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Modifiable risk factors linked
to the development of
rheumatoid arthritis: evidence,
immunological mechanisms
and prevention

Jeba Atkia Maisha, Hani S. El-Gabalawy and Liam J. O’Neil*

Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of
Manitoba, Winnipeg, MB, Canada
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the

synovial joints leading to arthritis. Although the etiology of RA remains largely

unknown, it is clear that numerousmodifiable risk factors confer increased risk to

developing RA. Of these risk factors, cigarette smoking, nutrition, obesity,

occupational exposures and periodontal disease all incrementally increase RA

risk. However, the precise immunological mechanisms by which these risk

factors lead to RA are not well understood. Basic and translational studies have

provided key insights into the relationship between inflammation, antibody

production and the influence in other key cellular events such as T cell

polarization in RA risk. Improving our general understanding of the

mechanisms which lead to RA will help identify targets for prevention trials,

which are underway in at-risk populations. Herein, we review the modifiable risk

factors that are linked to RA development and describe immune mechanisms

that may be involved. We highlight the few studies that have sought to

understand if modification of these risk factors reduces RA risk. Finally, we

speculate that modification of risk factors may be an appealing avenue for

prevention for some at-risk individuals, specifically those who prefer lifestyle

interventions due to safety and economic reasons.
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Introduction

Rheumatoid Arthritis (RA) is a common autoimmune disease that primarily targets the

synovial joints. At the onset of RA, patients present to clinical care with painful and swollen

joints, with symptoms typically in the hands and feet (1). Untreated RA leads to the

development of bone erosions, joint damage and functional disability. Furthermore, RA

leads to considerable systemic inflammation which is associated with premature
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cardiovascular disease and early mortality. Fortunately, modern

advances in therapeutics, specifically the development of biologic

medications, has improved outcomes for many patients with RA. In

spite of this, RA is considered a life-long disease without a cure, and

although medications are effective, they are costly and have the

potential to cause side effects. Further, many patients do not

respond to RA therapy, leaving them with chronic pain and poor

quality of life (2). Although our understanding of the pathogenesis

of RA has improved dramatically over the last number of years, the

precise etiology of RA remains elusive.
RA risk factors and progression from a
pre-clinical state

It is well understood that the progression into RA occurs in

multiple stages, typically over many years. The key genetic risk

factor, the shared epitope (SE), is an HLA-DRB1 genetic risk locus

(3, 4) that is strongly associated with the development of RA,

specifically anti-citrullinated protein antibody (ACPA) positive RA.

Studies suggest that the SE binds to citrullinated peptides more

efficiently than non-SE HLA-DRB1 variants (5). Other genetic risk

single nucleotide polymorphisms (SNPs) have been described, such

as PTPN22 and PADI4, pointing towards the involvement of

adaptive immune cell signalling (6) and pathogenic citrullination

(7) as key steps towards RA development. By in large, the risk

imparted by the SE explains the majority (~ 60%) of the genetic risk

for RA. RA is also a sex-biased disease, with females being affected

more than males at a ratio of 3:1 (8). Being a first-degree relative

(FDR) of an RA patient also increases the risk of RA, likely due to

both shared genetics and common environmental exposures

amongst family members (9, 10).

Ultimately, the combination of these risk factors leads to the

development of autoimmunity, marked by autoantibodies which are

typically directed towards modified proteins, with citrulline being the

best-characterized (3, 9–12). Antigenic targets also include other

post-translational modifications such as homocitrulline, the by-

product of a process called carbamylation (13), acetylated proteins

(14) and malondialdehyde (MDA)/MDA-acetaldehyde (MAA)

adducts (15). Rheumatoid Factor (RF), antibodies directed against

the Fc portion of IgG, may also be detected at this time. Over time,

often years, the immune response matures, with increasing levels of

detectable ACPA and accumulation of antibody reactivity to a

broader set of proteins (epitope spreading). ACPA has also been

shown to undergo variable domain (Fab) N-linked glycosylation,

which is closely linked to somatic hypermutation, a process by which

the specificity of immunoglobulin is enhanced by T-cell driven

maturation of B-cells. Importantly, the glycosylation of ACPA

occurs prior to the development of RA, and is seemingly a strong

predictor for imminent onset of arthritis (16, 17). Once the ACPA

response matures, RA is considered imminent (3), however it is not

known what event(s) ultimately triggers the development of

inflammatory arthritis from a state of autoimmunity (18).

Aside from non-modifiable risk factors for RA development,

much attention has shifted towards modifiable risk factors,

specifically lifestyle changes that may reduce the risk of incident RA.
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This is of specific importance to ACPA+ at-risk individuals where the

risk of developing RA may be as high as 45% (10). Herein, we review

the modifiable risk factors that are associated with the development of

RA and postulate the immunological mechanisms by which this risk is

imparted. The focus of the review is on risk factors that are potentially

associated with RA risk, namely inhaled exposures, diet and the

microbiome. Finally, we review evidence linking modification of

these factors with a reduction in RA risk, setting the stage for future

RA prevention trials in high-risk populations.
Inhaled exposures

Cigarette smoking

Cigarette smoking, a widely prevalent habit across the world,

has been extensively studied for its impact on human health,

specifically respiratory and cardiovascular diseases (19). Of all

modifiable risk factors, cigarette smoking is the strongest and best

studied contributor of RA risk (20, 21). Multiple case-control

studies (22–24) and retrospective cohort studies (25–27) have

linked cigarette smoking, both duration and intensity (28)

(typically measured by pack-years) with enhanced RA risk

(Table 1). For example, a meta-analysis of 10 studies showed that

in heavy smokers, the risk of developing RA was 2-fold higher

compared to never smokers, with evidence of a dose-response based

on pack-year exposure. The risk with smoking appears to be much

stronger for the development of seropositive RA, rather than

seronegative (26, 29), including both RF and ACPA positive RA

(30, 36–38). Interestingly, there is an important gene-environment

interaction between smoking and the shared epitope risk alleles (21,

30, 39). For example, in the EIRA cohort in Sweden, the odds ratio

(OR) of developing seropositive RA in smokers with the SE was

substantially higher (SE and Smoking OR 10.0) than the odds for

individuals with only 1 (SE alone OR 4.8, Smoking alone OR 1.9) of

the 2 risk factors (36). Smoking may also interact with other RA risk

allele’s including PADI4, which also displays a sex bias toward

enhancing RA risk in men (33). Importantly, smoking enhances the

risk of developing RA in seropositive at-risk prospective cohorts

(34, 35), although this association is somewhat controversial as it

has not been replicated in other prospective cohorts (3, 9, 40),

possibly due to limited sample size. Interestingly, passive smoking

through parental exposure has been shown to be independently

associated with RA risk (41), perhaps suggesting that RA risk may

never normalize even with complete cessation. Smoking cessation

in established RA is associated with reduced disease activity and

cardiovascular disease risk (42), further strengthening the

association between smoking and RA pathogenesis.
Cigarette smoke influences RA
autoantibody development

The mechanisms by which smoking influences RA development

remain unclear. Smoking is strongly associated with the

development of RA-specific autoantibodies in unaffected
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individuals, suggesting a role in breaching immune tolerance.

Interestingly, the association between smoking and seropositivity

suggests that there may be an influence on the development of both

RF and ACPA (43). With respects to RF development, mice exposed

to chronic cigarette smoke preferentially develop RF, rather than

ACPA. Furthermore, humans with cigarette smoke related lung

disease develop RF, as opposed to ACPA (44). In patients with RA,

smoking is associated with RF seropositivity, specifically IgA and

IgM isotypes (45). In the EIRA cohort, the strength of association

between smoking and RA was highest for ACPA+/RF+ (OR 2.0),

followed by ACPA-/RF+ (OR 1.6). A positive but nonsignificant

association with RF-/ACPA+ RA was observed (OR 1.2), again

pointing towards the importance of understanding the relationship

between RF, ACPA and smoke exposure (36).

In asymptomatic FDR (First-Degree Relatives) of RA patients

and non-RA individuals with joint pain, the association between

smoking and ACPA is actually stronger than the association

between HLA-SE and ACPA (46). Interestingly, in individuals

who are seropositive with joint pain, the effect of smoking on

inflammatory arthritis onset is less clear, with HLA-SE potentially

playing a more dominant role at this stage (46). Smoking may

influence the development of autoantibodies at the mucosal surface

(47) through the enhanced production of Peptidyl Arginine
Frontiers in Immunology 03
Deiminase (PAD) (48), the human enzyme responsible for

citrullinating proteins, including known RA autoantigens such as

vimentin (49). Enhanced citrullination in the lungs (21, 48) may

lead to aberrant autoantibody responses and the development of

pulmonary ACPA+ B cell (50). Spontaneous NET formation, a

potential source of PAD, is detectable in lungs of individuals at-risk

to develop RA which is also associated with sputum IgA ACPA (51)

(mucosal ACPA). NETs themselves are decorated with citrullinated

proteins (52) and may be responsible for autoreactivity to

citrullinated histones in RA patients (53). Some mouse models of

RA have corroborated the effects of cigarette smoke exposure on

inflammatory arthritis (54) and ACPA development (55). It should

be noted however cigarette smoke has been shown to reduce CIA

arthritis in some studies (56), a finding that is likely due to the

timing of smoke exposure (57).
The effects of cigarette smoking on innate
and adaptive immunity

Cigarette smoking is a proinflammatory process, with multiple

effects on key immune cells both systemically and at the mucosal

surface. Cigarette smoke contains thousands of chemicals including
TABLE 1 Selected studies showing an association between cigarette smoking and Rheumatoid Arthritis (RA) risk.

Exposure
First

Author Study type Cohort Outcome Risk of exposure
# RA
cases Reference

Cigarette
Smoking Di Giuseppe

Meta-analysis (3
prospective cohorts,

7 case-control) Multiple RF +/- RA
Ever smoking: RF+ RA RR 2.47, RF-
RA RR 1.58 4552 (28)

Cigarette
Smoking Hedstrom Case-Control Sweden (EIRA)

ACPA +/-
RA

Ever smoking: ACPA+ RA OR 1.9,
ACPA- RA OR 1.3 3655 (29)

Cigarette
Smoking Too Case-Control Malaysia (MyEIRA)

ACPA +/-
RA Ever smoking: ACPA+ RA OR 4.1 1076 (30)

Cigarette
Smoking Bang Case-Control Korea RA Ever smoking: RA OR 2.7 1482 (31)

Cigarette
Smoking Pederson Case-Control Denmark

ACPA +/-
RA

Ever smoking: ACPA+ RA OR 1.22
to 57.4; stratified by pack-year
exposure AND SE+/- 515 (32)

Cigarette
Smoking Kochi Case-Control Japan RA Ever smoking: RA OR 1.15 to 1.35 2015 (33)

Cigarette
Smoking Karlson Retrospective Cohort

USA (Women’s Health
Cohort) RA

Ever smoking: RA RR 1.10 to 1.32;
stratified by pack-year 7697 (25)

Cigarette
Smoking Costenbader Retrospective Cohort

USA (Nurses Health
Study) RA Ever smoking: RA RR 1.47 680 (26)

Cigarette
Smoking Di Giuseppe Retrospective Cohort

Sweden (Swedish
Mammography

Cohort) RA Ever smoking: RA RR 2.31 219 (27)

Cigarette
Smoking de Hair Prospective Cohort

Netherlands (IgM RF
or ACPA + at-risk) RA Ever smoking: Sero+ RA HR 9.6 15 (34)

Cigarette
Smoking Ponchel Prospective Cohort

United Kingdom
(Leeds; RF or ACPA+

with joint pain) RA Ever smoking: Sero+ RA OR 3.1 125 (35)
ACPA, anti-citrullinated protein antibodies; RF, Rheumatoid Factor; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; RR, Relative Risk; OR, Odds Ratio; HR, Hazards Ratio. All
RR/OR/HR are statistically significant unless otherwise stated.
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immunomodulators such as nicotine, carbon monoxide, acrolein

and oxygen free radicals (58). At the mucosal surfaces, cigarette

smoke actives local epithelial cells to produce pro-inflammatory

cytokines (59), which enhances immune cell recruitment to illicit an

inflammatory response. Here, cigarette smoke may act through

pulmonary dendritic cells to enhance T-cell polarization towards

Th1 and Th17 CD4 T-cells (60) (Figure 1). Furthermore, there is a

reduction in regulatory T-cells in the lungs of smokers, although

this is not observed systemically (61). In-vitro cigarette smoke

extract leads to enhanced production of chemokines by

monocytes which influences the recruitment of neutrophils (62).

This effect is also observed in pulmonary macrophages (alveolar

macrophages (63)). Neutrophil chemotaxis is impaired by cigarette

smoke extract (64, 65), while their propensity to form NETs appears

to be enhanced both in-vitro and at the pulmonary surfaces (66).

Systemically, cigarette smoking skews the immune system towards a

proinflammatory response. Multiple studies have suggested that

smoking influences helper T – cell polarization, and in smokers

systemic skewing towards Th1 and Th17 CD4 T-cells has been

described (67). Interestingly, studies on the immunomodulatory
Frontiers in Immunology 04
proper t i e s o f n icot ine have poin ted to a pr imar i ly

immunosuppressive effect, predominantly through nicotinic

acetylcholine receptors (68). Specifically, nicotine induces T-cell

anergy in mice (69) and attenuates collagen induced arthritis (70).

Nonetheless, at least one study has pointed to a role for nicotine in

worsening murine arthritis, primarily through the formation of

NETs (71).
Inhaled occupational exposures

While cigarette smoke remains the most extensively studied

pulmonary exposure associated with RA development, there is also

evidence linking RA to other inhaled exposures, particularly those

encountered in occupational settings. Case-control studies have

shown that silica exposure increases the odds of developing both

seronegative and seropositive RA (72–74) (Table 2). Furthermore,

other inhalants such as pesticides, solvents and other farming

related exposures also appear to increase RA risk (88). Air

pollution has also been linked to a variety of autoimmune
FIGURE 1

Modifiable risk factors for RA and their impact on autoimmunity and inflammation. Mechanistically, the influence of external risk factors converges
on a number of immune cell dysfunction, including the stimulation of the innate and adaptive immune systems. Cigarette smoke has been shown to
influence the development of autoantibodies such as anti-citrullinated protein antibodies (ACPA) and Rheumatoid Factor (RF), particularly in the
lungs, where it also leads to enhanced citrullination possibly through the activation of neutrophils to form neutrophil extracellular traps (NETosis).
Occupational exposures, such as silica dust and textile dust, drives NLRP3 inflammasome activation leading to the release of IL1b, and other
cytokines such as TNF-a and IFN-g. Similar to cigarette smoking, silica may also influence NET formation and the release of citrullinated proteins.
Dietary factors such as low vitamin D and Omega-3 fatty acid intake leads to the release of pro-inflammatory cytokines, and eicosanoids such as
Leukotriene B4 (LTB4). Obesity has overlapping effects on inflammatory cytokine release with other dietary factors but is also associated with the
release of key adipokines such as Adiponectin, which may influence the development of erosive arthritis in RA. Periodontitis shares features with
cigarette smoke and occupational exposures, mediating similar processes but in the oral mucosa rather than the lung. Interestingly many exposures
strongly influence T-cell polarization, favoring an increase in Th1 and Th17 helper T-cells, which play a crucial role in RA pathogenesis. Created with
BioRender.com.
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diseases, including RA (78). Textile dust exposure is also linked to

RA development, and alike cigarette smoking, displays an

important gene-environment interaction with the SE (76).

Interestingly, there may be cumulative or synergistic effects of

inhalants, with the number of different exposures increasing RA

risk in a stepwise fashion. Furthermore, the addition of cigarette

smoking and genetic risk to occupational exposures increases the

risk of developing seropositive RA dramatically (86, 89). Of the best

studied immunopathologic mechanisms, silica dust is not only

associated with RA, but there is also clear synergism between

silica and cigarette smoke exposure in RA risk (74). Silica is

found in nature as quartz, and exposure most often occurs in

occupational activities such as mining, drilling and sand blasting.

Pathologic exposure to silica occurs primarily though inhalation,

where it induces pulmonary fibrosis as a result of inflammation

(90–92). Inhaled silica is engulfed by alveolar macrophages, which
Frontiers in Immunology 05
leads to the production of reactive oxygen species (ROS) (93).

Engulfment also leads to rupture of cytosolic lysosomes, which in

turn activates the inflammasome and the secretion of IL-1b (94).

TNF-a and IFN-g have been shown to play essential roles in the

both the acute and chronic inflammatory responses observed in

pulmonary silicosis (95). An exaggerated Th17 response (Figure 1),

driven primarily by IL-17A production is partially responsible for

acute, but not chronic inflammation mediated by silica (96).

Pulmonary silica also leads to the recruitment of neutrophils, and

the crystals themselves can induce the production of NETs (97).

However, silica does not appear to aggravate murine arthritis, and is

not associated with an increased production of PAD enzymes in this

murine model (98). Regardless, the combination of cellular death,

inflammation and activation of lymphocytes may contribute

mechanistically to loss of immune tolerance, particularly in

genetically susceptible individuals.
TABLE 2 Selected studies showing an association between occupational exposures and Rheumatoid Arthritis (RA) risk.

Exposure
First
Author

Study
type Cohort Outcome Risk of exposure

# RA
cases Reference

Silica Wrangel Case-Control Sweden Sero +/- RA Ever exposed: Sero + RA OR 1.22, Sero - RA 1.23 31139 (72)

Silica Vihlborg
Retrospective

Cohort Sweden Sero+ RA Ever exposed: Sero+ RA OR 2.59 18 (73)

Silica Ilar Case-Control
Sweden
(EIRA) Sero+/- RA Ever exposed: Sero+ RA OR 1.2, Sero - RA OR 1.2 11285 (75)

Textile Dust Too Case-Control
Malaysia
(MyEIRA) ACPA+/- RA Ever exposed: ACPA+ RA OR 2.5, ACPA- RA OR 3.5 910 (76)

Air Pollution Shin Case-Control Korea RA
O3: RA OR 1.35 to 1.45 (stratified based on quartile
exposure) 444 (77)

Air Pollution Adami
Retrospective

Cohort
Italy

(DeFRA) RA PM10 (high): RA OR 1.4, PM2.5 (high): RA OR 1.6 3817 (78)

Air Pollution Ho
Retrospective

Cohort Taiwan RA PM2.5 (high): RA OR 1.053 9338 (79)

Air Pollution Zhang
Retrospective

Cohort UK RA Combined exposure: RA HR 1.14 2034 (80)

Air Pollution Shepard
Retrospective

Cohort UK RA Any exposure: RA OR 1.15 130 (81)

Coal Mining Schmajuk
Retrospective

Cohort USA RA Any exposure: RA OR 3.5 328 (82)

Coal Mining Schmajuk
Retrospective

Cohort USA RA Any exposure: RA OR 3.6 112 (83)

Rock Mining Blanc
Retrospective

Cohort USA RA Any exposure: RA OR 4.1 89 (84)

Occupational
Exposures
(multiple) Ilar Case-Control

Sweden
(EIRA)

ACPA +/-
RA

Brick/Concrete: ACPA+ RA OR 2.9, Material handling
ACPA+ RA OR 2.4, Electrical ACPA+ RA OR 2.1, Brick/
Concrete ACPA- RA OR 2.4, electrical: ACPA- RA OR 2.6 3522 (85)

Occupational
Exposures
(multiple) Tang Case-Control

Sweden
(EIRA)

ACPA +/-
RA Any exposure: ACPA+ RA OR 1.25 4033 (86)

Occupational
Exposures
(multiple) Noonan Case-Control USA RA

Multiple exposures: RA OR 1.77 to 3.98 (stratified by
number of exposures) 129 (87)
Sero+/-, seropositive or seronegative; ACPA, anti-citrullinated protein antibodies; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; RR, Relative Risk; OR, Odds Ratio; HR, Hazards
Ratio. All RR/OR/HR are statistically significant unless otherwise stated.
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Dietary Exposures

Dietary patterns

Over the past few decades, the drastic transformation in dietary

habits, particularly the rise of the Western diet, has emerged as a

major factor influencing human health and contributing to the

escalating burden of chronic diseases worldwide. Diet is considered

an important lifestyle risk factor for the development of RA (99).

Although an accurate assessment of dietary patterns remains a

challenge due to potential confounders and recall bias (100–102),

several key studies suggest that dietary factors are implicit in the risk

of developing RA (Table 3). Studies of diet and RA risk can be split

into those analyzing global diet effects (ie. low inflammatory diet,

Mediterranean diet, etc.) or the impact specific food groups/

nutrients. Unhealthy diets have been linked to multiple

autoimmune diseases (112) including RA, multiple sclerosis and

inflammatory bowel disease. In RA, unhealthy eating patterns,

measured using the Alternative Healthy Eating Index was

associated with incident RA cases in the Nurses’ health study

(113) even after adjusting for body mass index (BMI). The effects

of the Mediterranean diet, a diet that aims to enrich in mono-

unsaturated fatty acids, vegetables, fruits and whole grains, is

associated with several important cardiovascular benefits (114),

has displayed mixed results in protecting against RA

development. For example, a large prospective cohort study
Frontiers in Immunology 06
suggested that adherence to the Mediterranean diet is protective

of incident RA in ever smokers (104) after adjusting for BMI.

Interestingly, no protective effects were found in non-smokers. In

the EIRA cohort, adherence to the Mediterranean diet was also

protective for RA, after adjusting for BMI and physical activity

(103). Conversely, there are several studies of similar design that

have shown no association between the Mediterranean diet and RA

risk (103, 115). However, in established RA, randomized controlled

trials (RCTs) of Mediterranean diet have shown a reduction in joint

disease activity and improvement of function compared to controls

diets (116, 117). Diets that are thought to promote inflammation

such as a low fibre diet (118), high carbohydrate diet (115), high

meat intake (119) have not confirmed any clear association

with RA.
Fish and omega-3 fatty acids

While dietary patterns in general have been associated with the

development of RA, the role of fish intake, with specific focus on

polyunsaturated fats has been a primary focus in RA risk. Fatty fish

is rich in long chain omega-3 fatty acids (eicosapentaenoic acid or

EPA, and docosahexaenoic acid or DHA) and is the primary dietary

source of these fatty acids. Other sources include krill, algae and

nuts (120). Fish intake in particular has been linked to protection

from RA development (Table 3). Outside of the studies that
TABLE 3 Selected studies showing an association between dietary exposures and Rheumatoid Arthritis (RA) risk.

Exposure
First
Author Study type Cohort Outcome Risk of exposure

# RA
cases Reference

Mediterranean
Diet Johansson Case-Control Sweden (EIRA) RA

Exposure (high): RA OR 0.79, RF+ RA OR
0.69 1721 (103)

Mediterranean
Diet Nguyen

Retrospective
Cohort France (E3N) RA Exposure (high): RA OR 0.91 (in smokers) 480 (104)

Fish Sparks
Retrospective

Cohort
USA (Nurses
Health Study) Sero+/- RA

Exposure (high): Sero- RA HR 0.55 (females <
55 yo) 1080 (105)

Fish Shapiro Case-Control USA RA Exposure (high): RA OR 0.57 324 (106)

Omega-3 FA/
Fish

Di
Giuseppe

Retrospective
Cohort

Sweden
(Swedish

Mammography
Cohort) RA

Exposure omega-3 (high): RA RR 0.65,
Exposure Fish (high): RR 0.71 (ns) 205 (107)

Vitamin D Merlino
Retrospective

Cohort

USA (Iowa
Women’s

Health study) RA Exposure (high): RA RR 0.67 152 (108)

Vitamin D Hiraki Case-Control
USA (Nurses
Health Study) RA

Circulating levels (high): RA OR 0.8 (3 months
to 4 years before diagnosis) 166 (109)

Vitamin D Song

Meta-analysis (3
Retrospective

Cohort) Multiple RA Exposure (high): RA RR 0.76 874 (110)

Vitamin D,
Omega-3 and
combination Hahn

Randomized
controlled trial
(secondary
analysis)

USA (VITAL
Study) RA

Exposure Vitamin D: RA HR 0.87 (ns),
Exposure Omega-3: RA HR 0.80 (ns),
Exposure Omega-3 and Vitamin D: RA HR
0.27 45 (111)
Sero+/-, seropositive or seronegative; ACPA, anti-citrullinated protein antibodies; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; RR, Relative Risk; OR, Odds Ratio; HR, Hazards
Ratio. NS, not significant. All RR/OR/HR are statistically significant unless otherwise stated.
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investigated the impact of the Mediterranean diet (104) (linked with

increased fish intake), a large registry study from Denmark

suggested that high fish oil intake reduces the risk of incident RA

(121). Further, high omega-3 and fish intake protected against RA

development in a cohort of Swedish women (107). Furthermore,

data from the Nurses’ Health Study suggested the impact of

cigarette smoking on RA development was attenuated by fish

consumption (105). Fish oil supplements have also shown efficacy

in prospective trials of patients with established RA, which

demonstrates their anti-inflammatory potential (122, 123).
Fatty acid metabolism and inflammation

Following ingestion, omega-3 fatty acids are stored in the

membrane phospholipids and are thought to exert their

predominant anti-inflammatory effect following metabolism into

eicosanoids. Eicosanoids are a family of molecules, all roughly 20

carbon units in length, called oxylipins which are predominantly

made up of several subfamilies including prostaglandins,

thromboxanes and leukotrienes. In contrast, omega-6 fatty acids,

derived from animal fats, plant oils and cereals are thought to exert

pro-inflammatory effects. The ratio of omega-6 to omega-3 is thought

to shift the relative contribution of derivative fatty acids towards or

away from inflammation. The effect of EPA/DHA on specific

inflammatory cells has been studied both in-vitro and in-vivo (124).

In macrophages, EPA/DHA reduces the secretion of pro-

inflammatory cytokines after simulation (125, 126), supresses the

inflammasome (127) and increases phagocytic capacity (128).

Neutrophils exposed to omega-3 FAs similarly display reduced

migration capacity (129), enhanced phagocytosis (130), yet

enhanced production of reactive oxygen species (131). Interestingly,

RA patients supplemented with omega-3 FA displayed reduced

production of neutrophil derived Leukotriene B4, a chemotactic

leukotriene (132). Omega-3 metabolites, primarily resolvins, reduce

cytokine production in activated CD8+ T-cells, T helper 1 (Th1) cells

and Th17 cells, and skews T-cell differentiation away from Th1/Th17

(133) (Figure 1), and perhaps towards an increase in Treg cells (134).

In asthmatic children omega-3 supplementation reduced IL-17A, a

key Th17 cytokine (135). Omega-3 supplementation also reduces the

severity of murine arthritis, and this may be in part mediated by

effects on T-cell differentiation (134). The effect of omega-3

supplementation on B-cell activation remains less clear. DHA/EPA

reduces B-cell activation in human cells treated ex-vivo (136).

Conversely, in murine models, enhanced IgM production via B-cell

proliferation was observed after EPA/DHA treatment (137, 138).

Taken together, the impact of omega-3 supplementation appears to

impact both innate and adaptive immune responses, and while

further study is required, the majority of evidence suggests a

prominent anti-inflammatory effect on a wide range of key processes.
Vitamin D

Due to its immunomodulatory properties, Vitamin D deficiency

has been linked to the development of several autoimmune disease,
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including RA (Table 3). In a large cohort study of older women in

the USA, Vitamin D supplementation was shown to be associated

with a reduced risk of developing RA (108). In a case-control

analysis of the Nurses’ Health Study, vitamin-D levels were lower in

the months-years prior to RA development (109). A meta-analysis

that included over 200,000 participants suggested that high vitamin

D intake reduced the risk of developing RA by 24% (110). We have

previously shown that Vitamin D levels are significantly lower in

ACPA positive first-degree relatives of RA patients (FDR)

suggesting a potential role in breaking immune tolerance (139),

although similar results were not observed in a USA cohort (140). A

vitamin D genetic risk score analysis suggests that specific SNPs

related to Vitamin D may be protective for the development of RA-

associated antibodies in FDR (141). Several small studies have also

suggested efficacy of Vitamin D supplementation in individuals

with established RA (142).
Vitamin D metabolism and influence on
the immune system

In order to exert effects physiologically, 1,25-dihydroxyvitamin

D (1,25(OH)2D), the active metabolite of Vitamin D, must be

synthesized (143). Both Vitamin D2 (ergocalciferol, derived from

food/supplements) and Vitamin D3 can undergo conversion by the

liver (25(OH)D) and kidneys (1,25(OH)2D). Vitamin D3 is

produced in the skin following UVB exposure, typically from

sunlight. Vitamin D deficiency is common, particularly in parts of

the world where seasonality has a major impact on sun-exposure.

Importantly, the immunomodulatory effects of activated Vitamin D

(1,25(OH)2D), requires binding to its cognate receptor, Vitamin D

Receptor (VDR) which is located in the nucleus where it enacts

primarily on the transcription of various genes (144). Vitamin D

binding protein (DBP), the major plasma carrier for vitamin D

metabolites, plays a crucial role in transporting metabolites to target

tissues (145). Importantly, polymorphisms of DBP have been

associated with a number of human diseases, including diabetes

(146), cancer (147) and RA (146). As such, an important limitation

of most of the large studies associating vitamin D status and RA is

that they do not take these polymorphisms into account.

Aside from its well-recognized impact on bone homeostasis,

vitamin D plays a role in immune homeostasis. In macrophages,

activated vitamin D stimulates the production of cathelicidin, an

antimicrobial peptide (LL37). Macrophages themselves can

hydroxylate 25(OH)D to the active form where local production

may allow for a more potent immune response (148). In neutrophils,

vitamin D has been shown to enhance bacterial killing, but reduce the

production of inflammatory cytokines, thus a dampening of excessive

inflammationmay be an important effect (149). Upon stimulation, T-

cells upregulate VDR allowing vitamin D to supress proliferation and

shift T-cell differentiation away from Th17 (150) and Th1 (151) types,

favoring the formation of regulatory T-cells which has been shown to

influence the development of murine autoimmune diabetes (152)

(Figure 1). Vitamin D also plays a crucial role in transitioning Th1

cells to an immunosuppressive, IL-10 producing subset (153). Unlike

omega-3 FAs, the immunosuppressive effects of vitamin D in B-cells
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are more apparent. Activated vitamin D reduces the formation of

immunoglobulin producing plasma cells following activation (154),

along with class-switch memory B-cells by inducing apoptosis (155).
Obesity

High body mass index (BMI) may also play a role in increasing

the risk of RA development. For example, in a case-control study of

incident RA, obesity (both BMI and abdominal waist circumference)

was associated with an increased risk of RA (156). Several other

studies of similar design have also implicated obesity in RA risk (157–

159), although studies exist which do not show an association (160)

or even a protective role for obesity (161). Interestingly, the risk of

obesity and developing RA may be higher in women compared to

men (162). Prospective studies of at-risk individuals have also linked

obesity with the development of RA, specifically in individuals

considered at-risk based on the presence of RA autoantibodies (34),

although this association was not found in our study of First Nation

FDR (3). Intriguingly, the impact of obesity on RA risk appears to be

modified only marginally by physical activity, which is thought to be

protective of future RA (163). This points to the complexity of the

obesity syndrome, which similar to RA, is an interaction between

genetics and environmental factors.

Despite the complexity of obesity, it remains well understood

that excessive fat can lead to inflammation through various

mechanisms. In obesity, macrophages are skewed towards the

pro-inflammatory (M1-like) cells, and away from anti-

inflammatory (M2-like) macrophages (150). This plays a key role

in perpetuating the inflammatory response. M1-like macrophages

display increased secretion of cytokines such as TNF-a, IL-6, IL-12,
IL-18, and ROS which are all involved in enhanced inflammatory

responses (164–167). These macrophages recruit CD4+ T-cells that

eventually differentiate into several effector cells, namely Th1, Th2,

Th17 and Treg cells (168, 169). Th2 and Treg cells counter obesity-

associated inflammation; However, in obesity, these two types of

effector cells decrease in number. As a result, the inflammation-

promoting cells Th1 and Th17 constitute the majority of the cell

population (Figure 1). Moreover, adipokines secreted by the adipose

tissue are strongly correlated with inflammation (170). Studies have

shown that Leptin is increased in early RA (171) and is related to

increased ROS production (172). A meta-analysis revealed that

Adiponectin is significantly higher in RA patients (9) and may

contribute to the bone erosions observed in RA (10) via induction of

a pro-inflammatory state in osteoblasts and osteoclasts (11). Other

adipokines, such as chemerin, resistin, lipocalin 2 have been

associated with clinical outcomes in individuals with established

RA (173–177).
The microbiome

Gut microbiome

The human microbiome is a vast and intricate ecosystem of

microbes residing in our bodies that plays a fundamental role in
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shaping our health (178). Studies implicate that the gut microbiome

have gained ample interest in nearly all fields of medicine. The

microbiome has a diverse and still emerging role in digestion and

homeostasis of the epithelial layer/mucosal permeability. Further,

the influence of diet, medications and other exposures play a crucial

role in the overall function and diversity of the microbiota.

Dysbiosis is clearly evident in patients with established RA and

appears to correlate with disease activity and treatment response

(179). Particular interest has been paid to Prevotella copri (180),

which is enriched in RA patients and exacerbates murine arthritis

(181). Although studies in pre-clinical RA are lacking, a strain of

Subdoligranulum has been shown to cross react with IgG and IgA

from individuals who are at-risk to develop RA (182), although

notably, these were not ACPAs. Fascinatingly, when the bacterium

is transferred to germ-free mice, it leads to spontaneous

development of inflammatory arthritis. The influence of the gut

microbiota on inflammatory processes is complex, yet it is clear that

the formation of short chain fatty acids (SCFA) from the processing

of fiber plays an important role. SCFA are typically thought to be

anti-inflammatory, predominantly though the production of

regulatory T-cells (183), but also due to altered permeability of

the gastrointestinal tract (184). In ACPA+ at-risk individuals with

musculoskeletal symptoms, serum SCFAs were higher in those who

did not progress, compared to those that developed RA (185).

Components of bacteria can trigger toll-like receptors (TLRs),

which propagate both innate and adaptive immune responses

(186) in resident leukocytes and epithelial cells. Much attention

has been paid to segmented filamentous bacteria (SFB), which

induces the production and activation of Th17 cells (187) and

follicular helper T-cells (188) in the intestine, which influences

murine arthritis disease activity (189). Further studies of the role of

the microbiome and the risk of RA, with a specific focus on at-risk

individuals are required.
Periodontal disease

Periodontal disease is an oral inflammatory condition by which

resident bacteria mediate a cascade of inflammatory responses,

ultimately leading to local tissue damage. Periodontitis is a

polymicrobial disease whereby overgrowth of oral bacteria

interacts with local immune cells leading to inflammation. Similar

to RA, inflammatory lesions can lead to radiographic bone loss and

irreversible damage (190). To date, the connection between

periodontal disease and the development of RA has been shown

in a variety of epidemiological studies (191–194). Specifically, a

meta-analysis of over 150,000 individuals showed a modest

association between RA and periodontitis (195). This association

is strongest for ACPA positive RA, and interestingly, RA patients

with periodontitis have been shown to have higher concentrations

of serum ACPA compared to those without periodontitis (192).

Similar to cigarette smoking, there is an association between

periodontal disease and the SE that appears to have a strong

gene-environment interaction, including leading to more severe/

destructive RA (196, 197). Interestingly, treatment of periodontitis

in RA patients is associated with improved arthritis disease activity
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(198, 199). It should be noted however that the co-occurrence of

periodontitis and RA does not imply a causative relationship

between the two diseases, as there is limited evidence that active

periodontitis leads to the development of RA.
P. gingivalis is associated with citrullination
and autoantibody responses in RA

The best characterized oral bacteria studied in RA risk is

Porphyromonas gingivalis (P. gingivalis). Of considerable interest,

P. gingivalis expresses endogenous PAD (PPAD), which can

induce citrullination sites of local proteins that are key RA

autoantigens (200). Unlike human PAD, PPAD preferentially

citrullinates terminal arginine (201) after the digestion of

proteins by another enzyme called gingipain (202). Modification

of PPAD reduces collagen antibody-induced murine arthritis

severity and ACPA levels (203). RA patients have been shown to

develop antibodies targeting P. gingivalis (204), and this is

observed in the pre-clinical stage of the disease (205).

Monoclonal IgG from gingival B-cells cross react with

citrullinated peptides derived from human and P. gingivalis

proteins, suggesting the potential for molecular mimicry (206).

Pre-existing periodontitis has been shown to exacerbate the

collagen antibody-induced arthritis mouse (207) and the CIA

model (208). In the latter, P. gingivalis was associated with

serum cytokines most suggestive of an enhanced Th17/Th1

response (Figure 1). Activation of the innate and adaptive

immune responses in periodontitis is crucial. Gingival tissues

affected by such inflammation display B and CD4 T-cell

infiltration (209), with evidence pointing to Th17 differentiation

(210). Neutrophils are recruited to the site of inflammation by IL-

8, which expectedly yields the release of destructive, granule

proteins, the generation of ROS and the formation of NETs

(also yielding enhanced citrullination) (211). A number of other

oral microbes, aside from P. gingivalis, have been linked to RA

development including Provatella and Veillonella (212, 213).

Recently, evidence of oral microbes traversing into the blood of

RA patients which can expose citrullinated antigens to ACPA B –

cell and promote inflammation by activating inflammatory

monocytes (214).
Modification of risk factors to prevent
or delay RA onset

Although the studies reviewed above link RA development to

several important modifiable risk factors, it remains much less clear

if modification of these factors meaningfully reduces RA risk, and at

what stage of pre-RA this might be most efficacious. Smoking

cessation is not only modifiable, but can be aided with

medications, cognitive behaviour therapy (CBT) and nicotine

replacement. Further, it is associated with other important health

benefits such as reduced cardiovascular disease (215) and cancer

(216). The only evidence linking smoking cessation and reduced RA
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risk comes from observational data. For example, in the Nurses’

Health Study, individuals who quit smoking had a 40% reduction in

incident seropositive RA. Interestingly, the effects of smoking on

RA risk were still detectable 30 years after quitting, compared to

life-long nonsmokers (37). A similar finding was observed in a

Swedish cohort study, showing a 30% reduction of incident RA

following smoking cessation (27). Many clinicians are likely to

recommend smoking cessation to RA patients and at-risk

individuals, possibly due to the extended health benefits outside

of RA risk. However, it remains unclear if smoking cessation

following the development of ACPA has any meaningful impact

on RA development.

To our knowledge, there are no observational studies linking

changes in diet or nutrition and subsequent risk of incident RA.

However, in the VITAL study, a trial of Vitamin D and Omega-3

fatty acid supplementation (217) a prespecified subgroup analysis

found that the combination of supplements displayed a reduction in

incident RA after 5 years of follow-up (111). It’s important to note

that because this trial was originally designed for cardiovascular and

oncologic outcomes, thus the population was older and likely had

average to below average risk of developing RA. Whether Vitamin

D or Omega-3 supplementation can be used to prevent incident RA

in high-risk groups, such as ACPA positive individuals

remains unclear.

RA prevention has recently moved into the forefront of pre-RA

research, and a number of prospective clinical trials are complete or

ongoing. Most of these trials have deployed re-purposed RA

medications, and so far, none have successfully prevented RA,

although Rituximab (218), Abatacept (219, 220) and

Methotrexate (221) delayed RA onset by several months. It is

notable that recruitment to RA prevention trials remains a

challenge, and thus choosing the right intervention (222) is

crucial to ensure study feasibility which is in line with

participants’ views and priorities (223). There are likely many

individuals at increased risk of RA who would not accept

targeted, potentially toxic immunosuppressive medications to

mitigate their risk. There appears to be a willingness to accept

lifestyle interventions in ACPA/RF+ individuals with arthralgia

(224) and FDR of RA patients (225, 226) to lower the risk of RA,

which for individuals with established RA can also help improve

disease activity and progression, as outlined by EULAR (European

League against Rheumatism) recommendations from 2021 (227).

Hence, there remains an unfilled gap in RA prevention care, which

is using nutritional, dietary, and lifestyle interventions to evaluate

their protective effects in high-risk individuals, either alone or in

combination with more targeted drug therapies.
Further points to consider

When evaluating studies linking modifiable exposures to the

risk of RA, it is crucial to consider the strength and levels of

evidence supporting the associations. Several limitations apply to

retrospective and case-control studies. For instance, even large

retrospective population-based studies may lack the power to
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detect differences due to RA’s relatively low prevalence (~1%).

Additionally, how a diagnosis of RA is being made (ACR/EULAR

criteria (228), billing codes, self-report) should also be considered

and appraised. Case-control studies can be affected by recall bias,

specifically with respect to lifestyle exposures. Although prospective

cohort studies of at-risk individuals are less common and more

difficult to recruit for, they may serve to enrich in the outcome of

interest (incident RA), where the prevalence is much higher.

However, these cohorts are often smaller, and thus may also

suffer from reduced power to detect an association between an

exposure and the outcome. Irrespective of the study design,

unmeasured or measured confounding factors should be strongly

considered as they can influence the interpretation of lifestyle and

modifiable exposure studies. For example, many lifestyle factors are

interrelated, such as diet and exercise, smoking and alcohol use, and

are often connected to socioeconomic status, which itself has been

associated with an increased risk of RA (229).

The association between several exposures, including

periodontitis, cigarette smoking, occupational exposures all appear

to be enriched in seropositive RA, with mixed findings for the

strength of association with seronegative RA (Tables 1, 2).

Regarding dietary associations, most studies have not stratified

based on serological status, but one study found the Mediterranean

diet to be protective for seropositive RA (103), and another showed

that fish exposure was protective for seronegative RA (105) (Table 3).

One consideration is the recent discovery of other post-translational

modifications which act as autoantigens in RA, such as

homocitrulline, acetyl, and MDA/MAA, suggest a potential

overestimation or misclassification of seropositive and seronegative

disease (230) in many of these associative studies. It is also intriguing

that many of these exposures converge on a similar pathway, with a

dominant role for mucosal immunity specifically in the mouth, lung

and gut. This notion is reinforced by the finding that secretory IgA

may play an important role in the generation of pathogenic

autoimmunity in RA (231). It remains clear that a deeper

understanding of mucosal immunology will be crucial for

identifying the origins of RA, particularly seropositive disease.
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Concluding remarks

In conclusion, prospective and retrospective cohort studies have

provided key insights into the role of modifiable risk factors and RA

risk. Cigarette smoking and diet appear to have substantial impact

on incident RA and may be the most practical lifestyle interventions

to prevent RA in the future. Further studies are required to

understand how these exposures modulate the immune system to

promote inflammation, reduce immune tolerance and trigger

clinical arthritis in at-risk individuals. Ultimately a combination

of prospective clinical trials, longitudinal cohort studies and

translational science will help disentangle the key events that

drive the development of RA in those at-risk.
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