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Staphylococcus aureus pathology is caused by a plethora of virulence factors

able to combat multiple host defence mechanisms. Fibrinogen (Fg), a critical

component in the host coagulation cascade, plays an important role in the

pathogenesis of this bacterium, as it is the target of numerous staphylococcal

virulence proteins. Amongst its secreted virulence factors, coagulase (Coa) and

Extracellular fibrinogen-binding protein (Efb) share common Fg binding motives

and have been described to form a Fg shield around staphylococcal cells,

thereby allowing efficient bacterial spreading, phagocytosis escape and

evasion of host immune system responses. Targeting these proteins with

monoclonal antibodies thus represents a new therapeutic option against S.

aureus. To this end, here we report the selection and characterization of fully

human, sequence-defined, monoclonal antibodies selected against the C-

terminal of coagulase. Given the functional homology between Coa and Efb,

we also investigated if the generated antibodies bound the two virulence factors.

Thirteen unique antibodies were isolated from naïve antibodies gene libraries by

antibody phage display. As anticipated, most of the selected antibodies showed

cross-recognition of these two proteins and among them, four were able to

block the interaction between Coa/Efb and Fg. Furthermore, our monoclonal

antibodies could interact with the two main Fg binding repeats present at the C-

terminal of Coa and distinguish them, suggesting the presence of two

functionally different Fg-binding epitopes.

KEYWORDS

Staphylococcus aureus, monoclonal antibodies, phage display, fibrinogen-binding
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1 Introduction

Staphylococcus aureus has a large set of finely-tuned virulence-

associated genes that has endowed this bacterium with highly

adaptive and versatile strategies to survive in beneficial as well as

in hostile environments (1–6). Two major classes of virulence

factors belong to Cell Wall-Anchored (CWA) adhesins (2) and a

group of secreted proteins called Secretable Expanded Repertoire

Adhesive Molecules (SERAMs) (7). The most represented activity

in both groups of virulence factors is their ability to bind fibrinogen

(Fg), a host blood glycoprotein. For instance, SERAMs coagulase

(Coa), von Willebrand factor binding protein (vWbp), Extracellular

fibrinogen-binding protein (Efb), Extracellular adhesive protein

(Eap), Extracellular matrix binding protein (Emp) all bind Fg (8).

Amongst them, prothrombin-activating proteins Coa and vWbp

engage Fg independently from prothrombin (9–12). The Fg binding

activity of SERAMs, especially well studied for Coa, vWbp and Efb,

is mainly located in unordered regions of these proteins (8, 9, 11).

Fg is a large, fibrous plasma glycoprotein with three pairs of

polypeptide chains, designated Aa, Bb and g. During haemostasis

and clot formation, it self-assembles into an insoluble fibrous gel

upon conversion to fibrin (13, 14). The role of Fg in bacterial

infection has been mainly regarded as protective “haemostatic

containment”, owing to the ability of Fg/fibrin to entrap bacteria,

reducing their proliferation and dissemination, and fibrin-mediated

recruitment of immune cells to clear invading bacteria (15–17). As

mentioned so far, S. aureus harnesses an impressive array of

virulence factors that can interact with Fg. Multiple recent

evidence has demonstrated that the interaction with Fg may drive

different host responses based on the tissual context (8). In

peritonitis mouse infection models, binding of Fg is fundamental

to elicit an antibacterial response and contain infection (18–21).

However, the picture is completely reversed in bloodstream

infections, where Fg instead promotes spreading of S. aureus (22).

Therefore, understanding the interactions between S. aureus

virulence factors and Fg is crucial to understand how new

therapeutic opportunities should be designed against the multiple

antibiotic-resistant strains of this pathogen.

Efb and Coa are the best characterized SERAM proteins. The

Efb::Fg interaction is located in the N-terminal half of Efb (23),

whereas Coa can bind Fg all throughout its length, with the more

potent interactions located in the C-terminal domain (9, 11, 24).

Furthermore, both Coa and Efb mediate the formation of a Fg/fibrin

shield around staphylococcal cells, thereby protecting bacteria from

host immune responses (23, 25–27). Coa also mediates allosteric

activation of prothrombin through its N-terminal D1D2 domains

promoting fibrin polymerization (28–30). In respect to therapeutic

potential of Coa- and Efb-targeted antibodies, polyclonal rabbit sera

raised against Coa (10, 25) or Efb-specific antibodies derived from

patients with S. aureus infection (31) could reduce Fg binding in

vitro and protected mice from lethal S. aureus sepsis.

Figure 1A shows the domain organization of Coa protein. The

full length protein can be divided into N-terminal and C-terminal

halves. The N-terminal half of the protein contains D1D2 domains.

The C–terminal part of Coa can be divided into two portions: the

repeat region of Coa, located at the most C-terminal of the protein,
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and a linker that connects the D1D2 domain and the repetitive

region of Coa. As mentioned earlier, both N-terminal and C-

terminal halves can bind Fg but the more potent binding region

is located at the C-terminal half. Different recombinant constructs

used in the study are also depicted in Figure 1A. CoaF contains the

linker region and harbours a first, slightly divergent and longer

repeat termed CoaR0 (Figures 1A, C). The remaining repeats are

covered in recombinant construct CoaR, which harbours relatively

conserved tandem repeats I-V of 27-residue each. CoaR, together

with CoaF, constitutes the C-terminal domain of Coa, expressed as

recombinant protein named CoaC. The number of repeats present

in Coa protein varies from 1 to 9 copies depending on the S. aureus

strain, 5 or more being the most common amount (33). These

repeats are shorter than CoaR0, which is the longest repeat able to

bind Fg and is present in CoaF, spanning residues from 474 to 505.

Therefore, Coa can be divided into several functional domains that

have different affinities for Fg (9, 11).

As mentioned, S. aureus Efb also interacts with Fg and belongs

to SERAMs (9, 23, 27, 34). It is reported to inhibit complement

activation by engaging C3b (35–38), block platelet aggregation and

their interaction with leukocytes (39, 40) and interact with immune

cells blocking cellular-mediated immunity (23, 27, 41, 42).

Furthermore, Efb can also bind to Complement Receptor 2 on B

cells, further tackling adaptive responses of the host (43). The Fg-

binding activity is located at the N-terminal of Efb and has been

mapped to relatively long amino acid stretches termed EfbO and

EfbA (Figure 1B). The affinity of EfbO for Fg is 200 times higher

than that of EfbA, indicating that EfbO is the primary Fg binding

site in Efb (23). Coa repeats and Efb N-terminal share homology in

their Fg binding mechanisms and likely target the same or

overlapping sites in Fg, given that EfbO, CoaR0 and CoaRI

peptides are able to inhibit Fg binding of both EfbN and CoaC (9).

The possibility to interfere with Fg binding is thus crucial to

understand and block one S. aureus pathogenic mechanism. Here,

antibodies are not only a tool for blocking Coa and Efb interaction

with Fg for research but also potential therapeutic molecules. We

used antibody phage display to select several fully human,

sequence-defined antibodies against CoaC and characterized them

in vitro. We found that the anti-CoaC antibodies showed

crossreactivity with Efb and were able to discriminate between

CoaR0 and CoaRI peptides. In addition, we identified four

antibodies that were able to inhibit Coa and Efb Fg-binding.
2 Results

2.1 Anti-CoaC antibody selection
and production

S. aureus binds Fg through multiple proteins, therefore the

possibility to block this interaction with monoclonal antibodies may

pave the way to new therapeutic stragesies. Furthermore, if the

selected antibodies can target at the same time different proteins

that share sequence and functional homology, this may lead to

incremental and more efficient therapeutic potential. To investigate

this possibility, we selected as antigens Coa and Efb, that share high
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affinity Fg binding and homologous sequences. To select Coa-

targeting antibodies, the naïve antibody gene libraries HAL9 (l
repertoire) and HAL10 (k repertoire) were used as sources for scFv

selection by phage display (44). These naïve libraries harbor a

theoretical diversity of 1.5 x 1010 different antibodies and are also

referred as “single pot” libraries, that can be used to generate

antibodies theoretically against any possible antigen, We reasoned

that because of the higher affinity of CoaC for Fg than CoaN (9, 11),

CoaC would represent a better target to inhibit Fg binding activity
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(Figure 1A). After three panning rounds, monoclonal soluble scFv

were expressed from a total of 95 colonies in order to identify

specific binders through a screening Enzyme-Linked

ImmunoSorbent Assay (ELISA). All clones that gave an Signal-to-

Noise ratio > 11 were considered possible binders (Supplementary

Figure 1). This selection yielded 45 positive specific hits, termed

FBE5 antibodies. No signal was detected both against Bovine Serum

Albumin (BSA), used as a negative control, (Supplementary

Figure 1) and GST (data not shown). After BstNI digestion,
A

B

C

FIGURE 1

Domain organization and recombinant constructs of Coagulase and Efb. Domains and recombinant constructs of Coagulase (A) and Efb (B) derived
from full length protein of S. aureus Newman strain are shown. Residues, fibrinogen (Fg)- and prothrombin-binding regions are indicated, Signal
peptide (S) is necessary for extracellular release. Gluthation-S-Transferase (GST) tag is in red (not to scale), 6 His tag in grey. Images were prepared
with DOG2.0 (32). Panel (C) shows an alignment, generated with Geneious, of CoaR0 and R repeats of Coa with a sequence logo and identity to
highlight the most conserved amino acids. Amino acids in the single repeats are highlighted with Clustal colour scheme if they are present in more
than 50% of the sequences.
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sequencing and analysis with VBASE2 Fab tool (45), 11 unique

antibodies were converted in scFv-Fc, an IgG-like divalent format,

transiently produced in HEK293.6E cells and Protein A-purified

from the clarified supernatant (46). Pure monoclonal Antibodies

(mAbs) preparations were obtained, as indicated by SDS-PAGE

(Supplementary Figure 2).
2.2 Anti-CoaC antibody dose-dependent
binding to Coa and Efb

The binding of the 11 scFv-Fcs raised against CoaC was

further assessed with a titration ELISA, to determine the EC50.

All FBE5 antibodies bound specifically to CoaC recombinant

protein (Figure 2) with half-maximum binding in the range

between 1,35x10-8 M (FBE5-C8) and 5,13x10-10 M (FBE5-

F11) (Table 1).

Since Coa and Efb share Fg binding motives, we reasoned that

monoclonal antibodies raised against CoaC may crossreact to Efb,

specifically to the latter’s N-terminal fragment, where the two

functional Fg binding sequences (EfbA and EfbO) are located.

Furthermore, CoaC itself harbours a linker region and different

Fg binding repeats. Therefore, we wondered if the generated

antibodies were able to recognize distinct epitopes within different

regions of CoaC and also if any crossreactivity with Efb was

detectable. To this end, a single-point ELISA was performed

against different recombinant fragments of Coa (namely CoaF,

CoaR0, CoaR) (Figure 1A) and Efb (EfbN, EfbA and EfbO)

(Figure 1B). Strikingly, all mAbs bound CoaF and CoaR0 but not

CoaR, a construct containing CoaRI-homologous repeats, but not

CoaR0 (Figures 1C, 3). Similarly, all antibodies, except FBE5-C8

and FBE5-E5, bound the tested Efb recombinant constructs to

different extents (Figure 3).

To better investigate the binding of each antibody to the

different Efb and Coa recombinant proteins, each FBE5 mAb was

titrated on CoaF, CoaR0, EfbN, EfbO and EfbA (Supplementary

Figures 3, 4) and the respective apparent affinities were calculated

(Table 1). The best antibody was FBE5-F11, which displayed EC50

values in the sub-nanomolar range towards each Coa and Efb

construct. The antibodies that showed weak-to-absent binding to
Frontiers in Immunology 04
all Efb and Coa fragments except CoaF were FBE5-C1, FBE5-C8

and FBE5-E5.
2.3 Selection and characterization of
antibodies specific to CoaR

Given that during the previous round of selection none of the

characterized antibodies recognized CoaR, another panning was

performed specifically to raise antibodies that are able to bind the

Coa RI-RV repeats contained in the CoaR fragment (Figures 1A, C).

Isolation of antibodies with this specificity proved particularly

ardous in our setting. We screened 380 colonies and were able to

retrieve only 10 hits, which upon sequencing revealed to be only two

unique antibodies, termed LIG40-A11 and LIG40-D8. Similarly to

FBE5 antibodies, the two anti-CoaR mAbs were reformatted in the

scFv-Fc divalent format and recombinantly expressed. Dose

dependent binding of LIG40 mAbs against Coa and Efb

constructs was verified in titration ELISA (Figure 4). Both mAbs

showed specific high-apparent affinity binding to both CoaR and

CoaC proteins, as expected. In particular, LIG40-A11 was specific to

CoaR, whereas LIG40-D8 showed binding also to CoaF and to a low

level to CoaR0, suggesting a cross-reactivity to CoaR0 repeat. Of

note, none of the two antibodies bound to Efb fragments. EC50

values against the different Coa constructs for both antibodies are

reported in Table 2 and are almost all in the sub-nanomolar range.
2.4 Inhibition of Coa and Efb fibrinogen
binding by the selected mAbs

Since we showed that FBE5 and LIG40 mAbs bind functional

Fg-binding Coa fragments and FBE5 mAbs also bind Efb fragments,

we investigated if these mAbs can block the interaction between Fg

and their antigens. Binding of CoaF, CoaR0, EfbN, EfbA and EfbO

to purified human Fg, which was immobilized on an ELISA plate,

was assessed in the presence of increasing concentrations of FBE5

antibodies. CoaR was not tested since none of FBE5 mAbs did

recognize CoaR. FBE5-A12, FBE5-D10, FBE5-F9 and FBE5-F11

showed the best dose-dependent inhibition of Fg binding in good
FIGURE 2

FBE5 antibodies dose-dependently bind CoaC fragment. Titration ELISA to evaluate the binding of FBE5 scFv-Fcs to the antigen CoaC (200ng/well
immobilized protein). BSA binding curves were always below 0,1 and are not reported for clarity. Isotype control is an unrelated scFv-Fc with human
Fc moiety. Data ± SEM are representative of two independent experiments.
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accordance with binding data (Figure 5). Specifically, FBE5-F11

antibody was the most potent inhibitor of Fg binding to all Coa and

Efb recombinant proteins tested, reaching an almost complete

inhibition of CoaF binding to Fg at 5 mg/ml. Similarly, below 20%

of Coa R0 residual binding to Fg was detected at 5 mg/ml of FBE5-

F11. The same antibody inhibited EfbN, EfbA and EfbO binding to

Fg less efficiently, resulting in more than 60% inhibition only at the

highest concentration tested. FBE5-A12, FBE5-D10 and FBE5-F9

inhibited binding of Coa fragments to Fg more than binding of Efb.

In particular, FBE5-A12 showed an inhibition of CoaF comparable

to FBE5-F11, but was less effective against CoaR0. FBE5-D10 and

FBE5-F9 showed inhibition only at high concentration (50 mg/ml)

of both CoaF (more than 70% and almost 100%, respectively) and

CoaR0 (more than 70% for both mAbs). FBE5-A12, FBE5-D10 and

FBE5-F9 displayed a dose-dependent inhibition of only EfbA

construct, with no remarkable inhibition of EfbN and EfbO

proteins. It is however to be highlighted that EfbA harbours a less

potent Fg binding sequence (23).

The remaining 7 antibodies showed limited-to-no inhibition of

Coa fragments at high concentration and essentially displayed no

inhibition against Efb protein (Supplementary Figure 5). Similarly,

both LIG40 antibodies were tested for inhibition of Fg binding to
Frontiers in Immunology 05
CoaC, CoaF, CoaR0 and CoaR but did not show any inhibiting

activity (Supplementary Figure 6).
2.5 Binding of mAbs is affected differently
by CoaR0 and CoaRI peptides

In order to better understand if the generated monoclonal

antibodies engage at their epitope the 2 Fg binding motives of

Coa, peptides corresponding to CoaR0 and CoaRI repeats

(Figure 1C) of S. aureus strain Newman were synthetically

manufactured and used to challenge binding of both FBE5 and

LIG40 mAbs to their respective antigens. To this end, a competition

ELISA was performed to evaluate the binding of a fixed

concentration of antibody to immobilized Coa constructs in the

presence of increasing concentrations of either CoaR0 or CoaRI

peptide. The chosen fixed quantity of antibody allowed to detect

sufficient binding of antibodies, yet to be able to see any variation

upon addition of the peptides.

Peptide CoaR0 inhibited FBE5 antibodies binding to CoaC in a

dose-dependent manner (Figures 6A, B) whereas CoaRI had no

effect (Figures 6C, D). This result corroborates the binding data that
FIGURE 3

Antibodies generated against CoaC bind CoaR0 repeat, but not CoaRI-RV repeats, and cross react with EfbN. Single point ELISA to evaluate the
binding of FBE5 scFv-Fc to fragments of Coa and Efb (200ng/well immobilized protein, [scFv-Fc] = 0,5mg/ml). Represented is the average ± SEM.
TABLE 1 Apparent Kd for FBE 5 antibodies expressed in M derived from half-maximum binding determined in ELISA.

ANTIBODY Kd app (M) for
CoaC

Kd app (M) for
CoaF

Kd app (M) for
CoaR0

Kd app (M) for
EfbN

Kd app (M) for
EfbA

Kd app (M) for
EfbO

FBE5-A5 5,34 x 10-9 1,47 x 10-9 1,86 x 10-9 3,24 x 10-9 4,38 x 10-9 4,27 x 10-9

FBE5-A6 1,24 x 10-9 1,15 x 10-9 1,9 x 10-9 3,54 x 10-9 8,54 x 10-9 1,3 x 10-8(NSB)

FBE5-A12 5,55 x 10-10 6,47 x 10-10 2,44 x 10-9 8,66 x 10-9 7,28 x 10-8(NSB) 3,51 x 10-8(NSB)

FBE5-B9 1,74 x 10-9 1,12 x 10-9 2,19 x 10-9 3,45 x 10-9 2,59 x 10-8 8,27 x 10-9

FBE5-C1 1,13 x 10-9 4,59 x 10-9 2,43 x 10-8 (NSB) 2,44 x 10-8(NSB) 4,09 x 10-8(NSB) ND

FBE5-C8 1,35 x 10-8 7 x 10-9 1,93 x 10-7(NSB) 1,7 x 10-7(NSB) ND ND

FBE5-D9 7,79 x 10-10 5,36 x 10-10 1,14 x 10-9 1,31 x 10-9 4,48 x 10-9 2,68 x 10-9

FBE5-D10 1,4 x 10-9 9,5 x 10-10 8,56 x 10-10 1,97 x 10-9 1,57 x 10-9 3,65 x 10-9

FBE5-E5 6,27 x 10-9 9,5 x 10-9 8,64 x 10-7(NSB) ND ND ND

FBE5-F9 2,85 x 10-9 1,63 x 10-9 3,16 x 10-9 6,01 x 10-9 2,15 x 10-8 7,97 x 10-9

FBE5-F11 5,13 x 10-10 2,44 x 10-10 2,13 x 10-10 2,19 x 10-10 4,83 x 10-10 3,96 x 10-10
ND, not determinable; NSB, Non-Sigmoidal weak Binding.
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showed recognition of CoaF and CoaR0 fragments, but not of CoaR

(Figure 3, Supplementary Figures 3, 4). CoaF and CoaR0 do indeed

contain CoaR0 repeat, which is conversely absent in CoaR, where

repeats similar to CoaRI peptide are located. These data suggest that

all FBE5 antibodies bind epitopes within CoaR0.

The effect of CoaR0 and CoaRI peptides was investigated also

on LIG40 mAbs binding to both CoaC and CoaR. Surprisingly,

LIG40-A11 and LIG40-D8 behaved differently in the presence of

the two peptides (Figure 7). First and most importantly, LIG40-A11

was inhibited only by CoaRI peptide, when tested against both

CoaC and CoaR proteins (Figures 7A, C). In a symmetrical opposite

way, LIG40-D8 was only impaired in its binding activity by CoaR0

peptide (Figures 7B, D). Secondly, to achieve appreciable inhibition,

high concentration of peptides needed to be used for both

antibodies (above 10 µM). These results show that LIG40-D8

targets an epitope similar to CoaR0 peptide, yet present in CoaR,

which harbours only CoaRI-type repeats. On the other hand,

LIG40-A11 binds to an epitope specific of CoaR repeats.

Collectively, these data show that fully human, sequence-

defined, monoclonal antibodies against Coa C-terminal fragment

were able to engage and block Fg-binding motives both in Coa and

Efb. Furthermore, we showed that it is possible to discriminate

between CoaR0 and CoaRI repeats through monoclonal antibodies.
3 Discussion

S. aureus has for a long time been a critical global healthcare

threat owing to increase in spread and virulence of antibiotic-

resistant strains (47, 48). The discovery and introduction of

radically new antibiotic classes into the market has been lagging

for two decades (49). Therefore, new approaches to tackle S. aureus
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infections are of foremost interest. A first crucial aspect in S. aureus

pathogenesis is the attachment to host tissues. Among these

interactions, Fg seems to play a dominant role (8). Indeed, S.

aureus has evolved a vast arsenal of proteins to interact with this

soluble plasma protein: first, Microbial Surface Components

Recognizing Adhesive Matrix Molecules (MSCRAMMs) are cell

wall-bound proteins primarily involved in extracellular matrix

components binding to secure bacterial adhesion to host tissues

(2). A second class is collectively referred to as SERAMs proteins,

which are secreted and still interact with several extracellular matrix

molecules displaying also an immune evasion and dissemination

function (7). Among MSCRAMMs, ClfA and ClfB, FnbpA and

FnbpB and SdrE/Bbp bind different segments of Fg molecule. Fg-

binding activity is also prominent in SERAMs, where unordered

regions of Coa, vWbp, Efb, Eap and Emp present Fg binding as a

common feature. The comprehensive picture of these proteins

seems not yet fully disclosed, as the recent initial characterization

of vhp shows (50).

Also the role of Fg is at the crossroad between its well described

role in haemostasis and its importance in mediating immune

responses (14, 51). Much preclinical evidence also showed that

mutated versions of Fg cannot efficiently clear infections mediated

by S. aureus thus compromising immune response towards the

pathogen (19–21, 52). Furthermore, preclinical studies together

with vaccine candidates have shown that ClfA-mediated Fg

interaction is a viable alternative for possible therapeutic

strategies (53–55). Therefore, all these presented interactions

show how intricate the interplay between S. aureus and Fg is and

thus its extremely high potential as a therapeutic target for

alternative treatment strategies.

To this end, anti-Coa antibodies have been generated by

antibody phage display, using human naïve libraries (44),
TABLE 2 Apparent Kd for LIG40 antibodies expressed in M derived from half-maximum binding determined in ELISA.

ANTIBODY Kd app (M) for CoaC Kd app (M) for CoaF Kd app (M) for CoaR0 Kd app (M) for CoaR

LIG40-A11 1,33 x 10-10 ND ND 7,05 x 10-11

LIG40-D8 9,39 x 10-11 1,12 x 10-10 2,52 x 10-9(NSB) 8,62 x 10-11
ND, not determinable; NSB, Non-Sigmoidal weak Binding.
A B

FIGURE 4

Dose-dependent binding of anti-CoaR mAbs to Coa and Efb recombinant proteins. Titration ELISA to investigate binding of LIG40-A11 (A) and
LIG40-D8 (B) to CoaC, CoaR, CoaR0, CoaF, EfbN, EfbA, EfbO recombinant fragments and determine EC50. BSA and an unrelated human scFv-Fc
(both not represented for clarity) were used as negative and isotype controls, respectively, and showed no binding.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1221108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bertoglio et al. 10.3389/fimmu.2023.1221108
providing sequence-defined mAbs: 11 mAbs with unique sequences

recognized CoaF and CoaR0 fragments upon panning against CoaC

(FBE5 mAbs) and 2 mAbs were directed against CoaR (LIG40

mAbs). Of note, to obtain the latter antibodies, 4 times our usual

number of clones had to be screened, to obtain only 10 hits and in

the end 2 unique clones. In comparison, selection of FBE 5 mAbs

had a higher hit rate (45 positive hits/95 colonies screened). This
Frontiers in Immunology 07
may be a consequence of the unstructured organization of CoaR

(11, 30), even if selection was performed on ELISA plates which

should “immobilize” antigens in a fixed position.

Coagulase protein and expecially its gene have been extensively

harnessed over the years to classify S. aureus strains based on the

antigenicity of the protein or through restriction fragment length

polymorphism analysis, respectively (56, 57). The former
A B

DC

FIGURE 6

Binding of FBE 5 mAbs to Coa C is inhibited by CoaR0 peptide but not by CoaRI peptide. CoaC was immobilized on an ELISA plate and a fixed
quantity of each mAb was added (0.5mg/ml) with different dilutions of either CoaR0 (A, B) or CoaRI (C, D) peptide. Detection of mAb was performed
through anti-human HRP (HorseRadish Peroxidase)-conjugated secondary antibody. Data ± SEM are reported and are representative of two
independent experiments.
A B

DC

FIGURE 5

Anti-CoaC antibodies inhibit both Coa and Efb fibrinogen binding activity. Antibodies FBE5-A12 (A), FBE5-D10 (B), FBE5-F9 (C) and FBE5-F11
(D) were pre-incubated at the indicated amounts with Coa or Efb recombinant constructs (CoaF, CoaR0, EfbN and EfbO at final concentration of
10nM, EfbA at 750µM) and then transferred to a Fg-coated ELISA plate. The remaining Fg-bound antigens were detected through their tags (GST,
except for EfbN which harbours a 6xHis tag). Control wells with no antibody were set to 100% and the residual binding of Coa and Efb constructs
was determined by comparing control wells with the ones where indicated amounts of mAbs were added. Average ± SEM of two independent
experiments is represented.
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classification allowed the identification of twelve different serotypes

of Coa and the N- terminal D1D2 domains have been found to be

major contributor to this difference in antigenicity, despite

conserved prothrombin binding and activation (33). On the other

hand, the C-terminal repeats are highly conserved with an average

of 92% homology and are only polymorphic for the number of

tandem repeats present in each strain (58, 59). Since both FBE5 and

LIG40 antibodies target the repeated region of Coa (Figures 6, 7),

they are expected to target most if not all Coa proteins belonging to

different Coa serotypes.Since Coa shares sequence and functional

homology to Efb, cross-recognition of the generated antibodies was

investigated. All FBE5 antibodies showed binding to both Coa and

Efb fragments (Figure 3, Supplementary Figures 3, 4). In particular,

all FBE5 mAbs bound to different extents CoaF, CoaR0, EfbN, EfbA

and EfbO fragments, except FBE5-C8 and FBE5-E5 that showed

low-affinity binding to Coa and substantially no binding to Efb.

Among them, FBE5-F11 had the highest apparent affinity (Table 1)

and showed the greatest inhibitory effect on Fg binding to CoaF,

CoaR0, EfbN, EfbA and EfbO constructs (Figure 5). FBE5-A12,

FBE5-D10 and FBE5-F9 could also efficiently inhibit all Efb and

Coa fragments tested, although to a lower extent than FBE5-F11

(Figure 5). This activity correlated with their apparent affinities

determined in ELISA (Table 1). FBE5-A5, FBE5-A6, FBE5-B9,

FBE5-C1 and FBE5-D9, instead, showed inhibition of CoaF,

CoaR0 and EfbA (Supplementary Figure 5). Essentially, these

antibodies were able to inhibit CoaR0-mediated Fg binding, since

EfbA is unlikely to be the most functionally relevant Fg-binding

region in Efb, given its low affinity for Fg (1µM) (23). Finally, FBE5-

C1, FBE5-C8 and FBE5-E5 displayed only minor blocking activity
Frontiers in Immunology 08
on EfbA, matching the apparent affinity measurement of

these antibodies.

Concerning LIG40 antibodies raised against CoaR, they did not

show any cross-reaction to Efb. Surprisingly, both of them could not

inhibit Fg-binding of both CoaC and CoaR (Supplementary

Figure 6), despite their high affinity binding to functional Fg-

binding sequences CoaR0 and CoaRI (Figure 4, Table 2). When

binding of LIG40-A11 and LIG40-D8 to CoaC and CoaR was

challenged with synthetic CoaR0 and CoaRI peptides (Figure 7),

high concentrations of peptides were necessary for competition.

This could indicate, on one side, that the epitope is not properly

represented in the peptide. On the other hand, it is very plausible

that given the repetitive nature of CoaR, multiple binding sites for

these antibodies are available within the same construct, thus higher

concentrations of peptide are needed in order to exert a competitive

effect. It is also highly unlikely that a single mAb’s paratope could

span the entire linear 27 amino acid-long Fg binding repeat. These

considerations hint that the inability of these antibodies to block Fg

binding might be due to the repetitive nature of CoaR.

Furthermore, CoaR0 peptide could inhibit all FBE5 and,

surprisingly, LIG40-D8 mAbs binding to CoaC, instead had no

effect on LIG40-A11 binding to both CoaR and CoaC. Conversely,

CoaRI peptide did inhibit LIG40-A11 binding, leaving unaffected

the binding of all FBE5 and LIG40-D8 mAbs. The latter antibody

showed indeed binding, albeit weaker, to CoaF and CoaR0

constructs (Figure 4, Table 2), even though its selection was

performed on CoaR, which does not contain CoaR0 repeat. These

results together suggest that these antibodies are targeting different

epitopes in CoaR and that Fg binding repeats may assume similar
A B

DC

FIGURE 7

Anti-CoaR antibodies are inhibited differently by CoaR0 and CoaRI peptides. CoaC and CoaR were immobilized on an ELISA plate. 0.5mg/ml of LIG40-
A11 (A, C) or LIG40-D8 (B, D) were incubated with different dilutions of either CoaR0 (A, B) or CoaRI (C, D) peptides. Detection of mAb was performed
through anti-human HRP-conjugated secondary antibody. Data ± SEM are reported and are representative of two independent experiments.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1221108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bertoglio et al. 10.3389/fimmu.2023.1221108
conformations, however representing two functionally distinct

epitopes in Coa. It could be speculated that LIG40-D8 is targeting

conserved residues present both in CoaR0 and CoaRs repeats. Their

role needs further clarification since it is clear that the binding site

of CoaR0 and CoaRI in the Fg molecule is similar or overlapping.

Both peptides are indeed able to inhibit Coa binding to Fg (9).

Recent evidence has validated these previous results, highlighting

the role of the CoaR0 repeat in Fg binding, further confirming that

both CoaR0 and CoaRI are indeed the functional Fg binding

repeats. It was also shown that increasing the number of Fg

binding repeats does not lead to a cooperative effect and the

stoichiometry remains 1:1 (number of repeats: Fg D molecules)

(60). This is in further support of the possibility that more than one

antibody molecule is necessary to efficiently inhibit Fg binding by

all CoaRI-similar repeats, thereby giving a possible explanation why

no efficient inhibition could be seen by antibodies directed to CoaR.

Other antibodies that bind either Coa or Efb have been

reported. Thomer and colleagues (24) generated 13 mouse

monoclonal antibodies by hybridoma technology targeting Coa

and investigated two of them (5D5 and 3B3) in vivo in a mouse

model of S. aureus bacteraemia. 5D5 mAb was assessed to bind the

D1 domain of Coa and 3B3 bound the domain containing R repeats.

No analysis of their crossreaction with Efb was provided. The only

information available about crossreactivity is that no binding to

vWbp and IsdA was detected. MAb 3B3 proved its clear efficacy in

the bacteraemia mouse model, further highlighting clinical

relevance of the repeated region of Coa (24). A detailed

biochemical analysis of these antibodies would provide

orthogonal confirmation to our results, also in respect to the

hypothesis of two classes of motives by CoaR0 and CoaRI repeats.

It is also a possibility that the efficacy of mAb 3B3 could be due to

the parallel targeting of Coa and Efb. A clear obstacle for 5D5 and

3B3 clinical translation is their fully murine origin.

Shannon and colleagues found that antibodies against Efb from

patient sera could be neutralizing in vitro and also crossreacting to

Coa (61). A further peculiar class of antibodies against Efb, named

catalytic antibodies, were isolated (62). This discovery led to the

hypothesis that Efb could also act as a B cell superantigen. Another

group instead focused on the selection and characterization of

recombinant divalent (Fab)2 mAbs from a synthetic phage

display library against Efb C-terminal domain (63). The latter

work showed both the presence of antibodies specific to Efb C-

terminal in patient sera and also that blocking Efb interaction with

C3b with the selected divalent mAbs improved mice survival in an

infection model.

This present work and research from other groups show how

pivotal may be blocking the multiple activities of proteins engaging

Fg, further strengthening a possible therapeutic strategy involving

Coa and Efb (64). To the best of our knowledge, this is the only

report that investigates these two proteins as potential targets for

generation of monoclonal antibodies. None has provided

sequenced-defined human mAbs to the Fg-binding domain of Efb

and Coa. The use of combination(s) of antibodies directed against

either N- or C-terminal of both these proteins most presumably will

result in additive effect in inhibiting S. aureus pathology. Selection

of such antibodies is already underway.
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4 Material and methods

4.1 Recombinant proteins and Fg

CoaC, CoaR, CoaF, CoaR0, EfbA and EfbO harbour an N-

terminal GST tag, whereas EfbN has been expressed with a 6 His N-

terminal tag and the respective expression and purification

protocols were previously reported (9, 23). Human Fg was

purchased from Enzyme Research and further purified by size

exclusion chromatography to eliminate contaminating fibronectin.
4.2 Selection of scFv antibody
fragments (panning)

The selection was performed in ELISA plates (Costar), as described

earlier (65). In short, 1µg/well of CoaC or CoaR for each of the three

panning rounds was immobilized. The immobilisation conditions in

this whole work were at 4°C overnight in 50 mM sodium carbonate,

pH 9.6. After blocking with 2%(w/v) Milk powder (M) dissolved in

PBS 1x + 0.05% Tween20 (PBST), 5 x 1010 phage particles from each of

both HAL9 and HAL10 hyperphage-packaged naïve antibody gene

libraries were used (44, 66). After incubation in the antigen-coated well,

stringent washing with PBST was performed by an ELISA washer

(Tecan). Phages were eluted with trypsin (10µg/ml in PBS).

E. coli TG1 (Lucigen) in 2xYT medium (yeast extract 1% w/v,

tryptone 1.6% w/v, NaCl 0.5% w/v) at OD600 of 0.5 were infected

with eluted phages for 30 min at 37°C and subsequent 30 minutes at

37°C, 500rpm. Cultures were pelleted, resuspended in 2xYT-AG

(2xYT with 100mg/ml ampicillin and 100mM glucose) and, upon

OD600 of 0.4-0.6, infected with M13K07 helper phage (67). Phage

particles were produced at 30°C and 500 rpm overnight in 2xYT

with 100mg/ml ampicillin and 70µg/ml kanamycin. After

centrifugation, the phage-containing supernatant was used for the

next panning round. After the third panning round, instead, E. coli

XL1Blue MRF’ (Stratagene) at OD600 of 0.5 in 2xYT with 20 µg/ml

tetracycline was infected with eluted phages, plated on 2xYT-AG

agar and cultivated overnight at 37°C.
4.3 Production of soluble scFv
in microtiter plates

95 or more colonies per each panning were picked and the

corresponding 96-well masterplate inoculated in 2xYT-AG and

grown overnight at 37°C and 250 rpm. A subculture in 2xYT-AG

was incubated at 37°C, 250 rpm for 90 minutes. Cells were pelleted

and resuspended in 2xYT with 100µg/ml ampicillin and 50 mM
IPTG and cultured overnight at 30°C, 250 rpm.
4.4 Screening ELISA for monoclonal
binder identification

High-binding ELISA plates were coated with 2 µg/ml solution of

CoaC or CoaR. As negative controls, BSA and GST were tested. The
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coated plates were blocked with 2%MPBST and washed with MilliQ

+ 0.05% Tween 20 in an ELISA washer (BioTek). Crude supernatant

containing scFv diluted 1:1 with 2%MPBST was transferred to the

corresponding well of both the antigen-coated and the control

plates. As primary antibody, a-c Myc tag (9E10, in–house

production) was diluted 1:1000. The primary antibody was

detected with a-mouse IgG HRP (HorseRadish Peroxidase)-

conjugated antibody (A0168, Sigma), diluted 1:50000 in 2%

MPBST. Development was performed through the substrate

Tetramethylbenzidine (TMB). The reaction was stopped adding

0.5M H2SO4. The plates were read in an ELISA reader (Tecan) at

450 nm and as a reference wavelength 620 nm. The represented data

(A450-A620) are the subtraction of the Absorbance (A) at 450 nm

(A450) minus those at 620 nm (A620).
4.5 Colony PCR and BstNI digestion of the
PCR product

The scFv gene of positive hits was amplified with primers

MHLacZ-Pro_f (5 ’-GGCTCGTATGTTGTGTGG-3 ’) and

MHgIII_r (5’- CTAAAGTTTTGTCGTCTTTCC-3’). The PCR

products were analyzed through capillary gel electrophoresis with

the QIAxel instrument (Qiagen). The cPCR-amplified scFv gene was

then digested with BstNI endonuclease to obtain and compare the

band patterning of each scFv amplified gene. Digestion products were

analyzed with the QIAxel (Qiagen). Unique binders were then

confirmed by Sanger sequencing and VBASE database analysis (45).
4.6 Cloning of scFv gene into
vector pCSE2.6-hIgG1-Fc-XP
for scFv-Fc expression

The scFv gene was digested from pHAL30 phagemid with NcoI-

HF™ and NotI-HF™ (New England BioLabs), separated by

agarose gel electrophoresis and DNA was recovered with

QIAquick Gel Extraction Kit (Qiagen), according to supplier

instructions. The scFv gene was then ligated into pCSE2.6-hIgG1-

Fc-XP vector (46) using T4 Ligase (Promega) and transformed into

E. coli XL1Blue MRF’, according to standard procedures (68).

Correct insertion was confirmed by Sanger DNA sequencing,

using softwares FinchTV (Geospiza, Inc.) and Multalin (69).
4.7 Mammalian cell transfection,
transient expression and purification
of scFv-Fc fusions

ScFv-Fcs were produced as described (46) withminormodifications.

In particular, purification was performed with a vacuum manifold

(Macherey-Nagel) and a 24 deepwell filter plate loaded with MabSelect

SuRe™ (rProtein A, GE Healthcare Life Sciences), according to

manufacturer instructions. Buffer exchange to PBS was performed

with Zeba™ Spin Desalting columns (Thermo Scientific). Protein

purity was checked by SDS-PAGE, using standard protocols (68).
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4.8 ELISA assays

High-binding ELISA plates were coated with 200 ng/well of

indicated recombinant proteins (CoaF, CoaR0, CoaR, EfbN, EfbA

and EfbO or BSA for negative controls). After blocking with 2%BSA

in PBST and washing with PBST, scFv-Fc in 2%BSA-PBST were

incubated on the immobilized proteins. ScFv-Fc were revealed

thanks to a polyclonal a-human IgG HRP-conjugated Ab (P0214,

Dako), diluted 1:10000. Final development was performed through

SigmaFAST-OPD tablets (P9187, Sigma), following producer

instructions. Absorbance was recorded in a microplate reader

(Clariostar®, BMG-Labtech). Apparent Kd values were obtained

through analysis of half maximum binding using GraphPad Prism 6

software (non-linear regression fit).

For inhibition ELISA, 0,25µg/well of Fg were immobilized.

Indicated amounts of scFv-Fcs were pre-incubated in a separate

plate with a constant concentration of Coa or Efb fragments.

Specifically, CoaF, CoaR0, EfbN and EfbO were at a fixed final

concentration of 10nM, whereas EfbA was at 750µM. The pre-

incubated mixture of Coa/Efb and anti-Coa scFv-Fc was

transferred onto the BSA-blocked Fg-coated plate. After incubation

and washing, residual bound Coa and Efb were detected with anti-tag

HRP-conjugated antibodies diluted 1:10000 in 2%BSA-PBST: a-HIS-

tag antibody (A7058, Sigma) for EfbN; a-GST-tag antibody (600-

103-200, Rockland) for all other constructs. Development and

acquisition were performed as indicated above. Binding of Coa and

Efb fragments to Fg (no mAb control) was set to 100% and residual

binding to Fg of Coa and Efb fragments in the presence of different

concentrations of antibodies was calculated and represented.

For competition ELISAs with CoaR0 and CoaRI peptides,

indicated constructs (200 ng/well) were immobilized. Fixed

concentration of mAbs (0,5 µg/ml) was added to the wells with

indicated amounts of CoaR0 and CoaRI peptides. Detection of

residual mAbs bound was performed as mentioned above.
4.9 Peptides

CoaR0 and CoaRI peptides were purchased from Shanghai

Hanhong Scientific Co., Ltd. All the peptides were purified using

high-performance liquid chromatography and were >95% pure.
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