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The complicated connections and cross talk between the skeletal system and the

immune system are attracting more attention, which is developing into the field

of Osteoimmunology. In this field, cytokines that are among osteoblasts and

osteoclasts play a critical role in bone remodeling, which is a pathological

process in the pathogenesis and development of osteoporosis. Those

cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL)

family, interferon (IFN), chemokines, and so on, most of which influence the

bone microenvironment, osteoblasts, and osteoclasts. This review summarizes

the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in

osteoporosis, aiming to providing the latest reference to the role of immunology

in osteoporosis.

KEYWORDS

osteoporosis, cytokine, osteoblasts, osteoclasts, bone remodeling
Introduction

Osteoporosis is an orthopedic disease characterized by bone mass reduction and bone

tissue microstructure damage, which can increase bone fragility and the incidence of

fractures (1). Osteoporosis can occur at any age, but is more common in postmenopausal

women and in elderly men, indicating a close association with aging (2). Given the health

impact of osteoporosis for the increasingly middle-aged and elderly global population,

osteoporosis has become a chronic disease that causes a huge disease burden and great

socioeconomic pressure (3, 4).

In the normal body microenvironment, there is a balance between bone formation by

osteoblasts and bone resorption by osteoclasts, supporting the bone mass and bone mineral

density (BMD) within the normal range. However, this balance is disrupted in osteoporosis

patients and the bone resorption exceeds bone formation, initiated by the suppression of

osteoblasts or the over-activation of osteoclasts, which is referred to as bone remodeling

(5). In this pathological process, the immune system plays a significant role, including
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through immune cells, various cytokines, and signaling pathways.

The cross talk between the skeletal system and the immune system

forms an interdisciplinary field called Osteoimmunology (6).

In the cytokine networks and signaling pathways, the receptor

of NF-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG)

axis plays an important role in the bone remodeling process, which

has already been researched systematically (7). Although the

function of other proinflammatory cytokines, such as the tumor

necrosis factor (TNF) family, the interleukin (IL) family, and

interferon (IFN), has already been researched quite a lot in the

bone remodeling literature (8), summary work remains in need.

Therefore, in this review, we will describe the roles of various

cytokines in bone remodeling and their impact on the pathological

process of osteoporosis, combining recent discoveries (Table 1) in

order to contribute to the search for new therapeutic targets

for osteoporosis.
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Molecular mechanism of osteoporosis

Osteoporosis happens when the balance between bone

resorption by osteoclast cells and bone formation by osteoblast

cells breaks down. In the process of osteoclast differentiation and

activation, osteoblast cells express RANKL and OPG, participating

in modulating the differentiation of osteoclast cells. RANKL

binding to RANK and lead to the activation of osteoclast

differentiation via activation of downstream signaling pathways,

while OPG inhibit aforementioned effect through inhibition of

RANKL-RANK interaction (122) (Figure 1). In addition,

osteoblast cells secrete macrophage colony-stimulating factor (M-

CSF) binding to colony-stimulating factor-1 receptor (c-Fms) in

osteoclast cells, which leads to the activation of phosphoinositide 3-

kinase (PI3K) and growth factor receptor bound protein 2 (Grb2)

and further promotes Akt and ERK signaling in osteoclast
TABLE 1 Summary of the cytokine effects on osteoblasts and osteoclasts.

Cytokine Effects on osteoblasts Effects on osteoclasts References

TNF-a stimulate osteoblasts to express RANKL and M-CSF
low concentration stimulates mesenchymal precursor cell
differentiation into osteoblasts while high concentration inhibits
osteoblasts’ function and bone formation
inhibit IGF-1 and RUNX2 expression to suppress osteoblast
differentiation

stimulate osteoclast differentiation
promote RANK expression in osteoclast precursors
promote RANKL-induced osteoclastogenesis
induce osteoclast precursors to express c-Fos

(9–12,
13–15)

IL-1a – stimulate the formation of OLC (16)

IL-1b induce bone resorption in osteoblasts by activating p38 MAPK
inhibit human osteoblast migration

activate osteoclasts and stimulate osteoclast differentiation,
multinucleation, and survival

(17–20,
21, 22)

IL-3 increase osteoblast differentiation and matrix mineralization
promote the expression of osteoblast-specific genes

inhibit RANKL-induced osteoclast differentiation
inhibit TNF-induced osteoclast differentiation, bone resorption
inhibit blood monocytes and bone marrow cells differentiate into
osteoclasts

(23–29)

IL-4 – directly and indirectly suppress osteoclastogenesis
inhibit the bone resorption activity of mature, differentiated
osteoclasts

(30–37)

IL-6 inhibit osteoblast differentiation directly and indirectly stimulate osteoclast formation
inhibit osteoclast progenitors to differentiate into osteoclasts

(38–43,
44, 45)

OSM promote stromal cells to differentiate into osteoblast stimulate RANKL production and osteoclast formation (41, 46, 47)

IL-7 – promote osteoclast formation by inducing T cells to produce
RANKL and TNF-a
promote bone resorption by inducing B cells increase
stimulate osteoclast formation by activating STAT5

(48–50)

IL-8 – promote RANKL-induced osteoclastogenesis (51)

IL-10 inhibit bone marrow osteogenic activity inhibit osteoclast progenitors differentiate into osteoclast precursors
inhibit RANK-induced osteoclast formation

(52–56)

IL-11 extend the survival of osteoblast progenitor cells
promote pluripotent progenitor cells to differentiate into
osteoblast lineage
promote osteogenesis, inhibit adipogenesis and sclerostin in
osteoblasts

stimulate osteoclast differentiation and osteoclast formation (38, 57–59,
46, 60)

IL-12 – inhibit RANKL-induced osteoclastogenesis through inhibiting
NFATc1 or promotion of osteoblast apoptosis via the Fas/FasL

(61, 62)

IL-13 – inhibit osteoclast formation and bone resorption (36, 63)

(Continued)
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TABLE 1 Continued

Cytokine Effects on osteoblasts Effects on osteoclasts References

IL-15 promote osteoblast apoptosis promote osteoclast progenitors to differentiate into osteoclast
precursor
induce osteoclast formation

(64–66)

IL-17 promote the expression of pro-osteoclastic cytokines such as
TNF-a, IL-6, and RNAKL in osteoblasts
promote osteoblast differentiation while inhibiting osteoblast
calcification

induce osteoclastogenesis
low concentrations promote autophagy of osteoclast precursors and
osteoclast formation while high concentrations inhibit osteoclast
precursors’ differentiation into osteoclasts

(67–79)

IL-18 – inhibit TNF-a-induced osteoclastogenesis by mediating myeloid
apoptosis via Fas/FasL and NO
indirectly inhibit osteoclast formation via IFN-g and GM-CSF

(80–84)

IL-19 – inhibit RANKL-induced osteoclast differentiation
maintain the osteoclast precursor state

(85)

IL-20 upregulate RANKL expression in osteoblasts
inhibit osteoblasts survival and differentiation

induce the expression of RANK in M-CSF-derived osteoclast
precursors and promote the transduction of osteoclastic signals

(86, 87)

IL-23 – participate in T-cell-mediated osteoclast formation
modulate osteoclast differentiation
indirectly inhibit osteoclast formation

(88–91)

IL-27 inhibit osteoblast apoptosis inhibit osteoclastogenesis (92–95)

IL-29 – inhibit osteoclast formation and bone resorption activity (96, 97)

IL-32 promote bone formation and prevent bone loss – (98)

IL-33 stimulate osteoblast function
promote matrix mineral deposition and reduces sclerostin
mRNA

inhibit RANKL-induced osteoclast formation and osteoblast-related
gene expression
induce osteoclasts apoptosis
inhibit TNF-induced osteoclast formation and bone resorption

(99–101,
102, 103)

IL-34 regulate hBMSC osteogenesis and enhance fracture healing induce osteoclast differentiation and bone resorption
promote the proliferation and differentiation of BMMs toward
osteoclasts

(104–106)

IL-35 stimulate MSCs to differentiate into osteoblasts prevent TNF-induced osteoclast formation and promote apoptosis
promote functional osteoclast formation
increase osteoclast differentiation factors expression

(107–109)

IL-37 increase the expression of osteoblast-specific genes
promote osteogenic differentiation of MSCs

inhibit osteoclast formation and pathological bone resorption (110, 111)

IFN-a – inhibit RANKL-induced osteoclastogenesis by reducing c-Fos (112, 113)

IFN-b – inhibit RANKL-induced osteoclastogenesis by reducing c-Fos
inhibit osteoclastogenesis by increasing NO production and the
iNOS signaling pathway

(112–114)

IFN-g stimulate osteoblast differentiation genes expression
stimulate osteoblast differentiation

inhibit osteoclast differentiation and function
mediate osteoclast apoptosis via Fas/FasL

(115–121)
F
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FIGURE 1

The molecular mechanism of osteoclastogenesis. Osteoblasts secret RANKL and M-CSF which respectively binding to RANK and c-Fms in osteoclast
precursors or multinucleated osteoclasts to promote the differentiation or fusion during osteoclastogenesis, leading to the activation of osteoclasts
in the end.
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precursors or mature osteoclast cells (8). It has been widely

recognized that the RANK/RANKL/OPG axis plays a critical role

in the molecular mechanism of osteoporosis. When pro-

inflammatory cytokines affect this axis and enhance its

osteoclastogenesis to a state of decompensation, bone mass

reduces and the bone tissue microstructure becomes damaged,

leading to the occurrence of osteoporosis.
Tumor necrosis factor

TNF is subdivided into TNF-a and TNF-b, both of which

strongly stimulate bone resorption. TNF contributes to the

development of bone loss by fostering the formation of

osteoclasts and inhibiting osteoblast function. TNF can stimulate

osteoclast differentiation via multiple mechanisms, some of which

are independent of the RANKL/RANK axis (123, 124). TNF-a
stimulates stromal cells and osteoblasts and activates T cells to

express the RANKL and M-CSF genes, which indirectly promote

the expression of RANK in osteoclast precursors and subsequent

osteoclastogenesis via M-CSF (9–11). In postmenopausal women

with osteoporosis, TNF-a is closely associated with levels of RANK

and estrogen. By activating NF-kB and PI3K/Akt signaling, TNF-a
can promote RANKL-induced osteoclast formation in vitro in a

synergistic manner (12). It may be one of the pathogenic

mechanisms underlying osteoporosis after menopause.

Independent of the RANKL/RANK axis, TNF-a can directly

exert biological effects. TNF-a induces the differentiation of

osteoclast precursors by acting directly on their surface receptors

and sequentially activating NF-kB, p50/p52, c-Fos, and nuclear

factor-activated T cells c1 (NFATc1) (125, 126). TNF-a can also

directly induce osteoclast precursors to express c-Fos, which

produces IL-1b by interacting with bone matrix proteins and

inducing osteoclast differentiation autocrine (127).

Tumor necrosis factor receptor-associated factors (TRAFs) are

crucial in physiological bone remodeling and also influence TNF-

induced osteoclast formation. TRAF2 (128) and TRAF5 (129) have

been shown to be essential for TNF-a-induced osteoclast

formation. The most important of the TRAFs is TRAF6, and

mice lacking this factor develop severe osteoporosis due to

inadequate osteoclast differentiation (130). However, as

demonstrated in one study, RANKL might degrade the osteoclast

formation inhibitor TRAF3 by inducing autophagic lysosomes,

thereby stimulating TNF-induced osteoclast formation

independent of TRAF6 signaling (131).

TNF has a concentration-dependent, bidirectional effect on

bone formation and osteoblast function. Low concentrations of

TNF stimulate mesenchymal precursor cells to differentiate into

osteoblasts, whereas high concentrations of TNF inhibit osteoblast

function and bone formation (13). TNF inhibits insulin-like growth

factor I (IGF-I) expression in osteoblast precursor cells during the

initial stages of differentiation, thereby inhibiting osteoblast

differentiation (14). TNF also can inhibit the expression of

RUNX2, a key factor regulating osteoblast differentiation, to

suppress osteoblast differentiation (15).
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Interleukins

Interleukin-1

Interleukin (IL)-1, composed of IL-1a and IL-1b, is an

introductory class of cytokines that can activate osteoclasts and

participate in osteoclast differentiation, multinucleation, and

survival, which is also a crucial mediator of inflammatory bone

loss (17). Among them, IL-1b is a decisive osteoclast factor that

upregulates RANKL production and enhances its activity, and

stimulates osteoclast formation (18, 19). IL-1b can indirectly

promote TNF-a-induced osteoclastogenesis, induce stromal cell

RANKL expression with the support of p38 MAPK, and thus

directly stimulate osteoclast precursor differentiation (20).

Interestingly, IL-1b has distinct effects on subpopulations of

osteoclast precursors, stimulating polynucleation and bone

resorption at varying rates in osteoclasts derived from the three

precursors (132).

IL-1 is capable of RANKL/RANK-independent activation of

osteoclast differentiation via IL-1/IL-1R1 signaling in bone marrow-

derived macrophages (BMMs) by activating osteogenic marker

genes such as NF-kB, JNK, p38, and ERK, as well as a

microphthalmia transcription factor (MITF) to induce osteoclast

differentiation. Nonetheless, this process does not stimulate c-Fos or

NFATc1 expression and requires both to be at a certain baseline

level (133). Not only do TNF and IL-1 induce bone resorption in

osteoblasts by activating p38 MAPK in the osteoblast spectrum

(21), but IL-1 also inhibits human osteoblast migration, thus

impacting the fracture healing process (22).

In contrast, IL-1a can stimulate the formation of osteoclast-like

cells (OLCs) by increasing the expression of M-CSF and PGE2 and

decreasing the expression of OPG in osteoblasts (16).
Interleukin-3

IL-3, also known as multicolony stimulation factor (multi-CSF),

is a member of the bc family due to the fact that its receptor shares

the signaling subunit bc with granulocyte/macrophage colony-

stimulating factor (GM-CSF) and IL-5 (134). Activated T

lymphocytes, mast cells, and osteoblasts are the primary

secretors (135).

Although IL-3 is predominantly regarded as an anti-osteoclastic

cytokine, it actually has a role in both osteoblasts and osteoclasts.

IL-3 inhibits RANKL-induced NF-kB nuclear translocation by

inhibiting IkB phosphorylation and degradation, which further

inhibits RANKL-induced osteoclast differentiation by acting

directly on early osteoclast precursors (23). By downregulating

the expression of TNFR1 and TNFR2, IL-3 inhibits TNF-induced

osteoclast differentiation (24) and bone resorption (25). All of the

above-mentioned IL-3 inhibition is irreversible. IL-3 substantially

inhibits c-Fms, downregulating PU.1 and c-Fos expression at the

mRNA and protein levels, leading to the suppression of

differentiation of blood monocytes and bone marrow cells into
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osteoclasts and bone resorption, thereby inhibiting bone erosion

(26–28).

In the osteogenesis process, IL-3 increases osteoblast

differentiation and matrix mineralization in human mesenchymal

stem cells (MSCs) in a dose-dependent manner, significantly

boosting the expression of osteoblast-specific genes including

alkaline phosphatase, collagen type-I, osteocalcin, and

osteopontin, as well as the transcription factors Runx-2 and

osterix (29). Through the JAK/STAT signaling pathway, IL-3 also

promotes osteoblast differentiation and BMP-2 secretion (29).

Another study demonstrated that IL-3 increased RANKL

expression at both the transcriptional and translational levels

without affecting OPG expression. Increased RANKL induces

mononuclear osteoblasts without affecting multinuclear

osteoblasts. IL-3 regulated two functional forms of RANKL by

downregulating metalloproteinases, including ADAM10,

ADAM17, ADAM19, and MMP3, to downregulate soluble

RANKL expression and increase membrane-bound RANKL

expression via the JAK2/STAT5 signaling pathway, thereby

restoring the decreased RANKL/OPG ratio in adult mice (136).
Interleukin-4

IL-4 is a pleiotropic immunomodulatory cytokine produced

primarily by Th2 cells, mast cells, and eosinophils (137). It regulates

immune responses and has now been shown to be a potent inhibitor

of osteoclastogenesis, affecting osteoclast formation and function in

multiple ways, both directly and indirectly.

IL-4 reduces the nuclear translocation of NF-kB by inhibiting

IkB phosphorylation in a STAT6-dependent manner, which

significantly hinders the DNA-binding activity of NF-kB and

directly suppresses osteoclastogenesis (30).

In addition, IL-4 can also inhibit RANKL and TNF-a-induced
osteoclastogenesis by blocking the MAPK signaling pathway (31).

Further studies showed that IL-4 inhibited the expression of

NFATc1, a significant transcription factor for RANKL-induced

osteoclast formation, via STAT6, thereby inhibiting osteoclast

formation (32). In addition to inhibiting osteoclast formation, IL-

4 directly inhibits the bone resorption activity of mature,

differentiated osteoclasts by inhibiting the NF-kB and Ca2+

signaling pathways in a STAT6-dependent manner (33, 34).

The s e a r e a l l d i r e c t inh ib i to ry e ff e c t s o f IL -4 on

osteoclastogenesis. By diminishing the production of pro-

osteoclast factors such as TNF-a, IL-1, and IL-6, IL-4 also

indirectly inhibits osteoclastogenesis (35). In contrast, endothelial

cells of the bone vascular system secrete osteogenic cytokines and

hormones to modulate bone development, remodeling, and repair.

IL-4 and its closely related IL-13 can indirectly inhibit osteoclast

formation by activating the STAT6 pathway to induce endothelial

cells to secrete the osteoprotective hormone OPG (36).

IL-4 also has a synergistic effect with other cytokines, such as

GM-CSF, in inhibiting osteoclastogenesis. In the presence of M-

CSF and RANKL, monocytes differentiate into osteoclast. However

in the presence of GM-CSF and IL-4, the combination of them

upregulates TNF-a converting enzyme (TACE), causing M-CSF
Frontiers in Immunology 05
receptor shedding and monocytes are differentiating toward

dendritic cells thereby disrupting osteoclastogenesis. (37).
Interleukin-6 family

Interleukin-6

The IL-6 family is a family of cytokines that share the signaling

receptor subunit glycoprotein 130 kDa (gp130), including IL-6, IL-

11, Oncostatin M (OSM), leukemia inhibitory factor (LIF),

cardiotrophin 1 (CT-1), ciliary neurotrophic factor (CNTF),

cardiotrophin-like cytokine factor 1 (CLCF1), neuropoietin (NP),

IL-27, and humanin (138).

IL-6 is one of the pleiotropic cytokines that transmits signals by

binding to the IL-6 receptor (IL-6R) (138). IL-6R is subdivided into the

transmembrane receptor IL-6R and soluble IL-6R (sIL-6R), which

exert biological effects via two distinct pathways including classic (cis)

IL-6 signaling and alternative trans-signaling, respectively (139). IL-6 is

produced by osteoblasts (140, 141), bone marrow stromal cells

(BMSCs) (142), osteoclasts, macrophages (143), T cells (143), and

neutrophils (144). Studies have indicated that IL-6 has been implicated

in a number of age-related diseases, including osteoporosis, and its

levels rise with age (145, 146), possibly through the P3IK/AKT, MAPK,

and JAK/STAT pathways (147–149).

In the process of bone remodeling, IL-6 is primarily regarded as

a pro-osteoclastic factor that promotes osteoclastic processes via

direct and indirect pathways. Mouse models overexpressing IL-6

exhibit a phenotype characterized by an increase in osteoclasts and

a reduction in bone trabecular volume (150). IL-6 directly

stimulates osteoclast formation via a RANKL-independent

mechanism, when OPG treatment does not inhibit this

stimulatory effect (38), and therefore is regarded as a RANKL-

independent stimulatory mechanism, although the precise

mechanism was not revealed by the study. At the same time, IL-6

can indirectly stimulate osteoclastogenesis by stimulating RANKL

produced by stromal and osteoblast cells (39–41) via JAK-mediated

activation of STAT3 (42), resulting in an increase in the expression

of osteoclast markers. Inhibition of IL-6R signaling inhibits

osteoclast formation both in vitro and in vivo (151). A study

showed that IL-6-deficient mice had increased bone mass,

tartrate-resistant acid phosphatase (TRAP)-positive osteoclast

numbers, and alkaline phosphatase activity in osteoblasts (152),

indicating that IL-6 deficiency inhibited osteoclast maturation. In

IL-6-deficient mice, osteoclast apoptosis was also increased (153).

However, it has also been reported that IL-6 has a negative

regulatory effect on osteoclast formation, and that IL-6 can act

directly on osteoclast progenitors to inhibit their differentiation into

osteoclasts by inhibiting the RANK signaling pathway-mediated

degradation of IkB and activation of JNK (40). The differential

regulation of osteoclasts by IL-6 may be attributable to the presence

of varying concentrations of RANKL. IL-6/sIL-6R modulates NF-

kB, ERK, and JNK signaling pathways differentially, inhibiting

osteoclast formation at higher RANKL concentrations and

p romo t i n g o s t e o c l a s t f o rma t i on a t l owe r RANKL

concentrations (43).
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In addition, IL-6 contributes to the osteogenesis process.

Compared with wild-type mice, IL-6 knockout mice after

ovariectomy (OVX) demonstrated significant upregulation of

mRNA for osteoblast-related genes, such as Runx2 and Col1a1,

and downregulation of osteoclast-related genes, such as TRAP,

MMP9, and CTSK (154). In a mouse model of osteoporosis, the

inflammatory state of the microenvironment inhibits the osteogenic

differentiation of BMSCs, and IL-6 is one of the most significant

factors in this inhibition. The overactivated IL-6-STAT3 pathway

inhibits b-catenin activity, and anti-IL-6 neutralizing antibodies

rescue the osteoporotic phenotype in rodents (44), providing a

potential therapeutic target for osteoporosis. In addition, the

expression of TLR2, TLR4, IL-1, and TNF-a increases in BMSCs

in response to IL-6, activating the AKT pathway and further

inhibiting Setd7 expression. BMSCs, on the other hand,

demonstrate a decrease in osteogenic gene expression and an

increase in inflammatory gene expression (155). IL-6 inhibits

osteoblast differentiation through activation of the JAK/STAT,

SHP2/MEK2, and SHP2/AKT signaling pathways (45). In

contrast to these findings, it has been hypothesized that the IL-6/

IL-6R complex can activate the downstream STAT3 signaling

pathway and promote osteogenic differentiation of bone marrow-

derived mesenchymal stem cells (BM-MSCs) via an autocrine/

paracrine feedback loop (156).
Interleukin-11

IL-11, also known as adipogenesis inhibitory factor (AGIF)

(157), is primarily secreted by stromal cells and osteoblasts (158)

and shares the co-receptor gp130 with IL-6 family members (138).

Therefore, IL-11 plays a similar function to IL-6 during bone

remodeling. IL-11 can not only directly stimulate osteoclast

differentiation independent of RANKL (38) but can also stimulate

osteoclast formation indirectly through inducing RANKL

production in osteoblastic lineage cells (57). The difference is that

IL-11R is expressed in the osteoblast lineage (158) and IL-11

extends the survival of osteoblast progenitor cells (58). IL-11 has

pro-osteogenic effects in addition to its pro-osteoclastic effects. In

vitro administration of IL-11 promotes osteoblast lineage

differentiation from pluripotent progenitor cells (59). The

phenotype of mice overexpressing IL-11 was characterized by

increased bone formation, thickened bone cortex thickness, and

enhanced bone strength (159). In contrast, mice lacking IL-11R

exhibited impaired bone formation on the trabecular surface and

increased adipose in the bone marrow, indicating that IL-11R

signaling is essential for osteoblast differentiation (160). Various

studies have shown that IL-11 also promoted the process of

osteogenesis when stimulated by mechanical loading. IL-11 is

upregulated to promote osteogenesis, inhibit adipogenesis (60),

and suppress the expression of sclerostin (an inhibitor of

osteoblast differentiation, an osteoclast gene sensitive to

mechanical stress) in osteoblasts (46). This process may be

mediated through the Wnt signaling pathway (161, 162) and

DFosB (161, 163).
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Oncostatin M

Oncostatin M (OSM), part of the IL-6 family, is expressed in all

stages of osteoblast differentiation, including bone marrow stromal

cells, stroma-producing osteoblasts, osteocytes, and bone-covered

cells (46, 164). OSM expresses three receptor subunits, gp130,

OSMR, and LIFR, in the osteoblast lineage, but not in osteoclasts

(46). Additionally, bone macrophages can produce OSM (165–167)

and bone morphogenetic proteins (BMPs) (168) to influence

osteoblast differentiation. Depletion of bone macrophages can

inhibit this differentiation process and is one of the mechanisms

underlying diminished bone formation and bone growth in

osteoporosis patients (169–171).

By stimulating RANKL transcription in stromal cells, OSM

indirectly promotes osteoclast differentiation in vitro (41), but this

effect is insufficient to completely support osteoclast formation in

vitro (172). OSM can also promote the differentiation of stromal

cells into osteoblasts rather than adipogenesis and inhibit sclerostin,

an antagonist of Wnt pathway (46, 47). The two different effects

mentioned above depend on the different receptors. OSM binds to

gp130 first and forms a heterodimer with OSMR or LIFR, acting via

LIFR to inhibit sclerostin production in stromal cell lines and

osteoblasts, and acting via OSMR to stimulate RANKL

production and osteoclast formation (46).
Interleukin-7

IL-7 is a member of the IL-2 family and is primarily secreted by

stromal cells and osteoblasts in response to the inflammatory

cytokines IL-1 or TNF-a (11). Mice that overexpress IL-7 have a

phenotype characterized by decreased bone mass and increased

osteoclasts (173), suggesting that IL-7 also plays a role in bone

remodeling. IL-7 can indirectly promote osteoclast formation by

inducing T lymphocytes to produce RANKL and TNF-a (48),

whereas in nude mice lacking T lymphocytes, IL-7 failed to cause

bone resorption and loss (48). Additionally, IL-7 is associated with

the number of T lymphocytes. Studies have confirmed that the

absence of estrogen after OVX resulted in elevated IL-7 levels,

which stimulated thymus-dependent differentiation of bone

marrow-derived progenitor cells and thymus-independent

peripheral expansion of mature T cells, thereby upregulating T

lymphocyte development and inducing bone loss (174). IL-7

secreted by osteoblasts is identified as a key cytokine for B

lymphocyte differentiation, in addition to T lymphocytes (175),

and is regulated in cells that overexpress osterix via the mechanistic

target of rapamycin complex 1 (mTORC1) pathway (176, 177).

Bone loss was caused by the IL-7-induced proliferation of B

lymphocytes in wild-type rodents, while bone trabeculae and

bone volume were substantially increased in IL-7R-deficient mice,

indicating that the IL-7-induced increase in B lymphocyte

production was also associated with bone resorption (49). Recent

research suggests that IL-7/IL-7R may regulate the specific

mechanisms of CTSK, NFATc1, and MMP9, as well as the

phosphorylation of p38 and Akt, by activating the c-Fos/c-Jun
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pathway, thereby increasing the number of osteoclasts and amount

of bone resorption in RANKL-stimulated macrophages (178). On

the other hand, IL-7 can also directly stimulate osteoclast formation

by activating STAT5 via a pathway independent of RANKL (50).

Nonetheless, other studies on IL-7 suggested a mechanism

contrary to the above, and IL-7 may be a potential osteoclast

formation inhibitor in vitro. One study found that IL-7 inhibited

osteoclast formation in bone marrow cells from mice co-cultured

with CSF-1 and RANKL (179), and another study found that IL-7-

deficient mice had a significant increase in the number of

osteoclasts and a significant decrease in bone trabecular bone

mass compared with wild-type controls (180). The specific causes

for the divergent conclusions should be investigated further.
Interleukin-8

IL-8 is a cytokine produced by osteoblasts that promotes

RANKL-induced osteoclastogenesis in an autocrine manner,

which can be inhibited by anti-IL-8 antibodies or IL-8 receptor

inhibitors in vitro (51). Although human osteoclasts produce high

levels of IL-8, the research on IL-8 is still lacking. One of the

possible reasons is the lack of IL-8 equivalent in rodents, which

makes it difficult to model human diseases. Therefore, finding an

effective IL-8 equivalent in rodents may be the direction for future

IL-8 research.
Interleukin-10

IL-10 is a type of Th2 cytokine. The levels of IL-10 were

substantially lower in osteoporosis patients than in healthy

individuals (181). However, IL-10 levels increased in osteoporosis

patients following anti-osteoporosis treatment (182). Animal

experiments in which the IL-10 expression was significantly

reduced in an osteoporosis model of postmenopausal mice (183)

and IL-10-deficient mice exhibited decreased bone mass, increased

mechanical fragility, and inhibited bone formation (184), indicating

a correlation between IL-10 levels and the development

of osteoporosis.

IL-10 is produced by activated T and B lymphocytes (185) and

is a direct inhibitor of both osteoclast and osteoblast formation

through the RANK/RANKL/OPG axis.

IL-10 inhibits the early phases of osteoclast progenitor cell

differentiation into osteoclast precursors during osteoclast

differentiation (52). Specifically, IL-10 inhibits osteoclast

differentiation by increasing OPG to inhibit RANKL expression

and by decreasing RNAK and M-CSF expression (53). IL-10

inhibits RANK-induced osteoclast formation and inhibits calcium

signaling, downstream of RANK, via TREM-2 transcriptional

inhibition (54). IL-10 also inhibits NFATc1 expression and

nuclear translocation by inhibiting c-Fos and c-Jun, thereby

inhibiting osteoclastogenesis (55). In OVX mice with

osteoporosis, the number of regulatory B (B10) cells that produce

IL-10 decreased and the number of IL-17-producing Th17 cells

increased compared with control mice. However, the
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transplantation of B10 cells reduced the number of Th17 cells

and inhibited the development of osteoporosis (186), suggesting

that B10 cell therapy for osteoporosis may be feasible.

For osteogenic differentiation, IL-10 inhibits bone marrow

osteogenic activity by preventing bone mineralization in mouse

bone marrow cells and inhibiting the synthesis of bone proteins,

including alkaline phosphatase (ALP), type I collagen, and

osteocalcin (56).
Interleukin-12

IL-12 is an anti-osteoclast factor that inhibits RANKL-induced

osteoclastogenesis through the suppression of NFATc1 (61) or the

promotion of osteoblast apoptosis via the Fas/FasL pathway (62).

IL-12 also has a synergistic effect with IL-18 in the mechanism of

osteoclast apoptosis induction, as will be discussed in the following

section. There are not many studies on IL-12 in osteoporosis, and

further exploration is still needed.
Interleukin-13

IL-13 is a Th2 anti-osteoclast cytokine which is analogous to IL-

4. IL-4 and IL-13 share a specific endothelial cell surface IL-4/IL-13-

receptor complex so they have common biological effects and

similar downstream intracellular signaling pathways. IL-13

inhibits osteoclast formation by activating STAT6 in endothelial

cells to induce OPG expression (36). By inhibiting osteoblast

cyclooxygenase-2 (COX-2)-dependent prostaglandin synthesis,

IL-13 and IL-4 can also inhibit bone resorption (63).
Interleukin-15

IL-15, similar to IL-7, is a member of the IL-2 super family and

shares many mechanisms of action with IL-2. However, IL-2 cannot

be substituted for its function in promoting the differentiation of

osteoclast progenitors into osteoclast precursors (64). Additionally,

IL-15 also has an indirect stimulatory effect on osteoclast formation,

operating synergistically with RANKL to induce osteoclast

formation primarily via activating extracellular signal-regulated

kinase (ERK) to mediate this synergistic effect (65). In a co-

culture environment with mouse bone marrow cells and

osteoblasts, IL-15 treatment also increased caspase3 expression in

NK cells in a dose-dependent manner, thereby promoting

osteoblast apoptosis (66).
Interleukin-17/interleukin-25

Interleukin-17 (IL-17), a cytokine secreted by Th17 cells, is

closely associated with osteoclastic effects given that Th17 cells

represent a significant subpopulation of osteoclasts. In the bone

marrow cells of estrogen-deficient OVX mice, both the number of

Th17 cells and the level of circulating IL-17 were elevated, and
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increased IL-17 levels promoted the expression of pro-osteoclastic

cytokines such as TNF-a, IL-6, and RNAKL in osteoblasts, thereby

inducing bone loss (67). Estrogen or anti-IL-17 treatments can

alleviate the symptoms of bone loss (67, 68). Administration of an

anti-IL-17 neutralizing antibody can promote the regeneration of

new bone in osteoporotic fractures by enhancing the activity of

FOXO1 and ATF4, enhancing the expression of osteogenic

markers, and decreasing the oxidative stress in the injured

fraction (69). The fact that Th17 cells and IL-17 levels are

associated with bone loss has also been verified in humans, where

both Th17 cell frequency and IL-17 levels were higher in

postmenopausal women than in premenopausal women (70). The

result also correlates with reduced bone mineral density (70). IL-17

not only induces osteoclasts by elevating the expression of

osteoclastic cytokines RANKL (71), TNF-a, IL-1, IL-6, and IL-8

(72, 73), but also promotes autophagy of osteoclast precursors and

osteoclast formation via JNK signaling in a low dose-dependent

manner (74).

However, it appears that the function of IL-17 changes with

increasing concentrations. Other studies have demonstrated that

high concentrations of IL-17 inhibited the differentiation of

osteoclast precursors into osteoclasts (75). High concentrations of

IL-17 inhibited matrix protein hydrolysis during bone resorption by

downregulating the expression of histone K and MMP-9 in

osteoclasts (75). In addition, IL-17 can induce proliferation,

migration, motility, and osteoblast differentiation of human bone

marrow-derived mesenchymal stem cells (hMSCs) in a manner

dependent on ROS and MEK/ERK (76). At the same time, IL-17

induces the expression of M-CSF and RANKL on hMSCs to support

the in vitro and in vivo osteoclast formation process (76).

In addition to the well-researched effects on the osteoclastic

process, the role of IL-17 in osteoblast differentiation has also been

examined. IL-17 has a positive effect on the early differentiation of

primary osteoblasts, as well as an inhibitory effect on osteoblast

calcification (77), and it inhibits osteoblast differentiation and bone

regeneration processes in rodents (78). In vitro, high concentrations

of IL-17 also induce osteoblast searing via the NLRP3 inflammatory

vesicle pathway, triggering the release of IL-1 and RANKL and

disrupting bone metabolism even further (79).
Interleukin-18

IL-18, also known as interferon-gamma-inducing factor (IGIF),

is a pleiotropic pro-inflammatory cytokine with similar functions to

IL-12 (187). In the case of TNF-a-induced Fas, analogous to IL-12,

IL-18 can inhibit TNF-a-induced osteoclastogenesis by mediating

myeloid apoptosis via Fas/FasL (80, 81). In contrast, another study

demonstrated that anti-FasL antibodies were unable to completely

inhibit apoptosis induced by the pathway described above (82). In

the presence of TNF-a, IL-12 and IL-18 induce nitric oxide (NO)

production in a synergistic manner, which also leads to apoptosis

(82). Additionally, IL-18 induces the production of IFN-g and GM-

CSF in T cells, inhibiting osteoclast formation indirectly (83, 84).

IL-18 binding protein (IL-18BP) is an antagonist of IL-18

with anti-inflammatory properties. The treatment of OVX mice
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with IL-18BP prevented bone loss, and in women with osteoporosis,

IL-18BP levels decreased while serum IL-18 levels increased

(188), suggesting that IL-18BP may be used to treat

postmenopausal osteoporosis.
Interleukin-19

Interleukin-19 (IL-19) is an inhibiting cytokine that belongs to

the IL-10 family. By inhibiting NF-kB and p38MAPK activation

and c-Fos expression, IL-19 inhibits RANKL-induced osteoclast

differentiation. IL-19 also maintains the osteoclast precursor state,

including monocytes and macrophages in an autocrine manner

(85). In addition, IL-19 can promote the release of other pro-

inflammatory cytokines such as TNF-a, IL-1b, and IL-6 while

upregulating RANKL expression in synovial fibroblasts, which

further promote the osteoclasts differentiation in arthritis (189).

However, the research on IL-19 in osteoporosis is still needed to

find more cytokines interactions and therapeutic targets.
Interleukin-20

IL-20, a member of the IL-10 family, has been shown to have

higher serum concentrations in osteoporotic patients than in

healthy control patients, and to be substantially upregulated in

the serum of OVX mice (86). Anti-IL-20 monoclonal antibody

treatments can inhibit M-CSF and RANKL-induced osteoclast

differentiation in vitro (86) and may represent a potential therapy

for preventing osteoporotic bone loss. In particular, IL-20 induces

the expression of RANK in M-CSF-derived osteoclast precursors

and promotes the transduction of osteoclastic signals such as NF-

kB, TRAF6, STAT3, NFATc1, and c-Fos (86). IL-20 also induces the
expression of cathepsin G in osteoclasts, thereby increasing the level

of soluble RANKL (86). IL-20 can also upregulate RANKL

expression in osteoblasts via an autocrine mechanism (86).

Another study demonstrated that IL-20 inhibited the survival and

differentiation of osteoblasts by upregulating sclerostin and

downregulating osterix, RUNX2, and OPG (87).
Interleukin-23

IL-23, a member of the IL-6/IL-12 family, can participate in T-

cell-mediated osteoclast formation by inducing the differentiation

of naive CD4(+) T cells into Th17 cells, which secrete IL-17 for

further action (88). Therefore, it is called the IL-23/IL-17 axis. In a

lipopolysaccharide-induced model of inflammatory bone

destruction, mice deficient in IL-17 or IL-23 exhibited

significantly less bone loss (88). In addition, IL-23 has a pathway

independent of IL-17 that modulates osteoclast differentiation by

upregulating RANK expression in bone marrow precursor cells (89)

and RANKL expression in CD4(+) T cells (90). However, the role of

IL-23 on bone in vivo is also controversial, as one study discovered

that IL-23 indirectly inhibited osteoclast formation in vitro in a CD4

(+) T lymphocyte-dependent and dose-dependent manner (91). IL-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1222129
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1222129
23 can also increase bone mass in long bones by limiting resorption

of immature bone formation below the growth plate (91).
Interleukin-27

IL-27, also a member of the IL-6/IL-12 family, functions via the

IL-27R (IL-27R/WSX-1) and gp130 complexes. IL-27 is also a

potent anti-osteoclastogenic factor that inhibits RANK

downstream MAPK and NF-kB signaling pathways to eliminate

RANKL-induced c-Jun and NFATc1 expressions (92). In osteoclast

precursors, IL-27 downregulates TREM-2 co-stimulatory receptor

expression and thereby inhibits NFATc1 action (92). In addition,

IL-27 can inhibit osteoclast formation by STAT1-dependently

downregulating the transcription factor c-Fos (93). In addition,

another study discovered that IL-27 inhibited the secretion of

RANKL and sRANKL via STAT3 in the surface of CD4(+) T cells

(94). In recent years, a new study determined that IL-27 affected

both osteoblasts and osteoclasts through early growth response-2

(Egr-2) and that IL-27 treatment in OVX mice led to the loss of

bone trabecular structures and the preservation of cortical bone

parameters (95). The reason for this is that IL-27 inhibits the

differentiation of Th17 cells via the suppression of the

transcription factor RORgt, activates Egr to induce IL-10-

producing Tr1 cells, and inhibits osteoblast apoptosis by inducing

anti-apoptotic factors such as MCL-1 via Egr-2 (95). IL-27 also

inhibits osteoclastogenesis in an Egr2-dependent mechanism. It

upregulates the expression of the RNAKL repressor Id2, which was

also demonstrated in female patients with osteoporosis whose

serum IL-27 levels were reduced along with decreased Egr2

expression (95), suggesting a potential new anti-osteoporosis

treatment strategy.
Interleukin-29

IL-29, also known as interferonl1 (IFNl1), is a member of the

IFN family along with IL-28A and IL-28B, which shares the same

receptor complex (IL-28R1/IL-10R2), activates the downstream

JAK-STAT signaling pathway upon binding, and transcribes

numerous IFN-related genes (190). In vitro and in vivo, IL-29

derived from dendritic cells inhibits osteoclast formation and

bone resorption activity (96). IL-29 inhibits RANKL-induced

osteoclast formation by activating the STAT signaling pathway,

blocking NF-kB activation and NFATc1 translocation, and

repressing osteoclast gene expression (97).
Interleukin-32

IL-32 belongs to a class of inflammatory cytokines that elicits a

variety of other cytokines, of which IL-32g is one isoform. Age-

related increases in bone formation and osteogenic capacity were

observed in mice that overexpress IL-32g (98). They were protected
from OVX-induced osteoporosis more than wild-type mice, which

may be mediated by the upregulation of miR-29a (98). There is also
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a correlation between reduced plasma IL-32g levels and BMD in

humans (98), suggesting a protective mechanism for IL-32 against

bone loss.
Interleukin-33

IL-33, a member of the IL-1 family with the specific receptor

orphan IL-1 receptor ST2 (IL-1R-like 1), is an osteoprotective factor

that inhibits osteoclast formation by at least three mechanisms.

Postmenopausal women with osteoporosis had substantially lower

IL-33 levels than healthy control women (191). IL-33 interacts with

its specific receptor ST2 and inhibits RANKL-induced NFATc1

expressions and nuclear translocations by regulating the expression

of Blimp-1 and interferon regulatory factor-8 (IRF-8), thereby

suppressing RANKL-induced osteoclast formation and osteoblast-

related gene expression (99, 100). According to another study, IL-33

induced osteoclasts apoptosis by increasing the expression of pro-

apoptotic molecules such as Bcl-2-associated X protein (BAX), Fas,

FasL, and Fas-associated death structural domains (101). In the

bone marrow culture state, IL-33 induces mRNA expression of GM-

CSF, IL-4, IL-13, and IL-10 to inhibit osteoclast formation (192).

The IL-33/ST2 signaling pathway on the aforementioned anti-

osteoclast production, which is also associated with vitamin D

(100). IL-33 inhibited TNF-induced osteoclast formation and

bone resorption, as shown in a mouse model in which mice that

were overexpressing TNF-a and treated with IL-33 exhibited a

significant reduction in bone loss (102). Osteoprotective IL-33

induces osteoclast precursors to differentiate into CD206(+)

alternatively activated macrophages (AAM) rather than

osteoclasts in an autocrine manner via GM-CSF (102). In another

study, mice lacking the ST2 receptor displayed typical bone

formation, but increased bone resorption and decreased bone

trabecular bone mass (193). Additionally, IL-33 stimulates

osteoblast function, promotes matrix mineral deposition, and

reduces sclerostin mRNA levels in primary osteoblasts treated

with ascorbate for an extended period of time (103).
Interleukin-34

M-CSF, an essential cytokine for osteoclast formation, binds to

the receptor c-Fms (CSF-1R) to exert its biological effects.

Interleukin-34 (IL-34), a second ligand that can bind to c-Fms,

can replace the function of M-CSF and is another crucial factor in

osteoclast formation. In combination with RANKL, it can induce

osteoclast differentiation and bone resorption, and systemic

administration of IL-34 to mice decreased trabecular bone mass

(104). Another study found that IL-34 promoted the proliferation

and differentiation of bone marrow macrophages toward osteoclasts

by increasing the expression of NFATc1, stimulating the expression

of p-STAT3, and inhibiting the expression of Smad7 without M-

CSF (105). In addition, a recent study discovered that low-dose IL-

34 regulated hBMSCs osteogenesis and enhanced fracture healing in

part via the PIK/AKT and ERK signaling pathways but had no effect

on osteoclast formation in vitro or osteoporosis in vivo (106).
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Interleukin-35

IL-35, belonging to the IL-12 family, is a novel class of anti-

inflammatory and immunosuppressive factors. In bone

immunology, IL-35 is a direct inhibitor of osteoclast formation,

preventing TNF-induced osteoclast formation and bone resorption

in vitro and inhibiting osteolysis in vivo (107). Specifically, IL-35

inhibits NFATc1, c-Fos, and TRAP through the NF-kB and MAPK

pathways, which also inhibits TNF-induced osteoclast formation

and promotes apoptosis through JAK1/STAT1 activation (107).

Another imbalance in osteoporosis is the imbalance between bone

and adipogenesis (194). MSCs have the ability to differentiate into

osteoblasts and adipocytes at the same time, which is affected by

cytokines and hormone regulation in the microenvironment (195). IL-

35 stimulates the proliferation of MSCs while inhibiting their apoptosis

or differentiation toward adipogenic. Specifically, it increases the

expression of b-catenin and Axin2, which are essential factors in the

differentiation of MSCs into osteoblasts in Wnt/b-catenin-PPARg
pathway (108). IL-35 controls the equilibrium between osteogenic

and lipogenic differentiation of progenitor cells, suggesting its

potential application in osteoporosis and obesity intervention.

IL-35 can also be involved in RANKL and M-CSF-induced

osteoclasts and angiogenesis via the Th17/IL-17 axis, exhibiting

inhibitory effects in both metabolic processes commonly associated

with osteoporosis (196), thereby indicating a potential

therapeutic direction.

However, it has also been discovered that IL-33 stimulated the

phosphorylation of relevant signaling molecules such as Syk,

phospholipase Cg2, Gab2, MAP kinases, TAK-1, and NF-kB in

human CD14(+) monocytes via ST2, thereby promoting functional

osteoclast formation, and also increased the expression of various

osteoclast differentiation factors including TRAF6, NFATc1, c-Fos,

C-Src, histone K and calcitonin receptor, and ultimately also

induced bone resorption (109).
Interleukin-37

IL-37, a member of the IL-1 family, has received relatively less

attention than the above cytokines. Nonetheless, its roles in inhibiting

osteoclast activity and in bone resorption have been identified. IL-37

inhibits osteoclast formation and pathological bone resorption induced

by lipopolysaccharide (110). IL-37 also plays a significant function in

the osteogenic differentiation of MSCs, significantly increasing the

expression of osteoblast specific genes to accelerate bone healing in a

rat skull defect model via PI3K/AKT activation, but the specific

mechanism needs further research (111).
Interferon

IFN are categorized as IFN-a, IFN-b, and IFN-g, and each has a

distinct function in bone remodeling.

IFN-a and IFN-b have inhibitory effects on RANKL-induced

osteoclast formations, which can inhibit RANKL-induced
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osteoclastogenesis by reducing c-Fos (112, 113). A study also

showed that IFN-b inhibited osteoclastogenesis by increasing NO

production and the inducible nitric oxide synthase (iNOS) signaling

pathway (114).

IFN-g acts on both osteoblasts and osteoclasts (197), with

osteoblasts producing modest levels of IFN-g to stimulate the

expression of osteoblast differentiation genes such as Runx2,

osterix, ALP, and osteocalcin, further leading to osteoblast

differentiation (115, 116). The knockdown of the IFN-g receptor

simultaneously inhibits this effect (117). IFN-g can downregulate c-

fms expression and thus counteract the effect of M-CSF on

osteoclast precursors (118), as well as inhibit NFATc1 expression

by stimulating TRAF6 degradation through the ubiquitin/

proteasome system, which in turn inhibits downstream JNK and

NF-kB (8, 197). IFN-g can also mediate osteoclast apoptosis

through the Fas/FasL signaling pathway (119). The above three

pathways can inhibit the differentiation and function of osteoclast.

IFN-g also has a positive effect on osteoclastogenesis in late

differentiation. It can stimulate osteoclast fusion by the expression

of dendritic cell-specific transmembrane protein (DC-STAMP)

through the upregulation of NFATc1 and c-Fos (120) and can

promote osteoclastogenesis by CXCL10/Interferon-gamma induced

protein 10 (IP-10) secretion by macrophages to stimulate RANKL

and TNF-a secretion by T cells (121).
Chemokine

Numerous studies have demonstrated that chemokines influence

the differentiation and function of osteoblasts and osteoclasts,

regulating bone formation and resorption via autocrine or paracrine

mechanisms. The current status of research on the role of various

chemokines in bone remodeling has been systematically reported in

this article (198). Among these chemokines, CCL2, CCL3, and CCL20

are the most researched types and we will focus on these three

chemokines. CCL2 and CCL3 function as pro-osteoclastic cytokines,

stimulating the osteoclastogenesis (198). In osteoporosis, CCL2 binding

to its receptor C-C chemokine receptor-2 (CCR2) and then activates

NF-kB and ERK1/2 signaling, which further lead to increase of RANK

expression and RANKL-induced osteoclastogenesis (199). Patients

with postmenopausal osteoporosis showed a significant increase in

serum CCL3 compared with other groups, indicating that CCL3 may

be a potential biomarker to predict disease severity of postmenopausal

osteoporosis (200). CCL20 can not only stimulate the

osteoclastogenesis but can also act on osteoblast differentiation (198).

Other chemokines are not described in detail here.
Conclusion

The cytokines network plays a critical role in maintaining the

balance of bone resorption and formation between osteoclasts and

osteoblasts. Dysregulation of cytokines may result in bone diseases

such as osteoporosis. Among these cytokines, TNF-a, IL-1, IL-6, IL-7,
IL-8, IL-11, IL-15, IL-17, and IL-20 belong to osteoclastogenic
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cytokines, mainly promoting osteoclastogenesis. Meanwhile, anti-

inflammatory cytokines, including IL-3, IL-4, IL-10, IL-13, IL-18,

IL-19, IL-27, IL-29, IL-32, IL-33, IL-37, and IFN, function as anti-

osteoclastogenic cytokines inhibiting the process of osteoclastogenesis

(Figure 2). Although there has been a great deal of research focus on

the effect of proinflammatory cytokines in the bone remodeling of

osteoporosis, the cross talk between bone and immune system

remains complex, leading to the difficulty of transformation into

clinical practice. However, owing to the effort made by many

scientists, some molecular-targeted drugs are in clinical trials and

have achieved certain results. For example, benzydamine, a non-

steroidal anti-inflammatory drug, can inhibit osteoclast

differentiation and bone resorption through downregulating the

expression of IL-1b (201). Oral administration of lactulose could

downregulate pro-osteoclastogenic cytokines levels including TNF-a,
IL-6, RANKL, and IL-17 as well as upregulate the anti-inflammatory

cytokine IL-10 in OVX mice, which ameliorated estrogen deficiency-

induced bone loss in these mice (202). In this review, we discussed the

concrete effects of various cytokines in osteoblasts and osteoclasts

during bone remodeling in osteoporosis, summarizing the current

research and providing multiple therapeutic targets for further study.

Therefore, we hope our review is also helpful in the development of

osteoporosis research and treatment.
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FIGURE 2

The promotive and suppressive effects of different cytokines on osteoblasts and osteoclasts affecting their differentiation or function.
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