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Brain metastases (BMs) are the most common form of intracranial malignant

neoplasms in adults, with a profound impact on quality of life and traditionally

associated with a dismal prognosis. Lung cancer accounts for approximately

40%–50% of BM across different tumors. The process leading to BMs is complex

and includes local invasion, intravasation, tumor cells circulation into the

bloodstream, disruption of the blood–brain barrier, extravasation of tumor

cells into the brain parenchyma, and interaction with cells of the brain

microenvironment, among others. Once the tumor cells have seeded in the

brain parenchyma, they encounter different glial cells of the brain, as well as

immune cells. The interaction between these cells and tumor cells is complex

and is associated with both antitumoral and protumoral effects. To overcome the

lethal prognosis associated with BMs, different treatment strategies have been

developed, such as immunotherapy with immune checkpoint inhibitors,

particularly inhibitors of the PD-1/PD-L1 axis, which have demonstrated to be

an effective treatment in both non-small cell lung cancer and small cell lung

cancer. These antibodies have shown to be effective in the treatment of BM,

alone or in combination with chemotherapy or radiotherapy. However, many

unsolved questions remain to be answered, such as the sequencing of

immunotherapy and radiotherapy, the optimal management in symptomatic

BMs, the role of the addition of anti–CTLA-4 antibodies, and so forth. The

complexity in the management of BMs in the era of immunotherapy requires a

multidisciplinary approach to adequately treat this devastating event. The aim of

this review is to summarize evidence regarding epidemiology of BM, its

pathophysiology, current approach to treatment strategies, as well as

future perspectives.
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Background and epidemiology

Brain metastases (BMs) are the most common form of

intracranial malignant neoplasms in adults and are associated

with a dismal prognosis (1–3). Lung cancer is the most frequent

primary tumor to develop BM (4) and globally accounts for

approximately 40%–50% of all BMs (1, 5). Different risk factors

have been associated to lung cancer, namely, cigarette smoking

history, radon exposure, and occupational exposure to agents such

as arsenic, asbestos, beryllium, cadmium, chromium, coal smoke,

diesel fumes, nickel, silica, soot, and uranium. Other risk factors

include history of prior malignancies such as lymphoma or head

and neck cancers, history of chronic obstructive pulmonary disease,

or pulmonary fibrosis (6). Among the different subtypes of lung

cancer, it is estimated that up to 22%–57% of patients with non-

small cell lung cancer (NSCLC) will develop BMs at some point of

the history of their disease (7–10). Overall, 20% of these patients

present BM at diagnosis and up to 57% develop BM over the period

of the disease (7, 11). The prevalence of BMs in a subset of patients

with NSCLC and oncogenic drivers can be higher in some cases and

increase throughout the course of their disease. These patients

experience different rates of BM at baseline and through the

history of their disease, as follows for the most frequent

oncogenic drivers: EGFR mutations are 24.4% and 52.9% (12),

ALK rearrangements are 23.8% and 72% (12, 13), and ROS1

rearrangements are 19.4% and 34% (13). Regarding the less

common genomic alterations, the percentages for baseline BM

and throughout the history of the disease are as follows: BRAF

V600E mutations are 31% (14) and not reported (possibly due to

the low prevalence of BRAFmutations in NSCLC),HER2mutations

are 14% and 28% (15, 16), RET rearrangements are 25% and 46%

(17), and KRAS mutations are (G12C and non-G12C) 24% and

35.1% (15, 18). Some patients with oncogenic drivers and BMs

benefit from targeted therapies with tyrosine kinase inhibitors,

which can surpass the blood–brain barrier (BBB), as evidenced by

significant intracranial response rates in different clinical trials (19–

22). For patients with small cell lung cancer (SCLC), it is estimated

that 10%–20% of patients will present with BM at diagnosis, and up

to 50%–80% of patients will develop BMs at some point of the

history of their disease (23–26).

Detecting BM at baseline has been associated to a worse

prognosis, and developing BM during ongoing therapies reflects

tumor progression and resistance to treatment, associated to the

disruption of the physiologic BBB.

Current guidelines recommend the use of brain magnetic

resonance imaging (MRI) with contrast or, when not possible,

brain computed tomography with contrast for patients with

NSCLC and SCLC stages II–IV to detect BM (27, 28). Although

BMs have a negative impact in survival, in recent years, patients’

outcomes have improved significantly (29, 30). Some of the

treatments that have contributed to improving survival of these

patients include surgery, stereotactic radiosurgery, whole-brain

radiation therapy, prophylactic cranial irradiation, and the

addition of better systemic therapies (10, 31–33). To develop

effective treatment strategies, it is necessary to understand the
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genomic and molecular mechanisms leading to BM. The purpose

of this review is to provide an integrated synthesis of the

epidemiology of BM in lung cancer patients. To describe its

pathophysiology and molecular mechanisms, as well as its

genomic landscape. Furthermore, we intend to provide a cohesive

summary of the clinical evidence for the different treatment

strategies, focusing on immunotherapy, and immunotherapy

based combinations. Finally, we present future perspectives for

the management of BMs.
The blood–brain barrier, the
blood–tumor barrier, and the
premetastatic niche

The mechanisms leading to BMs are complex and different

mechanisms are required; among them, local invasion,

intravasation, survival in circulation, extravasation, and tissue

colonization represent the most remarkable (Figure 1A) (34, 35).

The most difficult steps in this scenario are extravasation and

colonization, since the BBB must be bypassed (35). Under

physiological conditions, the BBB regulates the homeostasis of the

central nervous system (CNS); it provides the brain with nutrients,

limits the transportation of ionic substances and other molecules,

and functions as a critical obstacle for drug transportation to the

brain (36–38). Key components of the BBB include endothelial cells,

pericytes, astrocytes, and the extracellular matrix. Endothelial cells

form tight junctions that control transportation and entry of

different molecules, allowing a restricted permeability of the BBB

(37, 39, 40). These cells secrete growth molecules such as PDGF-b,
TGF-b, and Vascular Endothelial Growth Factor (VEGF), which

modulate pericytes (40). Pericytes wrap blood vessels through their

end feet processes and regulate the vascular function. They are

involved in angiogenesis, neovascularization, and antigen cell

presentation (under certain conditions), as well as communicating

with astrocytes within the neurovascular unit (41–43). Astrocytes

are necessary for different metabolic processes in the brain,

including metabolization of different substances and production

of antioxidants, as well as regulation of signaling pathways. They

contribute to the function of the BBB and secrete growth factors

targeted to the endothelial cells (40). Another important

component of the BBB is the extracellular matrix, composed of

the basal lamina that surrounds the BBB (43). Disruption of the

extracellular matrix has been associated with an increased

permeability of the BBB and as a consequence development of

BM (40). In addition to the BBB, other components of the CNS

environment include oligodendrocytes and microglia; the latter are

the innate macrophage cells of the brain and can exert disrupting

effects in the BBB, facilitating the formation of BM (43, 44).

Prior to the development of BM, an adequate microenvironment

must be secured for the establishment of the metastatic cells; this

pretumoral microenvironment is referred to as the premetastatic

niche (Figures 1A, B) (45). Different molecules contribute to the

formation of the premetastatic niche, as well as to the disruption of

the BBB, including VEGF, PLGF, and matrix metalloproteinases,
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which elicit changes in the tight junctions leading to a disruption of

BBB (46–48). Other contributing mechanisms accounting for the

conditioning of the premetastatic niche are tumor-secreted exosomes,

which are vesicles surrounded by a bilayer of lipids. Exosomes

contain nucleic acids, lipids, and proteins, which can regulate

integrins and modulate glucose uptake in astrocytes (49, 50).

MicroRNAs (miRNAs) are a type of nucleic acids contained in

exosomes; these are characterized by being small non-coding RNAs

that can alter gene expression. Different miRNAs have been

associated to the development of BM, such as miR-378, which is

relevant to the promotion of cell migration, invasion, and

angiogenesis via upregulation of PRKCA (51–53). A different type

of nucleic acids involved in BMs are long non-coding RNAs

(lncRNAs), which are RNA sequences longer than 200 nucleotides,

which are not translated into functioning proteins (54). The lncRNA

MALTA1 has been associated with promoting BMs by inducing

epithelial to mesenchymal transition (EMT), whereas the lncRNA

HOTAIR contributed to BMs by increasing cell migration and

anchorage (55, 56). In addition, contributing factors to the

disruption of the BBB can be attributed to endothelial cells, which

express different adhesion molecules prompted by tumor cells,

facilitating invasion conditions for these tumor cells (57).

Once the BBB has been disrupted, the blood–tumor barrier

(BTB) is established (Figures 1C, D). The BTB is characterized by

alterations in the transportation of molecules, changes in protein

expression profiles involving transportation channels, and a

heterogeneous permeability to different molecules (44). However,

this increased permeability does not necessarily translate into a

more favorable anti-cancer drug delivery (44). As a former BBB, the

BTB presents similar components, such as endothelial cells, which

in the BTB scenario upregulate TNF receptors 1 and 2 and develop

alterations in cell adhesion proteins leading to a loss of tight

junctions. The loss of endothelial tight junctions increases

paracellular permeability and downregulates specific transporters

related to influx and efflux of molecules (58). Other cells that
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contribute to the disruption of the BBB are pericytes, which

locate around blood vessels, forming double layers of cells and

producing collagen, which leads to a thickening of blood vessels

(59). An upregulation in the expression of VEGF in the BTB has

been described; however, it does not always translate into an

effective formation of blood vessels (60, 61). Other components

associated with the establishment of the BTB include the

production of inflammatory molecules, membrane proteins, and

growth factors, such as claudin-5 (62, 63). Following the disruption

of the BBB and the formation of the BTB, metastatic cells can then

settle in the brain. Once they are established, tumor cells interact

with the innate microenvironment of the brain. The tumor

microenvironment is a complex ecosystem composed of tumor

cells, as well as non-malignant cell types such as endothelial cells,

astrocytes, pericytes, and immune cells (64).
The tumor microenvironment
of brain metastases

Once, in the brain parenchyma, the tumor cells trigger an

inflammatory response led by astrocytes, microglia, and other

immune cells (65). Astrocytes are able to exert both pro-tumoral

and antitumoral functions (66). Initially astrocytes exert antitumoral

effects through the production of nitric oxide and plasminogen

activator, as well as creating an astrocytic wall, which separates the

metastasis from the brain parenchyma (67–69). Plasminogen

activator triggers the production of plasmin, which activates the

FasL pathway and deactivates L1CAM, ultimately suppressing BM.

This results in a death signal for cancer cells and inhibition of

metastatic growth. In response to the deleterious effects exerted by

plasmin to the tumor cells, the latter secrete serpins which elicit

inhibitory effects against the plasminogen activator and therefore

counteract the antitumoral functions of astrocytes (68, 70). A worth

noting pro-tumoral effect of astrocytes is the ability to establish gap
A B DC

FIGURE 1

Establishment of brain metastases. (A) Mechanisms of tumor cell invasion, intravasation, survival in circulation, extravasation, and tissue colonization.
(B) Mechanisms associated to the pre-metastatic niche including factors such as VEGF, PLGF, and MMP (matrix metalloproteinases). (B) Tumor-
secreted exosomes containing nucleic acids such as miRNAs and lncRNAs, as well as proteins and lipids. (C) Contributing factors that increase
permeability of the BBB including alterations in channel transporters, loss of tight junctions, and collagen produced by pericytes. (D) The BBB
breakdown and the establishment of the BTB reflected by tumor cell extravasation into the brain parenchyma.
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junctions with tumor cells, facilitating the transfer of cGAMP to

astrocytes. Consequently, the STING pathway is activated, leading to

the production of cytokines such as IFN-a and TNF, promoting

tumor cell growth and chemoresistance. Additionally, these gap

junctions hinder the uptake of calcium by tumors, further

contributing to tumor growth and chemoresistance (71–73). In

addition, reactive astrocytes (RAs) are astrocytes that undergo

changes in their molecular, morphological, and functional states as

response to pathologic situations in the surrounding environment

(74). Tumor cells promote the activation of STAT3 in RA,

contributing to the modulation of the immune system, and

promote the establishment of a pro-metastatic environment

through a decrease in the activation of CD8+ T cells (75). RA may

also contribute to tumor proliferation through the secretion of IL-6,

TNF- a, and IL-1b (69).

The microglia are the resident macrophages of the CNS and not

derived from the bone marrow. However, bone marrow–derived

macrophages can reach the CNS when the BBB is disrupted, as a

response to disturbances in the CNS. Both of them share lineage

and activation markers, and in the context of malignant neoplasms,

these cells are referred to as tumor-associated macrophages (TAMs)

(76, 77). These macrophages can be subsequently divided according

to their functional characteristics; M1-like macrophages are usually

described to be proinflammatory and are stimulated by Toll-like

receptor ligands, as well as IFN-g and TNF-a. They are thought to
exert tumor-suppressive functions, through the production of IL-1,

IL-12, and nitric oxide, among other factors (78, 79). On the other

hand, M2-like macrophages are usually considered anti-

inflammatory; are activated by IL-4 and IL-13; and produce

molecules such as TGF-b, arginase, IL-10, and profibrotic factors.

M2-like macrophages are associated with tumor promoting

functions through the inhibition of CD8+ T-cell proliferation (78,

79) (Figure 2).

Tumor-infiltrating lymphocytes (TILs) in BMs are usually

composed of different subsets of CD8+ T cells and CD4+ T cells,
Frontiers in Immunology 04
including T-regulatory cells (Tregs) (80). TILs in BM have been

associated to peritumoral edema in the brain. Some of the main

TILs present in BMs include CD3+, CD8+ cytotoxic TILs, and

CD45RO+. A high density of these subpopulations has been

associated with a prolonged overall survival (OS) (81). For

patients with metastatic SCLC, resection of BM is not a standard

of practice; thus, characterization of BM in these patients is not

often achieved (82). However, a study in 32 patients with SCLC and

resected BM studied the immune microenvironment of these

metastases. CD3+ TILs, CD8+ TILs, CD45RO+ TILs, and

FOXP3 + TILs were present in over 45% of the studied

specimens. PD-L1 expression was positive in 75% of the studied

BM, whereas for TILs and TAMs, the percentage of expression was

25% and 28.1%, correspondingly. The expression of PD-L1 on TILs

was associated with improved survival (83). In a different study

including 49 patients with NSCLC evaluated peripheral blood

immune cells, including immunosuppressive monocytes, myeloid-

derived suppressor cells, and Tregs. The study found that patients

with BM had an increased number of PD-L1+ monocytes, myeloid-

derived suppressor cells, and Tregs in peripheral blood, compared

to patients who did not have BM and healthy controls. The study

also found that patients with elevated numbers of peripheral

myeloid PD-L1–expressing cells were associated with a worse

progression-free survival and OS (84).
Comparing the tumor
microenvironment and genomic
landscape of brain metastases with
matched primary tumors

Different studies have evaluated primary NSCLC tumors and

paired BM to assess the tumor microenvironment, as well as the

expression and mutational profiles in both samples. A study in 39
FIGURE 2

The tumor microenvironment of brain metastases. The figure different types of cells present in the tumor microenvironment and its anti- and
protumoral effects.
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patients with NSCLC and resected BM performed DNA sequencing

of 158 hotspot mutations, TCR-b sequencing analysis, as well as

immunohistochemistry staining to assess differences and

similarities between the studied specimens. The variant allelic

frequency of mutated genes was higher in BM compared to

primary tumors, with a median difference of 21.6%. BM showed

an inhibition of dendritic cell maturation, Th1 immune response, as

well as leukocyte extravasation signaling, and a reduced expression

of the adhesion molecule VCAM1. Furthermore, a bioinformatic

evaluation of the immune subpopulations based on gene expression

detected that the abundance of Th1 or CD8 T genes was lower in

BM compared to primary tumors, which was associated with

reduced levels of CD8+ T, dendritic cells, and macrophages in

BM. The T-cell richness and T-cell densities were significantly lower

in BM; however, levels of bone marrow–derived M2-like

macrophages were higher in BM. The results from this study

suggest that the immune tumor microenvironment of BM

presents increased immunosuppressive features compared to the

one in primary tumors (85). Another study in 23 patients with

matched primary NSCLC and BM identified that PD-L1 expression

in tumor cells was higher and CD8+ TILS was lower in BM

compared to primary tumors. However, patients categorized as

CD8 high stromal TILs in BM had a trend toward a better OS,

compared to those with CD8 low stromal TILs (86). In addition, a

study involving 43 NSCLC patients evaluated samples of matched

primary tumor and BM, identifying higher numbers of neutrophils,

CD4+ T cells and dendritic cells, and lower fractions of M1-like

macrophages and Tregs in BM. The study also detected a

downregulation in the expression of CTLA-4 in BM, as well as

lower expression of PD-L1 and CD8A between primary tumors and

BM. Interestingly, an analysis between patients with metachronic

tumors who received adjuvant treatment and later had a brain

relapse, compared to those who were not exposed to prior

treatments and later had a brain relapse, showed no differences

except for the cell fraction of natural killer cells, which were higher

in the group that received adjuvant treatment. Furthermore, this

study identified that the immune microenvironment differed

between primary tumors and BM in the metachronic group

compared to the synchronic group. The results of this study

concur with the previous ones in detecting an immunosuppressed

tumor microenvironment in BM, compared to the primary tumor

(87). A study in 34 patients with NSCLC and BM, who underwent

surgical resection or autopsy, compared primary tumors with BM.

This study found that only CD204+ cells, corresponding with

macrophages, were higher in tumor areas of BM compared to the

primary tumor, whereas CD4+ T cells, CD8+ T cells, and CD+

FOXP3 T cells were higher in the primary tumor. The study found

that higher densities of CD4+ T cells and CD8+ T cells in both BM

and the stromal areas of BM were associated with a higher OS (88).

A study compared the expression of PD-L1 in primary and

metastatic lesions; 747 BM samples from patients with NSCLC were

included. The study compared the expression of PD-L1 between

primary tumors and BM and found a discordance in the expression

of PD-L1. BM had a low or negative expression of the biomarker,

highlighting the heterogeneity of PD-L1 according to the tumor

sample site (89).
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Other studies have focused on genomic profiling of NSCLC

primary tumors and BM. As such, a study found that non-

synonymous tumor mutational burden (TMB) was higher in BM

compared to primary tumors; however, the neoantigen load was

similar in BM and primary tumors. The study also found a reduced

T-cell heterogeneity in BM associated to a immunosuppressive tumor

microenvironment (90). A different study profiled BM and primary

tumor samples from patients with NSCLC and identified a

discrepancy in the mutational landscape between the samples, with

a median of 8.3% of shared genetic mutations and higher numbers of

somatic mutations in BM. Different pathways were enriched in BM

compared to primary tumors, including invasion/metastasis and

metabolic associated pathways. The study also found a

phylogenetic divergence between BM and primary tumors,

indicating parallel progression models for each of the lesions (91).

Another study in 11 patients with metastatic lung adenocarcinoma,

assessed the mutational landscape of primary tumors and BM. The

study found that more unique mutations were present in BM, and

identified mutations in FAM129C and ADAMTS present specifically

in BM. Alterations in the APOBEC signature were also higher in BM

compared to primary tumors (92). A different study performed in

samples from 2,309 patients with lung adenocarcinoma, including

238 samples of CNS metastases identified genes associated to the

development of BMs. Alterations in the Hippo pathway were

associated to a shorter time to developing CNS metastases, and

STK11 alterations were more prevalent in CNS metastases (93).

Another study evaluated 73 samples of BM from lung

adenocarcinoma and compared them against a control population

of 503 primary lung adenocarcinoma tumors. The study found
TABLE 1 Comparison of differentially expressed and regulated genes,
molecules, signatures, and cell in primary tumor versus brain metastases.

Increased
abundance or
expression in
primary tumor

Increased
abundance or

expression in BM

Decreased
abundance or
expression in

BM

CD4+ T cells Mutations in STK11,
FAM129C, ADAMTS,
and APOBEC signature

Th1 and CD8 T genes

CD8+ T cells TMB Expression of VCAM1

CD+ FOXP3 Higher number of
somatic mutations

Leukocyte extravasation
signaling

PD-L1 expression* Higher variant allelic
frequency of mutated
genes.

Th1 immune response

Invasion, metastasis, and
metabolic-associated
pathways

Reduced T cell
heterogeneity

Alterations in Hippo
pathway

Dendritic cell
maturation

PD-L1 expression* CD8+ T cells

Macrophages (not
TAMs)

CTLA-4
*Discordant results.
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different genes that were considered as candidates for the

development of BM through the identification of regions with

higher amplification frequencies or deletions. These genes included

MYC, YAP1, MMP13, and CDKN2A/B (94). A study in 51 patients

with lung adenocarcinoma, as well as squamous cell carcinoma,

identified that BM had a higher number of somatic copy number

alterations. Gene alterations associated with BM driving mechanisms

include CDK12, DDR2, ERBB2, and NTRK1 (95). A different study in

54 paired samples from BM and NSCLC patients identified that most

driver alterations were present both in primary tumor and BM.

Private alterations to one or the other sites were present in 22%–26%

of the cases. KRASmutations were more frequent in primary tumors

that developed BM compared to data from The Cancer GenomeAtlas

(CTGA) (96). The preceding studies highlight that BM are composed

of an immunosuppressive tumor environment, which has been

associated to a deleterious prognosis. Furthermore, different

mutational patterns in primary tumors versus BMs represent the

tumor heterogeneity between the two tumor sites and could in part

explain the development of BM and the different response to therapy.

The most relevant results from these studies are presented in Table 1.
Approach to treatment strategies

Different strategies have been used to approach treatment of

BM; however, there is not a definitive consensus regarding the

sequence of treatment. Neurosurgery should be considered in

patients with large tumors that exert a mass effect as well as in

patients with minimal intracranial disease. Patients with multiple

BM or a single BM could be considered for whole brain

radiotherapy (WBRT) or stereotactic radio surgery (SRS) or

stereotactic radiotherapy (SRT). However, radiotherapy is not

recommended for patients with a Karnofsky Performance Status

(KPS) ≤50 or <70 and no systematic therapy options. The use of

WBRT, SRS, or SRT can also be considered for patients with a

KPS <70 or with comorbidities impeding neurosurgery.

Combination of SRS plus WBRT (with our radioprotective

strategies) is associated with higher rates of cognitive impairment.

Thus, the combination of SRS with WBRT could be used with

hippocampal avoidance or administration of memantine to

decrease neurological toxicity. In some instances, local treatment

can be deferred to avoid potential adverse effects. Situations that

might prompt to a deferral for local treatments include

asymptomatic BM and a “favorable” location of the BM and

systemic treatments with high CNS penetrance and responses

(i.e., third-generation EGFR tyrosine kinase inhibitors) (97).

Following local treatment strategies, a systemic treatment should

be considered, such as immunotherapy, tyrosine kinase inhibitors,

chemotherapy, or combination therapies. It is worth noting that

administering concurrent radiotherapy to the brain and

chemotherapy is not recommended, since it can trigger the

development of cognitive impairment, white matter damage, and

radionecrosis (98–100).

More recently, in the era of immunotherapy, PD-1 or PD-L1

inhibitors alone or in combination with chemotherapy or anti–

CTLA-4 agents have demonstrated activity both NSCLC and SCLC
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patients, with BM (27, 82, 101–103). The use of Immune

checkpoint-inihbitors (ICI) is an attractive strategy to stimulate

the immune response of the immunosuppressed tumor

microenvironment in BM (104, 105). ICI has demonstrated to be

effective in the treatment of BM in other tumors including

melanoma, which is co ined one of the pioneers o f

immunotherapy. Clinical trials have demonstrated that patients

with asymptomatic BM benefit from the nivolumab–ipilimumab

combination, reporting an intracranial benefit of 57%, and an OS at

3 years of 71.9% in this population (106–108). Different clinical

trials and retrospective studies have evaluated the effect of ICI alone

or in combination with chemotherapy or radiotherapy in BM from

lung cancer; these studies are summarized in Table 2. The current

use of immunotherapies is based on regulation from medical

agencies, as well as clinical guidelines. Current approvals can be

summarized as follows: for tumors with a PD-L1 expression 0%–

49% treatment recommendations include platinum-based

chemotherapy with anti–PD-1/PD-L1 ± ipilimumab ±

bevacizumab (141). Tumors with a PD-L1 expression ≥50%

benefit from the prior mentioned regimens or anti–PD-1/PD-L1

agents in monotherapy. For patients with SCLC, the current

recommendations are the use of chemoimmunotherapy in the

first line of treatment (82).

The development of different therapies for lung cancer and BM

can be represented in a timeline, as depicted in Figure 3 (142, 143).
Studies with immune checkpoint
monotherapy in NSCLC

*Atezolizumab: clinical trials
Among the different clinical trials evaluating ICI monotherapy,

the OAK study included 1,225 pretreated NSCLC patients and

allowed for the inclusion of patients with treated and asymptomatic

CNS BM (n = 123). The study compared atezolizumab versus

docetaxel. Patients with BM who were treated with atezolizumab

exhibited a trend toward improved OS compared to those who

received docetaxel. The OS were 16 and 11.9 months (HR = 0.74,

95% CI: 0.49–1.13; p = 0.1633), for the atezolizumab and docetaxel

groups, respectively, in patients with BM. OS estimates at 2 years

were 26.6% (95% CI: 15.1–38.1) in the atezolizumab arm and 19.3%

(95% CI: 8.2–30.4) in the docetaxel arm in patients with BM (109).

The FIR study was a single-arm trial, which evaluated the effect of

atezolizumab in 138 previously treated NSCLC patients, with PD-

L1–selected tumors (i.e., >5% PD-L1 staining in TC or IC) and

allowed the inclusion of patients with treated and asymptomatic

BM (n = 13). Patients with BM had an objective response rate

(ORR) of 23% (range: 5–54), the median progression-free survival

(mPFS) was 2.5 months (range: 1.0–11.3), and the OS was 6.8

months (range: 3.2–19.4). The study found that the activity of

atezolizumab regarding ORR and OS was similar between patients

with and without BM (111).

*Pembrolizumab: clinical trial
A study by Goldberg et al, evaluated the use of pembrolizumab

in pretreated patients with NSCLC and untreated BM. In 37
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1221097
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Clinical evidence of the use of ICI in brain metastases from lung cancer.

CR
Num. %)

PFS for patients
with BM

OS for
patients
with BM

Ref

R NR 16 m for At, and
11.9 m for Do

(109,
110)

R 2.5 m 6.8 m (111)

R NR NR (112,
113)

9.4 1.9 m 9.9 m (114,
115)

7 for pts with
reated BM, and 60
or pts with
ntreated BM

6.5 m for patients with
treated BM, and 5.3 m
for patients with
untreated BM

21.6 m for the
whole BM
population

(116)

R 3 m 8.6 m (117)

0 NR NR (118)

R 1.8 m for pts with CNS
mets, and 3.63 m for pts
without CNS mets

NR (119)

R NR 9.7 m for pts
with BM, and
11.9 m for pts
without BM

(120)

R NR 9.9 m (121)

R NR 9.7 m for pts
with BM, and
11.9 m for pts
without BM

(120)
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Study BM popula-
tion included

Prospec-
tive (P) or
Retrospec-
tive (R)

Intervention Treat-
ment
Line

Control
arm

Num. of
patients
with BM

ORR
(Num. %)

Studies with ICI monotherapy in NSCLC

OAK study NSCLC pts with
treated
asymptomatic CNS
BM

P Atezolizumab (At) > 1 Docetaxel (Do) 61 At, and
62 Do

13.7 for At, and
11.8 for Do

FIR study NSCLC pts with
treated and
asymptomatic BM

P Atezolizumab (At) ≥ 2 None 13 23

JAVELIN Lung
200

NSCLC pts with
locally treated and
asymptomatic BM

P Avelumab (Av) 1–3 Docetaxel 46 Av, and
33 Do

In PD-L1+ pts
18.9 for Av, and
10.6 for Do

Goldberg SB,
et al.

NSCLC with
asymptomatic BM

P Pembrolizumab ≥ 1 None 37 18.9

Wakuda K, et al. NSCLC with
treated and
untreated BM

R Pembrolizumab 1 None 23 Pts with treated
BM 54, pts with
untreated BM
60

Crino L, et al Non-squamous
NSCLC with
asymptomatic BM

P Nivolumab > 1 None 409 19

Dudnkik E, et al. NSCLC R Nivolumab 1–2 None 5 40

Watanabe H,
et al

NSCLC R Nivolumab NR None 19 with CNS
mets, 29
without CNS
mets

11 with CNS
mets, 17 without
CNS mets

Debieuvre D
et al,

NSCLC with
baseline BM

R Nivolumab > 1 None 477 NR

Assié JB, et al NSCLC R Nivolumab NR NR 1,800 NR

Debieuvre D
et al,

NSCLC with
baseline BM

R Nivolumab > 1 None 477 NR
I
(

N

N

N

2

7
t
f
u

N

4

N

N

N

N
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TABLE 2 Continued

R
um. %)

PFS for patients
with BM

OS for
patients
with BM

Ref

3 m 8.6 m (122)

4.9 m 5.8 m (123)

5.4 m for NI and 5.8 m
for ChT

18.8 m for NI
and 13.7 m for
ChT

(124)

1.7 m for pts with BM,
and 2.1 m for pts
without BM

8.6 m for pts
with BM, and
11.4 m for pts
without BM

(125)

8.9 m 13.6 m (126)

6.9 m for PPP, and 4.7
for ChT

19.2 m for PPP
and 7.5 m for
ChT

(127,
128)

9.2 m 18 m (129)

6.9 m for PChT, and
4.1 m for ChT

18.8 m for
PChT, and 7.6 m
for ChT

(130)

NR 19.9 m for
NICH, and
7.9 m for ChT

(131,
132)

NR NR (133)
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Study BM popula-
tion included

Prospec-
tive (P) or
Retrospec-
tive (R)

Intervention Treat-
ment
Line

Control
arm

Num. of
patients
with BM

ORR
(Num. %)

IC
(N

Grossi F, et al. Non-squamous
NSCLC

R Nivoumab > 1 None 409 17 NR

Cortinovis D,
et al

Squamous NSCLC R Nivolumab ≥ 1 None 37 10 NR

Studies with ICI-ICI combinations in NSCLC

CheckMate 227 NSCLC with
treated
asymptomatic BM

P Nivolumab and
ipilimumab (NI)

1 Chemotherapy
(ChT)

69 NI and
66 ChT

33 NI and 26
ChT

NR

Hendriks LE,
et al

NSCLC R Anti–PD-1/PD-L1 ±
anti–CTLA-4

1–8 None 255 20.6% with BM
vs. 27.7%
without BM

27.

Studies with ICI-chemotherapy combinations in NSCLC

ATEZO-BRAIN Non-squamous
NSCLC with
untreated BM

P Atezolizumab,
carboplatin and
pemetrexed

1 None 40 47.5 40

KEYNOTE-189 Non-squamous
NSCLC with
asymptomatic BM

P Pembrolizumab,
platinum and
pemetrexed (PPP)

1 Platinum and
pemetrexed
(ChT)

73 PPP, and
35 ChT

47.6 for PPP
and 18.9 for
ChT

NR

Sun L, et al. NSCLC with
treated and
untreated BM

R Pembrolizumab ±
chemotherapy

≥ 1 None 22 27.8 36.

KEYNOTE-021,
KEYNOTE-189,
and KEYNOTE-
407

NSCLC R Pembrolizumab, plus
chemotherapy (PChT)

1 Platinum and
pemetrexted
(ChT)

171: PChT,
1127: ChT

For pts with
BM: 39% for
PChT, and
19.7% for ChT

NR

CheckMate 9LA NSCLC pts with
treated
asymptomatic CNS
BM

P Nivolumab,
ipilimumab and
chemotherapy (NICH)

1 Chemotherapy
(ChT)

64 NICH,
and 58 ChT

38 for NICH,
and 25.4 for
ChT

NR

Studies with ICI-chemotherapy combinations in SCLC

IMpower 133 SCLC with treated
asymptomatic CNS
metastases

P Carboplatin, etoposide
and atezolizumab
(CEA)

1 Carboplatin
and etoposide
(CE)

17 CEA, and
18 CE

60.2 for CEA,
and 65.4 for CE

NR
3

4
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TABLE 2 Continued

rol Num. of
patients
with BM

ORR
(Num. %)

ICR
(Num. %)

PFS for patients
with BM

OS for
patients
with BM

Ref

m and
ide (PE)

28 PED, and
27 PE

68 for PED and
58 for PE

NR 4.7 m for PED and 4.5
for PE

11.7 for PED,
and 8.8 for PE

(134,
135)

50: RT +
ICI, 113 RT

NR NR NR NR (136)

37 NR NR NR 17.6 m (137)

SRT 44, SRT
+ ICI 33

NR NR NR 13.9 m (138)

17 NR NR NR 17.9 m (139)

RT + ICI
100, RT 50

NR NR NR 1-year OS: SRT
+ ICI64.5%, and
for SRT: 67.5%

(140)

verall survival; mOS, median overall survival; NR, not reported; m, months; pts, patients; mets, metastases; RT, radiotherapy; WBRT, whole brain
stereotactic radiation therapy; HFSRT, hypofractioned SRT.
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Study BM popula-
tion included

Prospec-
tive (P) or
Retrospec-
tive (R)

Intervention Treat-
ment
Line

Con
arm

CASPIAN SCLC with
untreated
asymptomatic or
treated and stable
BM

P Platinum, etoposide
and durvalumab
(PED)

1 Platinu
etopos

Studies with cranial radiotherapy with and without immunotherapy in NSCLC

Hubbeling H G,
et al.

NSCLC with BM R SRT ± ICI
(administered before
or concurrently)

≥1 None

Schapira E, et al. NSCLC with BM R SRS + anti-PD-1/PD-
L1 inhibitors,
concurrent and
sequential

NR None

Eright TL, et al. NSCLC with BM R SRT ± anti-PD-1/PD-
L1

NR None

Ahmed KA,
et al.

NSCLC with BM R RT (SRS or FSRT) ±
anti–PD-1/PD-L1

≥1 None

Soccianti S, et al. NSCLC with BM R RT (SRS, SRT or
HFSRT) with or
without ICI
concurrent and
sequential

NR None

ORR, objective response ratio; ICR, intracranial response ratio; DCR, disease control rate; PFS, progression-free survival; OS, o
radiotherapy; PBI, partial brain irradiation; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; FSRT, fractioned
t
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patients with a PD-L1 expression of at least 1% in mononuclear

inflammatory cells and tumor cells, the ORR was 18.9% (95% CI:

8.0–35.1), the mPFS was 9 months (95% CI 1.8–3.7), the median OS

(mOS) was 9.9 months (95% CI: 7.5–29.8), and the estimated 2-year

OS was 34% (range: 21–54) (114, 144).

*Pembrolizumab: retrospective study
Wakuda et al. studied the effect of pembrolizumab in treatment

naïve NSCLC patients with PD-L1 TPS ≥50, with treated and untreated

BM (n = 23) and without BM (n = 64). The study found no significant

differences regarding ORR in patients with and without BM (54% and

60%, p = 0.77). However, patients with treated BM had anORR of 77%,

whereas patients with untreated BM had an ORR of 60% (p = 0.21)

mPFS were 6.5 months (95% CI: 0.5–not reached), and 5.3 months

(95% CI: 0.4–10.8) for patients with and without BM (116).
*Nivolumab: prospective studies
An Italian study derived from an expanded access program

evaluated the use of nivolumab in 1,588 pretreated patients with

non-squamous NSCLC, with unselected PD-L1, and allowed the

inclusion of patients with BM if they were asymptomatic (n = 409).

The ORR for patients with BM was 17%, the disease control rate

(DCR) was 39%, the mPFS was 3 months (95% CI: 2.7–3.3), and the

mOS was 8.6 months (95% CI: 6.4–10.8) (117).

*Nivolumab: retrospective studies
A study by Watanabe et al. evaluated nivolumab in 48 patients

with NSCLC with and without CNS metastases. The study found a

systemic ORR for patients with CNS metastases of 11% and 17% for

patients without BM; mPFS were 1.8 months and 3.63 months,

respectively. Another study by Debieuvre et al, including 2,858

patients with pretreated NSCLC, evaluated the effect of nivolumab;

the study included 477 patients with baseline BM. The study did not

find differences regarding OS in patients with or without BM (p >

0.05) (120). A different study by Assié et al. evaluated the effect of

nivolumab in 10,452 NSCLC patients, including 1,800 with baseline

BM. The study found that patients with BMs tended to be younger,

more frequently female, with a non-squamous tumor histology and

with higher prevalence of malnourishment compared to those

without BM. The mOS for patients with BM was 9.9 months

(range: 9–10.9), compared to 11.7 months (range: 11.3–12.2) in

the overall population (121). An Italian study by Grossi et al, in

1,588 previously treated PD-L1 unselected non-squamous NSCLC

patients, including 409 patients with asymptomatic and controlled

CNS metastases, evaluated the efficacy of nivolumab. Patients with

BM had an ORR and DCR of 17% and 39%, whereas the mPFS and

mOS were 3 months (95% CI: 2.7–3.3) and 8.6 months (95% CI:

6.4–10.8), respectively. The study found that patients with BM had

higher rates of liver metastases and had received two or more prior

lines of therapy, both of which were statistically significantly

different from patients without BM (117). A different Italian

study by Cortinovis et al. studied the effect of nivolumab in 37

previously treated squamous NSCLC patients with CNS metastases.

The study found an ORR of 19%, an mPFS of 4.9 months (95% CI:

2.7–7.1), and a mOS of 5.8 months (95% CI: 1.9–9.8).
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As previously described, treatment with ICI monotherapy is an

effective therapy for NSCLC patients with BM, however the only

prospective evidence comes from the trial by Goldberg et al, in

which pembrolizumab demonstrated a benefit in this subset of

patients. Regarding both retrospective and prospective studies, PFS

and OS ranged from 1.9 to 4.9 months and 5.8 to 21.6 months for

patients with BM, respectively. It is worth noting that patients with

BM treated locally, who were systemic treatment naïve at the start of

the ICI therapy were the ones who had obtained the best survival

outcomes. However, these data must be analyzed cautiously, since

each study had a different design and the baseline characteristics of

the patients were different.
Studies with immunotherapy-
immunotherapy combinations in NSCLC

Other treatment strategies involve the use of immunotherapy–

immunotherapy combinations; the CheckMate 227 clinical trial

evaluated the effect of nivolumab plus ipilimumab compared to

chemotherapy in 1,166 chemotherapy-naïve NSCLC patients.

Inclusion was based on a TMB of at least 10 mt/Mb, regardless of

PD-L1 expression, patients with treated asymptomatic BM were

allowed (n = 135). The ORR was 33% and 26%, mPFS 5.4 months

(3.1–8.6) and 5.8 months (4.3–8.0) with a HR (95% CI) of 0.79

(0.52–1.19), and mOS 18.8 months (9.2–29.4), and 13.7 months

(10.5–16.2) with a HR (95% CI) of 0.57 (0.38–0.85), for nivolumab

plus ipilimumab and chemotherapy, respectively (124). A study by

Hendriks et al. evaluated the use of ICI monotherapy or ICI

combinations in 1,025 patients with NSCLC, of which 255 had

BM, including active and symptomatic. Patients with and without

BM had an ORR of 20.6% and 22.7% (p = 0.484) and a DCR of

43.9% and 52% (p = 0.024), respectively; the intracranial response of

patients with active BM was 27.3%. The mPFS for patients with and

without BM were 1.7 months (95% CI: 1.5–2.1) and 2.1 months

(95% CI: 1.9–2.5) (p = 0.009), whereas the mOS were 8.6 months

(95% CI: 6.8–12), and 11.4 months (95% CI: 8.6–13.8) (p = 0.035),

respectively. Patients who previously received cranial radiotherapy

did not have a different outcome in terms of OS compared to those

who did not (125).

Although a smaller number of patients was included in ICI–ICI

combination studies, there seems to be a greater benefit than with

ICI monotherapy; however a conclusion should not be drawn since

the populations compared were not the same.
Studies with ICI plus chemotherapy
in NSCLC

*Atezolizumab plus chemotherapy
Different clinical trials have evaluated the effect of

immunotherapy-plus chemotherapy in the treatment of NSCLC

patients, including those with BM. The study ATEZO-BRAIN

evaluated the effect of atezolizumab, carboplatin, and pemetrexed

in 40 previously untreated non-squamous NSCLC patients with

untreated BM and unselected PD-L1 expression. The study
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reported an intracranial response of 40%, a systemic response in

47.5% of the patients; the median systemic PFS was 8.9 months

(6.7–13.8), intracranial PFS was 6.9 months (4.7–11.9), and mOS

was 13.6 months (9.72–not reached). Patients with a positive PD-L1

tended to present an increased benefit regarding survival (126).

*Pembrolizumab plus chemotherapy:
prospective studies

The KEYNOTE-189 clinical trial evaluated the effect of the

combination of pembrolizumab, platinum-based chemotherapy,

and pemetrexed compared to placebo, platinum-based

chemotherapy, and pemetrexed in 616 previously untreated non-

squamous NSCLC patients. The study allowed for any level of PD-

L1 expression and the inclusion of patients with asymptomatic BM

(n = 108). Patients with BM had mPFS of 6.9 months (5.4–11.0) and

4.7 months(2.2-5.5), HR: 0.42 7.5 and the mOS were 19.2 months

(15.0–25.9) and 7.5 months (4.6–10.0), HR: 0.41 (0.24–0.67) for the

pembrolizumab and the placebo combinations, respectively (127).

*Pembrolizumab plus chemotherapy:
retrospective studies

A study by Sun et al. evaluated the effects of pembrolizumab alone or

in combinationwith chemotherapy in patients withNSCLCwith (n= 126)

and without BM (n = 444); the study included patients with treated and

untreated BM. Patients with BM had an intracranial ORR of 36.4%; the

systemic ORR was 27.8% for patients with BM and 29.7% for patients

without BM (p= 0.671). The estimatedmPFS for patients with BMwas 9.2

months, and for patients without BM was 7.7 months (p = 0.609); the

estimated mOS were 18 and 18.7 months (p = 0.966), respectively. The

study found that patients with treated BM had a significantly improved

mPFS and mOS compared to those with untreated BM. However, the

study did not report the differences in terms of response or survival

comparing pembrolizumab monotherapy versus pembrolizumab plus

chemotherapy (129). A pooled analysis of the KEYNOTE 021, 189, and

407 clinical trials by Powell et al. evaluated the effect of platinum-based

chemotherapy with or without pembrolizumab, in 1,298 treatment naïve

patients with NSCLC and baseline BM (n = 171) including treated and
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stable or untreated and asymptomatic BM. Patients with BMwho received

pembrolizumab based treatment had anORR of 39% (95%CI: 29.7–49.1),

compared to 19.7% (95% CI: 10.9–31.3%) in patients who received the

chemotherapy-based treatment, the mPFS were 6.9 months (95% CI: 5.7–

8.9) and 4.1 months (95% CI: 2.3–4.6) for each group, respectively, with a

HR: 0.44 (95%CI: 0.31–0.62). ThemOSwere 18.8 months (95%CI: 13.8–

25.9) and 7.6months (95%CI: 5.4–10.9) with a HR for death of 0.48 (95%

CI: 0.32–0.70) for the pembrolizumab-plus chemotherapy and

chemotherapy treatment groups. Patients without BM had a better

ORR, mPFS, and mOS than patients with BM in both treatment groups.

*Nivolumab and ipilimumab plus chemotherapy:
prospective studies

A different strategy was evaluated in the CheckMate 9LA, in

which 1,150 treatment naï ve NSCLC patients, were randomized to

receive nivolumab, plus ipilimumab with two cycles of

chemotherapy versus four cycles of chemotherapy alone. The

study allowed for any expression of PD-L1 and for patients with

treated asymptomatic CNS metastases. The ORRs for the whole

population were 38.2% (33.2–43.5) and 24.9% (20.5–29.7); the mOS

for patients with CNS metastases was 19.9 months versus 7.9

months, HR: 0.47 (95% CI: 0.31–0.71), for the immunotherapy-

based treatment and the chemotherapy arm, respectively (131).

Both prospective and retrospective studies show a clear benefit

in the use of chemoimmunotherapy combinations for patients with

NSCLC and BM, regardless of the ICI used.

Results from these trials suggest that this combination therapy

might be more effective than ICI monotherapy, however, as previously

stated comparisons among different trials should not be performed.
Chemoimmunotherapy in
patients with SCLC

Studies evaluating the effect of chemoimmunotherapy in SCLC

patients allowing the inclusion of BM include the IMpower 133 and

the CASPIAN clinical trial.
FIGURE 3

Temporal evolution of advancements used to treat brain metastases. WBRT, whole brain radiotherapy; SRS, stereotactic radiosurgery.
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*Atezolizumab plus chemotherapy:
prospective study

The IMpower133 evaluated the use of atezolizumab, carboplatin,

and etoposide, compared to carboplatin and etoposide in 403 treatment

naïve SCLC patients, allowing the inclusion of patients with treated

asymptomatic BM (n = 35). The study reported that patients with BM

had no different outcomes regarding PFS and OS regardless of the

treatment, with a HR for death (95% CI) of 1.07 (0.47–2.43) (145).

*Durvalumab plus chemotherapy:
prospective study

The CASPIAN clinical trial evaluated the use of durvalumab in

combination with platinum-based chemotherapy versus platinum-

based chemotherapy in 268 treatment naïve SCLC. Patients with

untreated asymptomatic or treated and stable BM were allowed (n =

55), only patients in the chemotherapy-based arm were allowed to

receive PCI. The mPFS was 4.7 months (range: 4.4–6.4) for the

immunotherapy-based arm and 4.5 months (range: 4.5–5.9) for the

chemotherapy-based arm, with an unstratified HR of 0.73 (95% CI:

0.42–1.29). The mOS for the durvalumab group was 11.7 months

(8.3–16.3), and 8.8 months (5.7–11.9) for the chemotherapy arm,

with an unstratified HR of 0.79 (95% CI: 0.44–1.41). The study

reported that the durvalumab arm prolonged OS in patients with

and without BM (134, 135). A meta-analysis studied the addition of

ICI to chemotherapy versus chemotherapy as monotherapy in the

first treatment of extensive stage SCLC; the study found that the

only OS benefit from the addition of ICI was in patients without BM

at diagnosis. These results are possibly associated to the fact that

there is few information available for patients with BM (146). Larger

real world data studies are expected to report the efficacy of

chemoimmunotherapy combinations in SCLC patients with BM.
Retrospective studies using cranial
radiotherapy with and without
immunotherapy in NSCLC

Combination strategies with radiotherapy and immunotherapy

could lead to a synergy through the release of danger associated

molecular patterns (DAMPs) and cytokines, thus increasing

neoantigen presentation and diversifying the T-cell repertoire.

However, combining these therapies could also potentiate the

incidence of adverse events. Different retrospective studies have

evaluated the effect of these therapy combinations in BM from

NSCLC (147). A study by Hubbeling et al. included 163 patients

with NSCLC and BMwho received either radiotherapy alone (n = 113)

or in combination with ICI (n = 50). In patients who received both

treatments, radiotherapy was more frequently administered prior to

ICI, compared to concurrent administration. The study reported

similar rates of radiotherapy related toxicity in both groups, thus,

suggesting that ICI administered with radiotherapy may not be related

to an increased the risk of toxicity (136). In another study by Schapira

et al, 37 patients with NSCLC patients and BMwere evaluated to assess

the effect of the treatment with anti–PD-1 inhibitors and stereotactic

radiosurgery (SRS). The study found that patients treated concurrently

with ICI and SRS had an improved OS, compared to those treated with
Frontiers in Immunology 12
SRS before or after ICI, the 1-year OS were 87.3%, 70.0%, and 0% (p =

0.008) for each treatment, respectively. Distant brain failure (i.e., the

emergence of a new BM or tumor progression outside the prior

radiation treatment field in the brain) was lower in patients treated

with concurrent SRS and ICI, compared to those with sequential

treatment. The study found a numerically higher frequency of radiation

associated toxicities in patients who received the concurrent treatment

(137, 148). A different study by Enright et al. evaluated the use of SRT

combined with (n = 33), or without (n = 44) ICI in NSCLC patients

with BM. Patients who received both treatments had a decreased

distant brain failure, decreased rates of death by neurological causes, as

well as a better OS compared to patients who received radiotherapy

without ICI; the mOS for the global cohort was 13.9 months (range:

1.1–61.6). Regarding toxicities, symptomatic brain radionecrosis was

more frequent in patients receiving radiotherapy alone (11.3%)

compared to ICI plus radiotherapy (6%) (138). Another study by

Ahmed et al. evaluated the use of SRT with or without anti–PD-1/PD-

L1 inhibitors in 17 patients with NSCLC and BM; the study included

patients who received SRT prior, concurrent, or after ICI.

Administration of radiotherapy concurrent or posterior to ICI was

associated with an improved OS (p = 0.006) compared to prior ICI; the

mOS for the entire cohort was 17.9 months (139). The study ARIO

evaluated the effect of radiotherapy with (n = 100) or without ICI (n =

50) in patients with NSCLC and BM. The study found that patients

receiving the treatment combination had a longer intracranial local PFS

(p = 0.007); however, no differences were observed in terms of OS. The

study found that patients with non-adenocarcinoma histology tumors

and a KPS of 70 were associated with a worse OS. Furthermore,

patients who received ICI and radiotherapy within ≤7 days of each

treatment had an improved OS. The study did not find differences

regarding rates of radionecrosis between treatments (140). The

evidence derived from these studies highlight the beneficial synergic

activity of ICI plus radiotherapy, rendering it a safe and tolerable

procedure. Furthermore, it seems that timing in this context is

important, since patients receiving radiotherapy (SRS/SRT) either

concurrent or posterior to the start of ICI derive the greatest benefit.

Additionally, most of the studies reflect that concurrent administration

of these treatments leads to an improved OS.
Resistance to treatment strategies

General mechanisms of resistance
to immunotherapy

Different mechanisms of resistance to immunotherapy have

been identified, not exclusively in the context of BM. These include

cancer cell–related mechanisms, such as the loss of neoantigen

production, which could be triggered by hypermethylation in the

promoter region of genes coding for neoantigens. Another

described mechanism is alterations in neoantigen presentation,

due to alterations in HLA class 1 genes, loss of function of b2-
microglobulin, derangements in proteins related to antigen

degradation, as well as disruptions in the IFN-JAK-STAT

signaling pathway. Alterations in the latter can be associated with

mutations and copy-number variations in the IFN pathway. Other
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identified mechanisms include those associated with a loss of

function of JAK1 and JAK2 (149). Immune cell-associated

mechanisms of resistance to ICI can be attributed to tumors that

lack TILs, particularly CD8+ T cells. These tumors do not engage in

antigen presentation and cannot trigger an inflammatory response.

A number of mechanisms have been proposed to explain the

absence of TILs in tumors, including tumor signaling through the

b-catenin pathway, as well as loss of certain genes such as PTEN,

SKT11 (LKB1), and KEAP1, among others. Overall, these

alterations lead to an immunosuppressive environment, with

impaired inflammatory signaling, which can lead to resistance to

ICI. Another mechanism associated with resistance to ICI is the

location of the tumor, such as liver metastases, which have

traditionally been associated with an immunosuppressive

environment. Other immune cells that are associated with an

immunosuppressive TME include MDSCs and TAM-M2 cells,

among others (149).
Particular mechanisms of resistance to
immunotherapy in BM

A proposed hypothesis is that there is tumor heterogeneity in

BM, with different genomic and epigenomic alterations from the

primary tumor (as reviewed previously), and among the BMs. In

fact, tumors, both primary and metastases, are composed of

different subclones with different targets, as well as different

mechanisms of resistance (35). As previously stated, there exists a

significant heterogeneity regarding the expression of PD-L1 and

TMB according to tumor sample sites; thus, tumor heterogeneity of

BM can be associated to resistance to immunotherapies.

It has been suggested that metabolic derangements in substrate

consumption by tumor cells can lead to ineffective activity of the

immune cells in the TME. These events are associated with a

metabolic struggle of the tumor infiltrating immune cells. Both T

cells and tumor cells heavily depend on glucose for their energy

needs. Tumor cells, owing to their rapid growth and energy

requirements, predominantly engage in aerobic glycolysis to

process glucose. This leads to the generation of high levels of

lactic acid in the TME, which reduces the availability of glucose

for immune cells, resulting in compromised T cell function as well

as a heightened recruitment of Tregs, and polarizes microglial cells

and TAMs toward a pro-tumorigenic state. Furthermore, there is a

competition for amino acids such as glutamine, glutamate, and

tryptophan among T cells, MDSCs, and tumor cells. Within the

TME, substances such as kynurenine, produced by the tumor cells,

MDSCs, and TAMs, hinder the activation of T cells and promote

the generation of immune-suppressive Tregs. The brain

microenvironment provides ample glutamine and tryptophan,

facilitating tumor cells in adapting and utilizing these amino acids

for their growth. Moreover, the accumulation of lactic acid in the

TME boosts the expression of PD-1 on T cells and PD-L1 on tumor

cells, resulting in the suppression of immune cell function (150).

These immune contextures of the brain might require specific

therapeutic approaches when treating patients with NSCLC

and BMs.
Frontiers in Immunology 13
Future perspectives

Different biomarkers have been described and are currently being

developed to detect and characterize genomic, molecular, or TME

alterations in BM, as biomarkers of prognosis or targeted treatment.

As such, detection of circulating tumor DNA (ctDNA) in the

cerebrospinal fluid (CSF) can be an attractive strategy and less

invasive than conventional biopsies. ctDNA allows for the

characterization of different genomic alterations within CNS

metastases and provides a landscape of tumor heterogeneity (151).

High TMB has been associated with response to ICIs, and high TMB

has been detected in BM (89). Using TMB as a biomarker of response

is an attractive strategy, since it can also be detected in ctDNA from

CSF (152). However, there is no clinical evidence that a high TMB in

BM correlates to a benefit from ICIs, and the use of ctDNA from CSF

in patients with BM is not currently a standard practice.

The most validated biomarker associated with response to ICIs

is detection of PD-L1, either in tumor cells, immune cells, or both

and to a lesser extent TMB. High expression of both of these

biomarkers has been associated with an increased survival in

NSCLC patients treated with ICI (153). As previously presented

TILs in BM have been associated with an improved survival in

patients with NSCLC and SCLC (81, 83) and could potentially serve

as biomarkers of benefit. In addition, a different biomarker is a high

neutrophil-to-lymphocyte ratio, which has been associated with a

worse prognosis in patients being treated with radiosurgery or

neurosurgery for BM (154, 155).

Although not particularly associated with BM, an increased

representation of different bacteria from the gut microbiota has

been detected in the stool of patients who responded to treatment

with ICI or ICI-based therapies. Among the most representative

bacteria, B longum, E hirae, A muchiniphila, B fragilis, Collinsella

aerofaciens, and F prausnitzii stand out as biomarkers associated

with response (156–161). Furthermore, clinical trials in melanoma

patients have performed fecal microbiota transplantation (FMT)

from patients who received ICI and responded to patients with who

received the same treatment and did not respond. Patients with

primary resistance to ICI who received a FMT from responders had

an approximate 20% rate of response following the FMT and

continuing treatment with ICI. These results show that

manipulation of the gut microbiome through FMT is a strategy

useful to overcome resistance to ICI (162, 163).

Regarding future therapeutic strategies, targeting other

regulatory checkpoints, such as LAG3, TIGIT, or TIM3, either

alone or in combination with anti–PD-1/PD-L1 inhibitors are

being explored as means to overcome resistance to current

immunotherapies. Many clinical trials with different combinations

are currently undergoing. Furthermore, suppression of immune

cells of molecules that elicit an immunosuppressive environment

could also be a target, such as M2-TAMs, MDSC, and anti-TGFb
treatments. Other strategies are being used in NSCLC patients with

BM, such as clinical trials involving vaccines with mRNA tumor

antigens pulsed into dendritic cells (NCT02808416) or

administration of autologous dendritic cells to the tumor through

the intrathecal space (NCT03638765). Results from these studies

are expected to provide a new strategy to treat these patients.
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Concluding remarks

BMs represent a devastating event in patients with lung cancer,

with alarming numbers regarding its incidence. The development

and establishment of BMs is a complex process that needs to be

studied from different perspectives, including genetic, epigenetic,

immunologic, physiologic, and those associated with the BBB and

the brain parenchyma. The cascade of signaling events leading to

BMs is complex, and still not completely understood, in part due to

a limited access to BMs samples, and the heterogeneity among these

tumors. Immunotherapy represents a milestone in the treatment of

patients with lung cancer, and it has clearly demonstrated that

either alone or in combination with chemotherapy or radiotherapy,

patients with BM derive a benefit. However, selecting patients who

will benefit from one combination of therapies or another,

continues to represent a challenge, and so does the sequence of

treatment administration. Although important breakthroughs have

been achieved with the arrival of immunotherapy, patients with

lung cancer and BMs still present a deleterious diagnosis which

needs to be approached by a multidisciplinary team and requires

further research.
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