger proportion
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(Figure 9B). Therefore, we hypothesized that DEGs mainly

function in cell signaling and hormonal regulation. Next, we

assessed Tumor Mutation Burden (TMB) in the high- and low-

risk groups (Figure 9C, D). The high-risk group had a higher TMB

compared to the low-risk group (p=0.0047). And the high TMB

group had a significantly worse prognosis than the low-risk group

(p=0.008). By further analysis of the high-low risk group versus the
A B

D

E

F

C

FIGURE 7

Prognostic power and clinical relevance of CIR-score. (A-C) Standardized distribution of scores, distribution of survival time and survival status,
and differences in expression of risk lncRNAs in the TCGA-PAAD cohort, train set, and test set with high- and low-risk (D) Survival analysis of
these 3 groups (E) Differences in progression-free survival of these 3 groups (F) Survival analysis of the high- and low-risk groups for different
clinical indicators.
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high-low TMB group (Figure 9E), it was obtained that the CIR-

score had a stronger potential to predict survival than TMB

(p<0.001). Additionally, to explore the potential clinical efficacy

of immunotherapy in different subgroups, the Tumor Immune

Dysfunction and Exclusion score (TIDE) was applied (Figure 9F).

The TIDE prediction score was significantly higher in the low-risk

group than in the high-risk group, indicating that patients in the

low-risk group were more likely to experience immune escape and

patients were less likely to benefit from Immune Checkpoint

Inhibitor (ICI) therapy (p<0.01). However, given the uncertainty

of TIDE for tumor scores other than the melanoma dataset and the

non-small cell lung cancer dataset, we still need to make further
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predictions about the likelihood of drug treatment in the high- and

low-risk groups.
3.9 Drug sensitivity intergroup differences

To deeply explore the different focus of drug therapy in patients

in high and low-risk groups. The Immune cells Proportion Score

(IPS) differences between the high and low expression groups of

CRGs and CRIs and the high and low-risk groups of CIR-score were

evaluated based on the expression levels of hub CRGs and lncRNAs,

and the differences in immunotherapy sensitivity between the
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FIGURE 8

Differences in the TIME landscape between high and low-risk groups. (A) Differences between immune-related activities in high and low-risk groups
("*": P<0.05) (B) Immune cell infiltration in tumor microenvironment in high and low-risk groups ("**": P<0.01) (C–F) Correlation analysis between
immune cells (Macrophages M0, NK cells resting, T cells CD8, T cells regulatory) and CIR-score (G–J) Correlation analysis between immune
checkpoints (Macrophage, NK cells, Activated CD8 T cells, Regulatory T cells) and CIR-score.
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different groups were compared. Higher IPS was associated with

higher immunogenicity. The results indicated that although the

differences in PD-1 were not significant in any of the 3 CRGs high

and low expression groups. Nevertheless, for hub lncRNAs, the

AC007292.2 low expression group (Figure 10A), AC015660.1 high

expression group (Figure 10B), LINC01091 low expression group

(Figure 10C), MEG9 low expression group (Figure 10D), and CIR-

score high-risk group (Figure 10E) possessed significantly higher

immunogenicity. Moreover, the difference in PD-1 monoclonal

antibody sensitivity between the CIR-score high- and low-risk

groups was far more significant than that of single hub lncRNA,

which demonstrated that CIR-score is more significant for guiding

immunotherapy dosing strategies than single hub lncRNA and

single CRG. In addition, considering that Nanoalbumin Paclitaxel

(Abraxane®) in combination with Gemcitabine is the preferred

chemotherapy for non-surgical PAAD patients (27), we further

probed into the intergroup differences in the IC50 of these two

agents. A lower IC50 was associated with higher drug sensitivity.

Paclitaxel was found to be more sensitive in the VEGFA high

expression group, AC015660.1 high expression group, LINC01091

low expression group, and CIR-score high-risk group (Figure 10F).

Gemcitabine was more sensitive in the LINC01091 low expression
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group, and MEG9 low expression group (Figure 10G). The above

results suggest that patients with lower CIR-score are more likely to

be resistant to immunotherapy and chemotherapy.
3.10 Validation of hub CRGs and lncRNAs
in immune combined targeted and
chemotherapy mouse PAAD model

The clinical benefit of monotherapy is limited to a small

population. Currently, the efficacy of immunotherapy (PD-1

monoclonal antibody) alone plus chemotherapy (28) and

immunotherapy combined with other molecules is suboptimal

(29). In contrast, chemotherapy combined with recombinant

human vascular endothelial inhibitor (Endostar ®) has achieved

some achievements in clinical treatment (30). Therefore, to explore

new strategies for combination therapy, 4 PAAD mouse treatment

cohorts of model control group, chemotherapy group

(Nanoalbumin Paclitaxel + Gemcitabine), recombinant human

vascular endothelial inhibitor + PD-1 monoclonal antibody

group, and recombinant human vascular endothelial inhibitor +

PD-1 monoclonal antibody + chemotherapy group were included in
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FIGURE 9

Enrichment analysis, tumor burden, and immune checkpoint sensitivity prediction. (A) Results of GO enrichment analysis (Biological Process, Cellular
Components, and Molecular Function) (B) Results of KEGG enrichment analysis (Pathways) (C) TMB differences between high and low-risk groups
(D) High and low TMB groups for survival analysis (E) Survival analysis of high TMB-high risk group, high TMB-low risk group, low TMB-high risk
group, and low TMB-low risk group (F) TIDE assessment of high and low-risk groups ("**": P<0.01).
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this study. Although we assessed the efficacy of immunotherapy in

patients by screening immune-related CRGs as raw material for the

construction of CIR-score and characterization, it is necessary to

directly compare the response rates of hub CRGs and lncRNAs

under different treatment regimens in a mouse PAAD model.

Considering that MAP2K2 is positively correlated with

AC007292.2 (Coef. = -2.898), LINC01091 (Coef. = -0.779), and

MEG9 (Coef. = -0.852) (Figure 5E), indicating that the lower

MAP2K2 expression had a higher CIR-score. Similarly, SOD1 was

mildly negatively correlated with AC007292.2, LINC01091, and
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MEG9, and mildly positively correlated with AC015660.1 (Coef. =

0.497). VEGFA is positively correlated with AC007292.2,

AC015660.1, LINC01091, and MEG9, but the correlation

coefficient with AC015660.1 is the highest. That is, the higher the

expression of SOD1 and VEGFA the higher the CIR-score.

Therefore, the immunohistochemical results showed that the

recombinant human vascular endothelial inhibitor + PD-1

monoclonal antibody + chemotherapy group had the lowest CIR-

score, the model control group had the highest CIR-score, and the

recombinant human vascular endothelial inhibitor + PD-1
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FIGURE 10

Drug sensitivity intergroup differences. (A-D) Immunogenicity differences of the 4 hub lncRNAs: AC007292.2, AC015660.1, LINC01091, and MEG9
with different expression (E) Immunogenicity differences between the high and low-risk groups (F) IC50 differences of Paclitaxel in VEGFA,
AC015660.1, LINC01091, and CIR-score with different levels (G) IC50 differences of Gemcitabine in LINC01091 and MEG9 with different levels.
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monoclonal antibody group was slightly higher than the

chemotherapy alone group (Figure 11A). In contrast, with almost

all current drugs, cancer tissue becomes resistant over time as

patients use them (31). Compared to those already on the drug,

cancer patients who did not experience treatment were more
Frontiers in Immunology 17
sensitive to the same drug. And the high-scoring group was more

sensitive to immunotherapy (Figure 10E). Thus, the differences in

MAP2K2, SOD1, and VEGFA expression in different treatment

cohorts were consistent with intergroup differences in

immunotherapy sensitivity. Furthermore, MAP2K2 expression
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FIGURE 11

Validation of hub CRGs and lncRNAs in immune combined targeted and chemotherapy mouse PAAD model. (A) Immunohistochemical results of 3
differentially expressed immune-related CRGs in mouse PAAD model (a: Model Control Group; b: Chemotherapy Group; c: Recombinant human
endostatin + PD-1 Monoclonal Antibody Group; d: Recombinant human endostatin + PD-1 Monoclonal Antibody + Chemotherapy Group) (B) Hub
lncRNA MEG9 relative expression differences in the 4 treatment cohorts ("***": P<0.001, "**": P<0.01, "*": P<0.05) (C) In vivo imaging of PANC-02
transplanted tumors in different treatment cohorts of PAAD mice at 0, 1, and 2 weeks (D) Differences in total radiation efficiency in different
treatment cohorts at 0, 1, and 2 weeks.
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was significantly higher in the chemotherapy group than in the

non-chemotherapy group, and SOD1 and VEGFA expression was

significantly lower in the chemotherapy group than in the non-

chemotherapy group. That is, the scores in the chemotherapy group

were significantly lower than those in the non-chemotherapy group.

This is also consistent with the result that the higher-scoring group

was more sensitive to chemotherapy (Figure 10F, G). On the other

hand, qRT-PCR results showed that the expression of MEG9 was

significantly higher in the immunotherapy cohort in the presence of

PD-1 monoclonal antibody treatment than in the non-

immunotherapy cohort (Figure 11B), which is also consistent

wi th the analys i s o f sens i t iv i ty di fferences between

immunotherapy groups. Unfortunately, we did not retrieve the

sequences of AC007292.2, AC015660.1, and LINC01091 in mice,

and therefore did not validate them by qRT-PCR in mouse models.

These 3 lncRNAs will be planned to be validated on human PAAD

tissues in the future. The above results further demonstrate that

CIR-score is qualified to predict the efficacy of immunotherapy in

PAAD patients and provide guidance for individualized and precise

application of immunotherapy. Interestingly, in vivo imaging

showed that the Total Radiant Efficiency of recombinant human

vascular endothelial inhibitor + PD-1 monoclonal antibody +

chemotherapy group was significantly lower than the other 3

groups after 1 and 2 weeks of administration (Figure 11C, D). It

indicates that immunotherapy combined with targeted and

chemotherapy significantly improved the proliferation and

progression of PAAD, which provides a new possibility for a

multidrug combination therapy strategy for PAAD with

immunotherapy as the main treatment.
4 Discussion

Cuproptosis is a novel cell death mechanism different from the

known ones. Copper ions can mediate cell death through a

mitochondria-dependent increase in energy metabolism and

cytotoxicity induced by reactive oxygen species (ROS) accumulation

(10). Copper deficiency can lead to early embryonic death or congenital

malformations. This is due to copper’s role as a cofactor for

mitochondrial cytochrome c oxidase, which is required to meet the

energy requirements of rapidly dividing cells (24). Similarly, the copper

requirement of cancer cells is higher compared to non-dividing cells.

First, in studies of PAAD (11), gastric cancer (32), hepatocellular

carcinoma (33), gallbladder cancer (34), lung cancer (35), thyroid

cancer (36), and prostate cancer (37), serum copper ion levels were

found to be significantly higher in tumor patients compared to normal

patients. Higher serum copper ion concentrations in lung cancer (35)

and breast cancer (38) were also associated with poorer clinical

prognosis. Second, copper also reflects TIME status at the immune

cell level. Copper ion concentration is inversely correlated with the

degree of infiltration of T cells and macrophages in TIME. In

mesothelioma, reducing bioavailable copper slows tumor growth,

normalizes blood vessels, and promotes T-cell infiltration (39). In

hepatocellular carcinoma, copper with disulfiram inhibits T-cell
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infiltration by inhibiting PARP1 activity and enhancing GSK3b Ser9

site phosphorylation, which in turn upregulates PD-L1 expression (40).

In breast cancer, the copper-depleting compound tetrathiomolybdate

(TM) resulted in reduced collagen deposition, decreased levels of

myeloid-derived suppressor cells, and increased infiltration of CD4+

T cells (41). In addition, downregulation of the copper-containing

metabolism MURR1 structural domain 1 (COMMD1) in cancer cells

enhances the inflammatory response and creates favorable conditions

for macrophage recruitment (42). Therefore, the present study

screened for immune-related CRGs by exploring the interaction

between IRGs and CRGs. The results revealed that among the 14

CRGs that interacted significantly with 35 IRGs, VEGFA, SOD1, and

MAP2K2 had the most significant differential expression between

PAAD and adjacent normal tissues. Among them, VEGFA encodes

vascular endothelial growth factor A, which induces angiogenesis,

vascular endothelial cell growth, and increased vascular permeability.

Although VEGFA is upregulated in many tumors and is a target for

many cancer therapies. However, approximately 90% of PAAD are

ductal adenocarcinomas with KRAS mutations as the primary driver,

which are typically characterized by fibrous tissue hyperplasia and

reduced vascularity, which in turn leads to immunosuppression and

resistance to chemotherapy and immunotherapy (43). Thus, the low

expression of VEGFA in PAAD tissues is consistent with the low

vascular density characteristic of cancer tissues. Copper-zinc

superoxide dismutase encoded by SOD1 is one of the predominant

intracellular antioxidant enzymes and an important target for cancer

drug design. Overexpression of SOD1 in PAAD protects cancer cells

from oxidative stress (44). Hence, SOD1 is an important means of

regulating superoxide anion radical (O2–) and hydrogen peroxide

(H2O2) levels in cancer cells. However, most of the reported SOD1

inhibitors such as ATN-224 (45), DDC (46), and LD100 (47) have

shortcomings like inefficient inhibition or lack of selectivity for other

copper-containing proteins. MAP2K2, one of the core drivers of

cancer, encodes mitogen-activated protein kinase kinase 2 (MEK2)

which plays a key role in mitogenic growth factor signaling, and

knockdown of MEK2 inhibits the invasive ability of PAAD cancer

cells (48). Interestingly, however, the expression level of MAP2K2 in

PAAD tissues was not exactly consistent with previous studies. We

speculate that this correlates with the cell subpopulation category in

which MAP2K2 is highly expressed. To further explain the high

expression of MAP2K2 in PAAD paracancerous tissues and to

investigate the differences in the spatial distribution of CRGs

expression levels, the present study further explored the expression

patterns of all 14 CRGs with co-expression relationships with IRGs at

the single-cell level.

The transformation of normal pancreatic follicular cells to PAAD

is often accompanied by the appearance of chronic inflammation,

which induces and chemotacticizes a large number of immune cells

distributed in the dense pancreatic interstitial tissue. These immune

cells undergo altered functions in TIME, which eventually produce

amplified immunosuppressive signals leading to immune escape of

tumor cells and promoting tumorigenesis (49). Considering the

complexity and highly suppressive nature of PAAD TIME, single-

cell sequencing, as an emerging technology, provides a new perspective
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for the study of TIME. On the one hand, single-cell sequencing

technology can better reveal the heterogeneity of tumor cells at the

cellular and molecular levels, capture different tumor states, and

provide new perspectives for understanding tumor drug resistance

(50). On the other hand, cell clusters and cell states with similar gene

expression profiles can be more thoroughly analyzed from a multi-

omics perspective (genomics, transcriptomics, epigenomics, and

proteomics) (51). To further visualize the differences in expression of

CRGs at the cellular level between PAAD and its adjacent normal

tissues, and to further explore the association of CRGs with different

immune cell subpopulations in TIME, all screened CRGs were

analyzed in depth in this study in single-cell sequencing samples.

Among them, SOD1, MT-CO2, UBE2D2, and UBE2D3 were

commonly and significantly expressed in each single cell

subpopulation of PAAD, and the cluster with the highest number of

aggregated genes was the NK cells cluster (Supplementary Figure S2).

Overall, for the 3 immune-related CRGs that were significantly

differentially expressed in the transcriptomic data, the single-cell data

were consistentwith the results of transcriptomic data analysis. Among

them, SOD1 was significantly more expressed in each cell cluster in

PAAD tissues than normal. Previous studies have shown that SOD1

overexpression not only protects cancer cells from oxidative stress but

also suppresses pro-inflammatory immune responses in colitis by

preventing oxidative stress (52). We speculate that similarly, SOD1

overexpression in TIME could inhibit the immune response by

suppressing immune cells and their secreted cytokines and enzymes.

Second, VEGFA expression in neutrophils, NK cells, and epithelial

cells was significantly higher in PAAD tissues than normal. However,

in CMP cell clusters the cancer VEGFA expression was significantly

lower than normal. Moreover, MAP2K2, as an oncogene, plays a key

role in mitogenic growth factor signaling. But single-cell sequencing

analysis showed thatMAP2K2was significantlymore expressed inNK

and CMP cell subsets in normal pancreatic tissues adjacent to cancer

than in PAAD tissues. We speculate that the main reason for the

difference in MAP2K2 transcriptome data does not lie in the cancer

cells in the tissues, but in the NK cells in the TIME.

lncRNAs are promising circulating biomarkers in cancer diagnosis

and prognosis, and exceptional candidates for further therapeutic

exploration. However, considering that individual genes or lncRNAs

are not sufficient to achieve the desired prediction, a new form of

indicator is needed to provide new strategies for individualized

therapy. lncRNA signature is a risk indicator that can systematically

predict cancer survival prognosis, immune landscape, and drug

sensitivity by combining multiple lncRNA molecules as variables

assigned with their respective coefficients. It can circumvent the

limitations of individual lncRNAs in predicting prognosis, but also

avoid the defects of interactions among lncRNAs. Currently, studies on

the prognostic signature of Cuproptosis-associated lncRNAshave been

conducted in tumors such as bladder cancer (53), head and neck

squamous cell carcinoma (54), and gastric cancer (55). However, most

studies have used co-expression analysis for screening of lncRNAs, but

few studies have systematically explored the genes from which

lncRNAs originate, as well as their distribution and expression

differences at the single-cell level. Furthermore, the role of
Frontiers in Immunology 19
Cuproptosis-associated lncRNAs, in the regulation of PAAD and its

immunotherapy is unclear. Therefore, this study screened for 7-CRGs

based on single-cell sequencing, which were both co-expressed with

IRGs and significantly expressed in single cells. The immune-related 4-

CRGs with the most prognostic value were identified by co-expression

and regression analysis: MEG9, LINC01091, AC015660.1, and

AC007292.2. Among them, MEG9 could protect endothelial cells

from DNA damage-induced cell death and predict cancer prognosis

through the PI3K-AKT signaling pathway (56). In addition, MEG9

was significantly associated with hepatitis B virus (HBV) infection

status in hepatocellular carcinoma (57), and epidermal growth factor

receptor (EGFR) status in adenocarcinoma patients with non-small-

cell lung cancer (NSCLC) (58). In the PAAD field,MEG9 is involved in

the construction of m6A-related prognostic signature as hub lncRNA

(59). LINC01091 can coordinate the microRNA-128-3p/ELF4/CDX2

axis and thus promote gastric cancer growth and metastasis by way of

exosomes on one hand (60) and can act as hub lncRNA in DNA

methylation-related prognostic signatures of prostate cancer (61).

AC015660.1 is involved in the angiogenesis of PAAD (62) and

inflammatory correlation of gastric cancer (63) as hub lncRNA of

prognostic signatures. In contrast, AC007292.2 has no previous

relevant studies. To verify the prognostic value, this study further

discussed the survival, clinical relevance, bioenrichment, and gene

mutations in the high- and low-risk groups according to the CIR-score

median. The results showed that the CIR-score could more clearly

classify PAAD patients into high- and low-risk clusters compared to

CRGs or CRIs alone. And CIR-score also showed a significant positive

correlation with risk factors such as pathological grade, clinical grade,

and TMB.

Furthermore, differences in the immune landscape between the

high and low-expression groups of CRGs and the high and low-risk

groups of the CIR-score raised additional concerns. Immune cells,

tumor-associated fibroblasts (CAFs), vascular system, and extracellular

matrix (ECM) are the 4 major components that constitute the highly

immunosuppressive microenvironment of PAAD (64). 2 of the major

types of immune cells are most associated with immunosuppressive

TIME in PAAD: tumor-associated macrophages (TAMs) and tumor-

infiltrating T cells. Previous studies have confirmed that TAMs not only

promote tumor initiation but also serve as central drivers of

immunosuppressive TIME by expressing cell surface receptors,

secreting cytokines, chemokines, and enzymes that regulate the

recruitment and function of multiple immune cell subtypes (65). In

this study, we found thatmacrophageM0was positively correlatedwith

the expression of MAP2K2 and VEGFA; macrophage M1 and

monocytes were negatively correlated with the expression of SOD1.

The expression of CRGs in macrophage clusters of PAAD single-cell

samples was significantly higher than in normal tissues. M0 is the state

in which macrophages are not activated. In contrast, activated

macrophages have the typical activation phenotype M1 and the

selective activation phenotype M2. M1 subtypes not only promote

antitumor immune responses but also increase radiotherapy sensitivity

(66, 67). Higher numbers of M2 subtypes are associated with larger

PAAD tumor volumes, early liver and local recurrence, accelerated

lymphatic metastasis, and shorter survival (68). However, activation of
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TAMs inhibits TLR-mediated M1 polarization (69). To address this

feature Guiducci C et al. investigated a TLR9 ligand that induced a shift

from the M2 phenotype to M1 in macrophages and resulted in tumor

shrinkage (70). Thus, targeting macrophages provides a direction for

improving TIME in PAAD. On the other hand, this study found

significantly lower infiltration of regulatory T cells (Tregs) in the high-

risk group than in the low-risk group. Zhang Y et al. suggested that

depletion of Tregs accelerates pancreatic carcinogenesis, leads to

differentiation of inflammatory fibroblast subpopulations, and

consequently leads to compensatory immunosuppression in

advanced disease (71). The more pronounced Tregs depletion and

worse OS in the high-risk group are consistent with previous studies.

This cross-talk between Tregs and fibroblasts in PAAD reveals a

potential new therapeutic approach to alleviate immunosuppression

in pancreatic cancer.

Immunotherapy is considered to be the fourth major oncology

treatment after surgery, chemotherapy and radiotherapy. Although

good efficacy has been achieved in some advanced tumors, the overall

effect of immunotherapy in PAAD is poor. Compared with the

poorer response to PD-1 inhibition alone, combination therapy

with targeted chemotherapy and other agents has shown a more

durable response, providing new ideas for the clinical treatment of

PAAD (72). Recombinant human vascular endothelial inhibitor

alleviates immunosuppression by normalizing tumor vasculature

(73) and specifically replicates in PAAD cancer cells and kills them

(74). PD-1 monoclonal antibody in combination with recombinant

human vascular endothelial inhibitor and chemotherapy has shown

good efficacy and safety in patients with advanced non-small cell lung

cancer (NSCLC) (75). Combining recombinant human vascular

endothelial inhibitor with first-line standard chemotherapy also

improved the quality of life in patients with small cell lung cancer

(30). However, no such combination therapy has been reported in the

field of PAAD. Considering that Nanoalbumin Paclitaxel plus

Gemcitabine is the chemotherapy of choice for PAAD patients who

are non-surgical candidates but in good physical condition (27). And

the CIR-score high and low-scoring groups and their associated high

and low-expression groups of CRGs and CRIs exhibited significant

drug sensitivity differences. To explore a more optimal combination

treatment strategy for PAAD and to validate the reliability of the CIR-

score, this study divided the mouse model into 4 treatment cohorts:

model control group, chemotherapy group (Nanoalbumin

Paclitaxel + Gemcitabine), recombinant human vascular endothelial

inhibitor + PD-1 monoclonal antibody group, and recombinant

human vascular endothelial inhibitor + PD-1 monoclonal

antibody + chemotherapy group. MAP2K2, SOD1, and VEGFA, as

the most prognostically valuable CRGs screened and co-expressed

with CIR-score, were differentially expressed in the chemotherapy

and non-chemotherapy groups in agreement with the

pharmacoresensitivity prediction results (Figure 10). The qRT-PCR

results of MEG9 in the hub lncRNAs of CIR-score were also

consistent with the intergroup differences in immunotherapy

sensitivity. These results further demonstrate that the CIR-score is

qualified to predict immunotherapy efficacy in PAAD patients and

provide guidance for individualized and precise application of

immunotherapeutic agents. In addition, the recombinant human
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vascular endothelial inhibitor + PD-1 monoclonal antibody +

chemotherapy group in the in vivo imaging results demonstrated a

significant advantage in delaying tumor progression. Therefore, not

only the CIR-score can predict the effect of immunotherapy in

patients and reflect the difference of drug sensitivity in patients; but

also immunotherapy combined with chemotherapy and targeted

therapy can be a direction of clinical drug treatment. The

combination of these two aspects suggests a focused multi-modality

combination therapy for specific patients’ signature scores for the

purpose of achieving optimal therapeutic outcomes, providing a new

strategy for individualized treatment of PAAD.

There are also some limitations in this study. Firstly,

unfortunately, we were unable to quantify all 4 hub lncRNAs by

qRT-PCR in a mouse model because we did not retrieve the

sequences of AC007292.2, AC015660.1, and LINC01091 in mice.

These 3 IncRNAs will be planned to be further validated on human

PAAD tissues in the future. Secondly, because of relying mainly on

public databases and animal experiments, this study still needs to

further investigate and validate of the value of prognostic CIR-score

in clinical PAAD cases, the value of reflecting the immune

landscape, and the value of guiding individual clinical medication

use. For the future study and validation of CIR-score in human

PAAD tissues, it is possible to assess the expression of CIR-score hub

lncRNAs in biopsied tumor tissues of PAAD patients, and then

bring the expression results into the CIR-score formula constructed

in this study to assess the risk level of patients. The risk level of each

patient can also be used as a reference index for the assessment of the

patient’s immunotherapy sensitivity. In addition, the Nomogram

constructed in this study can be used to individualize the survival

rate of each patient based on the routine clinical risk factors collected

from the patients and the CIR-score calculated in the clinic.
5 Conclusion

In conclusion, the construction and validation of a Cuproptosis-

associated PAAD lncRNAs signature based on single-cell

sequencing carried out in this study not only reveals the

organizational principles that shape the TIME complexity of

PAAD but also provides certain ideas for immunotherapy-based

combination treatment strategies.
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