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Cell migration–inducing protein (CEMIP), also known as KIAA1199 and

hyaluronan-binding protein involved in hyaluronan depolymerization, is a new

member of the hyaluronidase family that degrades hyaluronic acid (HA) and

remodels the extracellular matrix. In recent years, some studies have reported

that CEMIP can promote the proliferation, invasion, and adhesion of various

tumor cells and can play an important role in bacterial infection and arthritis. This

review focuses on the pathological mechanism of CEMIP in a variety of diseases

and expounds the function of CEMIP from the aspects of inhibiting cell

apoptosis, promoting HA degradation, inducing inflammatory responses and

related phosphorylation, adjusting cellular microenvironment, and regulating

tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also

summarized. The various functions of CEMIP show its great potential

application value.
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1 Background

In 1999, Nagase et al. (1) first reported the gene cell migration–inducing protein

(CEMIP) with unknown functions. Four years later, Abe et al. (2) analyzed the genes of

patients with hereditary deafness using microarray technology by constructing an inner ear

complementary DNA (cDNA) library and, for the first time, confirmed that mutations of

the CEMIP gene locus may be the cause of the disease. The coding gene of CEMIP is located

on chromosome 15q25.1 and encodes a 153-kDa protein containing 1,361 amino acids (2,

3). Because of the difficulty of purifying the protein, its atomic structure has not yet been

fully resolved. However, with the joint efforts of Birkenkamp-Demtroder et al. and Yoshida

et al., we have gained some information of the protein structure about the CEMIP (4, 5).
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CEMIP contains a signal peptide composed of 30 amino acids, one

G8 domain, two GG domains, four PbH1 repeats, and seven

glycosylation sites (4, 5). In addition, it has a key sequence that

keeps it in the endoplasmic reticulum (ER) and interacts with heat

shock protein A5 (HSPA5) (Figure 1) (6, 7).

CEMIP, also known as KIAA1199 and hyaluronan-binding

protein involved in hyaluronan depolymerization (HYBID), was

first found to be expressed in the cochlea and, subsequently, in

other human organs, particularly in the skin and cartilage, and

secretory CEMIP was also detected in serum (2). At the subcellular

level, CEMIP was found to be accumulated in the ER, which was

confirmed by electron microscopy (8). In 2013, Evensen et al. (6)

found that the secretion of CEMIP needs to pass through the ER,

which forms a stable complex with binding immunoglobulin protein

(BiP). They identified a novel sequence in CEMIP that is necessary

for its ER localization, BiP interaction, and enhanced cell migration.

Studies involving CEMIP have focused on the field of oncology,

which plays an important role in promoting proliferation and

metastasis in a variety of tumors. Abnormal expression of CEMIP

can also regulate non-neoplastic diseases, such as inflammation and

infection. Studies have shown that the anti-CEMIP monoclonal

antibody (anti-CEMIP), ipriflavone, and paclitaxel (PTX) combined

with the latest nanosphere-targeted drug delivery technology can

make CEMIP as a therapeutic target to inhibit inflammation or

tumor development (9, 10).

Summarizing the pathophysiological mechanism of CEMIP in

diseases has important guiding significance for exploring the

diagnosis and treatment strategies targeting CEMIP. The critical

role of CEMIP in promoting tumor migration and invasion has

been identified by numerous studies, but the precise molecular

mechanism is still unknown. Research on CEMIP in non-neoplastic

diseases is increasing, including infection, fibrosis, and activation of

immune cells, especially in inflammatory osteoarthritis (OA). This

suggests that CEMIP may have more biological functions.

Therefore, we reviewed the regulatory mechanisms and biological

activities of CEMIP to understand its current research progress. In

addition, on the basis of our current understanding of CEMIP, we

look forward to its potential applications and future research focus.
2 Regulation of CEMIP expression

The expression of CEMIP is regulated by inflammatory factors,

transcription factors, noncoding RNAs, and histone methylation.

However, there are also some disputes in these studies (Figure 2).
2.1 Inflammatory factors

Inflammation is an important immune defense mechanism in

the body. The pro- and anti-inflammatory factors produced in this

defense process work together to maintain the homeostasis of the

cellular microenvironment. Interleukin-1b (IL-1b), IL-6, tumor

necrosis factor–alpha (TNF-a), and transforming growth factor–

beta (TGF-b) are involved in regulating the activity of CEMIP.
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CEMIP participates and plays an important role in the process

of IL-1b–mediated pro-inflammatory. Ohtsuki et al. (11) used IL-

1b, TNF-a, IL-6, and IL-8 to stimulate chondrosarcoma cells

(OUMS-27) for 6 h, and the results showed that CEMIP

expression was significantly increased and peaked at 12 h. The

expression of CEMIP may be induced by IL-1b/IL-1R binding to

activate extracellular signal-regulated kinase (ERK) phosphorylation

and to enhance nuclear translocation of nuclear factor kappa B (NF-

kB). Another study showed that the IL-1b–induced Wnt/b-catenin
pathway activation was inhibited by KIAA1199 silencing, but the

molecular mechanisms of CEMIP on the IL-1b–induced Wnt/b-
catenin pathway were unknown (12).

In OA, IL-6 stimulates chondrocytes to produce CEMIP, which

increases the level of osteoarticular inflammation with increased

degradation of high–molecular weight hyaluronan (HMW-HA). IL-

6 activating NF-kB via phosphatidylinositol 3-kinase (PI3K)/

protein kinase B (PKB/AKT) signaling is thought to be the main

pathway for inducing CEMIP expression in rheumatoid arthritis

(RA) fibroblast-like synoviocytes (FLSs) (13). Combined treatment

with IL-6 or TNF-a leads to the significantly increased expression

of CEMIP (14).

Shimizu et al. (15) stimulated chondrocytes with eight cytokines

(TNF-a, TGF-b, IL-1a, histamine, Insulin-like growth factor-1

(IGF-1), vascular endothelial-derived growth factor (VEGF), basic

fibroblast growth factor (bFGF), and prostaglandin E2 (PGE2), only

TNF-a stimulated chondrocytes to express CEMIP. However, there

are some controversies in these studies. For example, the highest

level of CEMIP was induced by IL-1b in chondrocytes, whereas the

highest level of CEMIP was induced by IL-6 and TNF-a in synovial

fibroblasts (16). Stimulation of chondrosarcoma cells with cytokines

IL-1b, TNF-a, IL-6, and IL-8 separately resulted in a significant

increase in CEMIP, whereas treatment with a mixture of pro-

inflammatory cytokines (TNF-a, IL-1b, and IL-6) in human

dermal fibroblasts decreased the CEMIP messenger RNA

(mRNA) levels and protein expression (17).

In early tumors, the TGF-b pathway induces apoptosis and

inhibits tumor cell proliferation. Instead, by late stage, it has a

tumor-promoting effect by regulating genomic instability,

epithelial–stromal transition (EMT), new angiogenesis, immune

escape, cell motility, and metastasis (18). Deroyer et al. (19)

found that TGF-b upregulates CEMIP through the activin

receptor-like kinase (Alk) 5/plasminogen activator inhibitor

(PAI)-1 (Alk5/PAl-1) pathway in dedifferentiated chondrocytes

and is, therefore, a pro-fibrotic mediator. Nagaoka et al. (20),

however, came to the opposite conclusion, finding that CEMIP

expression was reduced in skin fibroblasts after TGF-b stimulation,

reducing fibrosis (20, 21).

The different phenomena mentioned above might be explained

by the use of different cell lines. In addition, using primary cell lines

can give a more accurate representation of the body’s inflammatory

response as compared to the outcomes obtained with tumor cell

lines. Although the existing evidence cannot fully explain the

molecular mechanisms of the regulation of CEMIP expression by

inflammatory factors, existing reports have confirmed that there is a

significant correlation between them. Revealing the molecular
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mechanism of the regulation of CEMIP by inflammatory factors is

the focus of future research.
2.2 Transcription factors

Transcription factors also play an essential role in regulating

CEMIP (22). In a study of gastric cancer (GC), activating

transcription factor 3 (ATF3) inhibited the activity of CEMIP

promoter (23). When ATF3 is low-expressed, CEMIP expression

increases, which promotes the proliferation and migration of GC

cells and, conversely, inhibits the progression of GC. ATF3-short

hairpin RNA/AGS implantation in nude mice accelerates tumor

growth and increases the probability of lung metastasis of GC cells.

As a protein that protects against oxidative stress and activates

protective autophagy, ATF4 plays an important role in the

regulation of CEMIP expression. From the experiments of Yu

et al. (24), it was found that ATF4 has a positive regulatory effect

on CEMIP, and, from the conclusion of the rescue experiments,

both play a function of anti-anoikis. Dual-luciferase reporter assay

also confirmed that ATF4 may directly bind to the CEMIP
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promoter region, thereby initiating the transcriptional regulation

of CEMIP. In both studies, ATF3 and ATF4 belong to the same

family and bind to the CEMIP promoter region but play opposite

roles. ATF3 inhibits CEMIP promoter activity, whereas ATF4

promotes CEMIP promoter activity. They have different

physiological functions. This difference may be due to the

different binding sites of the two transcription factors, but the

exact mechanism is still unknown.

Repressor element 1 (RE1) silencing transcription factor

(REST) is a transcription factor that regulates neuronal-associated

genes. In recent studies on breast cancer, it is found that REST

directly binds to the RE1 site of CEMIP gene, inhibits CEMIP

expression, and weakens the proliferative capacity of breast cancer

cells (25). There were four NF-kB binding sites in the promoter

region of CEMIP. The sequence of binding sites all contained a

sequence with continuous bases, and the highest binding site score

was a TATA box between −32 and 23 (26).

The regulatory functions of some transcription factors

mentioned above provide us with new insights into the regulatory

mechanism of CEMIP. Some sequences in the promoter region of

CEMIP may promote or inhibit the transcription of CEMIP.
FIGURE 1

The protein structure of CEMIP. The numbers refer to the amino acid positions that flank the different domains.
FIGURE 2

Cytokines and signaling pathways regulating the expression of CEMIP.
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Further studies are needed to reveal the regulatory mechanism of

CEMIP transcription.
2.3 Non-coding RNA

Non-coding RNAs (ncRNAs) include micro-RNAs

(miRNAs), circle RNAs (circRNAs), and long ncRNAs

(lncRNAs). Studies have shown that more than half of the DNA

of higher organisms is transcribed into RNA, the vast majority of

which is ncRNAs. Although the mechanisms about ncRNA

remain unclear, we can know that it plays an important role in

tumor progression.

miRNA is a kind of ncRNAs. It can regulate the target mRNA

by destroying its stability and inhibiting its translation. Studies have

proved that there are more than 10 miRNAs that combine with

CEMIP 3′untranslated region, such as miR-148a-3p, miR-4306,

miR-296-3p, miR-4677-3p, miR-486-3p, miR-4656, miR-140-5p,

miR-17-5p, miR-216a, miR-1248, miR-486-5p, miR-29c-3p, and

miR-34c-5p (27). After being combined with these miRNAs, the

expression level of CEMIP is downregulated that affects the

progression of tumor cells. In addition, some lncRNAs and

circRNAs were also found to be able to bind to these miRNAs in

these studies, such as LINC00958 (28), circ_001653 (29), lncRNA

CASC19 (30, 31), HCP5 (32), circ_0004585 (33), and circ-BPTF

(34–36) (Table 1). They acted as competing endogenous RNAs

(ceRNAs) to sponge miRNAs and resulted in low expression of

miRNAs. Moreover, Musashi RNA-binding protein 1 (MSI 1), a

specific protein, could bind to miR-34c-5p, which blocks the

inhibition of miR-34c-5p on CEMIP expression (Table 1). After

that, the expression level of CEMIP was significantly upregulated.

Regulating the expression level of these ncRNAs can indirectly

regulate the expression of CEMIP, thereby alleviating the
Frontiers in Immunology 04
progression of tumors or other diseases, which is expected to be a

new treatment strategy.
2.4 Histone methylation modifications

Histone methylation can regulate gene transcription. Hsieh

et al. (44) found that increased trimethylation of lysine on histone

H3 (H3K27me3) is associated with the inactivation of CEMIP,

which can reduce the growth and migration of tumor cells in triple-

negative breast cancer (TNBC). Hypoxia-inducible factor 2a (HIF-

2a) is induced by hypoxia and bounds to the promoter of CEMIP

while inhibiting the demethylation of Jarid1A, thereby increasing

the effect of H3K4me3 on the CEMIP promoter and the expression

of CEMIP (45).
2.5 Hypoxia

In the process of tumorigenesis and development, because of

the rapid proliferation of solid tumor tissues and the untimely and

inadequate construction of blood vessels, the overall state of

hypoxia is often presented in the process of the growth of tumors

(46). Another characteristic of tumor cells is that, even under

aerobic conditions, they also undergo glycolysis to produce lactic

acid and to make cells infiltrate in an acidic environment (47). In

hypoxic and acidic environments, tumor cells and surrounding

normal cells often suffer apoptosis, and the cellular fragments and

chemokines produced during apoptosis cause inflammatory

reactions in surrounding tissues, leading to inflammatory cell

infiltration and the release of inflammatory factors (48).

The cellular response to hypoxia is generally regulated by the HIF

(49). As early as 2015, studies confirmed that there is a certain
TABLE 1 Summary of miRNAs that inhibit CEMIP expression and their corresponding target molecules.

miRNA Targeting molecules Related diseases Reference

miR-148a-3p NA Gastric cancer cells (37)

miR-4306 LINC00958 Osteosarcoma (28)

miR-296-3p NA Preeclampsia (38)

miR-4677-3p NA Gastric cancer (39)

miR-486-3p circ_001653 Intervertebral disc degeneration (29)

miR-4656 HCP5 Prostate cancer cell (32)

miR-140-5p CASC19 Colorectal cancer
Retinoblastoma

(30, 31)

miR-17-5p NA Gastric cancer (23)

miR-216a NA Colorectal cancer (40)

miR-1248 circ_0004585 PCa (33)

miR-486-5p circ-BPTF Lung cancer, papillary thyroid cancer, chronic obstructive pulmonary disease (34–36)

miR-29c-3p NA Gastric cancer (41)

miR-34c-5p MSI1 Colorectal cancer (27)
f

NA, not applicable.
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correlation between hypoxia and the expression of CEMIP. Evensen

et al. (45) found that CEMIP upregulation is ensured by

immunohistochemistry only in the part of the cancer cells in colon

cancer. HIF-2a is stably expressed under a hypoxic condition.

Meanwhile, HIF-2a directly combines with the CEMIP promoter

to increase the expression of CEMIP, whereas HIF-1a has no such

function. However, Wang et al. (50) found that CEMIP and HIF-1a
were both elevated, and there may be a certain correlation with the

expression of CEMIP and HIF-1a, showing significant differences in
TNM staging compared with patients with a low level of expression.

This was also confirmed by Oba et al. (51), which showed that

CEMIP and HIF-1a are significantly associated in cancer tissues, and

in vitro experiments confirmed that hypoxia induces the upregulation

of CEMIP and HIF-1a expression and enhances the migration ability

of pancreatic ductal cancer cells.

In the hypoxic environment, CEMIP and BiP are regarded as new

regulatory axes. CEMIP regulates the growth of tumor cells by

regulating downstream molecular BiP to reduce cell apoptosis,

activate autophagy, enhance glucose uptake, and survive in the

harsh environment of hypoxia. In vivo experiments have shown

that reducing the expression of BiP in a hypoxic environment leads to

the reduction of glucose uptake by tumor cells, thus leading to tumor

regression, which may become a potential therapeutic target (52).
3 Biological mechanism of CEMIP

The biological mechanism of CEMIP is multifaceted and

complex. As a newly discovered HA enzyme, CEMIP promotes
Frontiers in Immunology 05
the degradation of HA, and the degradation products will induce

local inflammation (21, 53–57). CEMIP affects the expression of

genes related to cell cycle regulation, proliferation, migration, and

apoptosis (29, 58, 59). CEMIP activates downstream regulatory

molecules by promoting the phosphorylation level of some

signaling molecules and further regulates target genes that relate

to tumor cell activities among multiple signaling pathways,

including Notch, Wnt/b-catenin, epidermal growth factor

receptor (EGFR), PI3K/Akt, signal transducer and activator of

transcription 3 (STAT3) (60–68). At the same time, CEMIP also

plays a complex and important role in promoting fibrosis and

bacterial infection (69, 70) (Figure 3).
3.1 CEMIP promoted HA degradation

HA is a high–molecular weight linear glycosaminoglycan

(GAG), which is a disaccharide unit GAG composed of D-

glucuronic acid and N-acetylglucosamine (71). Hyaluronic acid

(HA) is ubiquitous in vertebrate tissues and a major component

of the extracellular matrix (ECM), providing structural and

functional integrity to cells and organs (72). Skin is the main

determining organ for HA turnover, which contains about half

the HA throughout the body. The metabolic half-life of HA is 1–1.5

days, and roughly one-third of HA is renewed every day. HA is

rapidly depolymerized within tissues, ranging from supermolecules

of 1,000–10,000 kDa to medium-sized fragments of 10–100 kDa

present in the extracellular environment (73).

The molecules involved in HA metabolism are classified as

hyaluronan synthase and hyaluronidase. Hyaluronan synthase
FIGURE 3

Biological mechanism of CEMIP.
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includes HAS1, HAS2, and HAS3, and hyaluronidase includes

HYAL-1, HYAL-2, HYAL-3, HYAL-4, PH20/SPAM1, and

HYAL-P1 (74, 75). In recent years, it has been gradually

identified that CEMIP and transmembrane protein 2 (TMEM2)

also have the function of hyaluronidase, but their mechanisms of

action are not completely clear (76–78).

The studies show that CEMIP can promote the degradation of

HMW-HA to low–molecular weight hyaluronan (LMW-HA).

LMW-HA, formed by the degradation of CEMIP, is often

detected in some diseases (13, 16, 79, 80). However, the molecular

mechanism of CEMIP in the degradation of HA is not clear. The

protein structure of CEMIP does not have a domain similar to that

of the known HA enzyme, and it lacks HA-link modules (5, 76).

Although CEMIP is necessary in the process of HA decomposition,

it does not detect any HA enzyme activity in the absence of cells in

vitro. These results indicate that living cells are essential for CEMIP-

mediated HA degradation.

CEMIP plays an important role in normal osteogenic

development. CEMIP counteracts this inhibition by degrading

HMW-HA, which inhibits endothelial cell growth and

angiogenesis in the cartilage region. Therefore, the lack of CEMIP

is detrimental to normal osteogenesis (56). On the other hand,

excessive CEMIP secretion is not conducive to the accumulation of

HMW-HA, which reduces the viscosity of synovial fluid in the

inflamed joint cavity and reduces the protective buffer effect (16). It

has been confirmed in several studies that HMW-HA is anti-

inflammatory and anti-angiogenic, and LMW-HA is pro-

inflammatory and pro-angiogenic (81).
3.2 CEMIP promotes EGFR-associated
phosphorylation levels

EGFR contains extracellular domain of ligand binding,

hydrophobic region of single transmembrane and intracellular

domain containing tyrosine-protein kinase activity, so it is also a

class of receptor tyrosine kinases (RTKs) (82). EGF binds EGFR to

form a dimer that activates the intracellular protein kinase pathway

(83). This autophosphorylation can induce the phosphorylation of

downstream signaling molecules (84). Previous studies have shown

that the activation of EGFR signaling pathway is significantly

related to the proliferation and invasion of various parenchymal

tumor cells (85–89). CEMIP plays an important role in the process

of EGF-dependent EGFR phosphorylation. The phosphorylation of

one threonine residue site and three tyrosine residue sites in EGFR

is decreased in cell lines with CEMIP deficiency (90, 91).

Meanwhile, the phosphorylation levels of the major signaling

pathways downstream of EGFR, mitogen-activated protein kinase

kinase/ERK, PI3K/Akt, and STAT3 are seriously affected (11, 20, 35,

61, 63, 64, 91–93). Overexpression of CEMIP improves the

phosphorylation level of EGFR and the above downstream

signaling molecules, thus enhancing tumor cell metastasis (91).
Frontiers in Immunology 06
3.3 CEMIP regulates the
cellar microenvironment

The cellular microenvironment is the surrounding environment

where cells exist, including non-parenchymal cells, such as immune

cells like T and B cells, fibroblasts, vascular endothelial cells, and

ECM, such as structural collagen, adhesion proteins, proteoglycans,

and some soluble cytokines (94–98). All the above play a vital role in

cellular activities. It has been reported that CEMIP not only acts on

tumor cells to enhance their proliferation and metastasis ability but

also contributes to cell survival and growth by modifying the

structure or composition of the cell microenvironment (99, 100).

Although the current research studies still have certain restrictions

and cannot fully elucidate the function of CEMIP in the cellular

microenvironment, it is worth affirming that the influence of

CEMIP in the cellular microenvironment is of great significance

to the survival and development of cells.

3.3.1 CEMIP promotes tumor cell proliferation
and metastasis

In the process of tumorigenesis, we often use the TNM grading

to judge the difficulty of tumor cure (101). The higher the grade, the

worse the prognosis. The primary focus and distant metastases

often determine whether the tumor is progressing in the direction of

progression. In several studies, CEMIP has been confirmed as an

oncogene, and the abnormal expression of CEMIP can be detected

in most cancer cells, such as prostate cancer (PCa), small cell lung

cancer (SCLC), breast cancer, hepatocellular carcinoma (HCC), GC,

pancreatic cancer, colon cancer, pancreatic ductal adenocarcinoma

(PDAC), and laryngeal squamous cell carcinoma (LSCC) (50, 102–

115) (Figure 4A). In addition, the RNA expression in different

cancers from the Human Protein Atlas Dataset (https://

www.proteinatlas.org/) shows that the expression of CEMIP is

highest in the colorectal cancer (Figure 4B). In gain- and loss-of-

function experiments, the overexpression of CEMIP is accompanied

by increased proliferation and migration of tumor cells, and CEMIP

deficiency is associated with decreased in tumor cell proliferation

and migration (51, 61, 105, 116–118).

Rodrigues et al. (119) constructed organoid models of mouse

brains to elucidate the role of CEMIP from the three-dimensional

organ level. Breast cancer cells were artificially planted on the model

of brain organoid. Exosomes containing high concentrations of

CEMIP were extracted as exogenous CEMIP additives. The

exosomes with high concentrations of CEMIP and exosomes with

low concentrations or even lack of CEMIP were added to the

organoid models of the experimental group and the control group,

respectively, and the number of breast cancer cells that colonized and

invaded brain organoids in the experimental group was significantly

higher than that in the control group. Moreover, when xenografting

experiments were performed on mice, after adding exosomes with

high concentrations of CEMIP, the proliferation of vascular

endothelial cells in the brain was obvious, and vascular branches
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were significantly increased, which enhanced the colonization and

invasion ability of breast cancer cells.

3.32 CEMIP regulates immune cells
Once the tumor microenvironment is formed, numerous

immune cells, such as T cells, myeloid-derived suppressor cells

(MDSCs), macrophages, mast cells, granulocytes, and B cells, are

chemotactic here, constituting the main stromal cells of the tumor

microenvironment. The cells and molecules in the tumor

microenvironment are in a dynamic process, reflecting the

evolution of the tumor microenvironment. The end result is that

a large number of immunosuppressive cells, such as MDSCs,

regulatory T (Treg) cells, and tumor-associated macrophages

(TAMs), and a large number of anti-inflammatory factors,

such as IL-10 and TGF-b, are accumulated in the tumor

microenvironment to jointly promote tumor immune escape,

growth, and metastasis (48). CEMIP is also expressed in a variety

of immune cells, especially in Treg cells, dendritic cells (DCs), naive

B cells, memory B cells, and naive CD8+ T cells (117).

Zhang et al. (120) found that CEMIP specifically downregulated

the expression of MHC-I on the surface of murine and human

colon cancer cells, hindering the cytotoxicity of CD8+ T cells. In

addition, they also demonstrated that the combination

of CEMIP inhibition and immune checkpoint blockade (ICB)

impeded tumor growth and enhanced therapeutic efficacy in

colorectal cancer.

CEMIP has been shown to activate macrophages in the local

tumor microenvironment (117, 121). Macrophages in the tumor

microenvironment have the functions of drug resistance, promoting

tumor angiogenesis and anti-tumor immunity. CEMIP plays an

important role in guiding the penetration of tumor-associated

macrophages. Studies show that the survival rate of glioma

patients with high expression of CD163 (marker of macrophages)

is significantly reduced (122, 123). The transplantation of human

glioma cells knocked out of CEMIP into mice with CEMIP

deficiency limited the proliferation and migration of tumor cells,

and the penetration of macrophages in the glioma tissues of mice

with CEMIP deficiency was decreased.
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CEMIP also plays an important role in inducing macrophage

polarization. The balance of M1/M2 macrophage polarization

determines the fate of organs in inflammation or injury (124). M1

macrophages are pro-inflammatory cells and are polarized by

lipopolysaccharide alone or in combination with Th1 cytokines

[e.g., interferon gamma (IFN-g) and granulocyte-macrophage

colony-stimulating factor (GM-CSF)] and produce pro-

inflammatory cytokines such as IL-1b, IL-6, IL-12, IL-23, and
TNF-a (124). M2 macrophages have anti-inflammatory and

immunomodulatory effects and are polarized by Th2 cytokines

IL-4 and IL-13 to produce anti-inflammatory cytokines such as IL-

10 and TGF-b (124). CEMIP was associated with M2 macrophages,

and studies have shown a positive correlation between CEMIP and

M2 macrophages infiltration (117, 125). Both infiltration and

polarization of macrophages were attenuated in CEMIP knockout

mice (122). It has been reported that the Wnt/b-catenin pathway

enhances polarization of M2 macrophages, regulates the

proliferation of tumor-associated macrophages, and promotes

tumor progression (126, 127). CEMIP plays an important role in

the Wnt/b-catenin signaling pathway (4). Therefore, CEMIP may

activate the Wnt/b-catenin signaling pathway to stimulate the

polarization of macrophages into M2 macrophages and to secrete

corresponding anti-inflammatory factors, which may promote the

immune escape of tumor cells and increase the probability of

metastasis. In addition, CEMIP deficiency inhibits the expression

of VEGF in macrophages (128).

3.33 CEMIP and ECM
Tumor cell metastasis means the reconstruction of the ECM,

the degradation of collagen in the surrounding tissues providing

pathways for cancer cells to spread outward, and new angiogenesis

offering nutrients for cancer cells (99, 119). Studies have clarified

that overexpressing CEMIP exerts the role of hyaluronidase, which

makes the solid tumors loose, contributing to cancer cells escaping

from the in situ tissue and achieving distal diffusion.

Matrix metalloproteinases (MMPs) can degrade various

proteins in the ECM, destroy the histological barrier to tumor cell

invasion, and play a key role in tumor invasion and metastasis. It is
BA

FIGURE 4

Expression levels of CEMIP in different diseases. (A) The expression of CEMIP in diseases. Human diseases characterized by the regulation of CEMIP.
Considerable data now show that CEMIP is a contributing factor to the disease process and not simply a response to the condition. (B) RNA
expression levels of CEMIP in different human cancers. RNA expression of CEMIP in different cancers from the Human Protein Atlas dataset.
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considered to be the main proteolytic enzyme in tumor invasion

and metastasis (129, 130). Three MMP family proteins (MMP2,

MMP7, and MMP14) were reduced in CEMIP knockout cells,

suggesting that CEMIP may stimulate MMP family enzyme

activity and accelerate EMT in GC cells (68). In a study of

osteosarcoma, IL-1b–mediated MMP-13 expression is inhibited

when CEMIP is knocked out (12). Therefore, CEMIP may have a

positive correlation with MMP2, MMP7, MMP13, and MMP14 and

regulate tumor cell EMT through MMPs to promote tumor cell

migration. Koike et al. (9) reported that ipriflavone can be a drug

that inhibits the hyaluronidase activity of CEMIP and inhibits the

expression of MMP1 and MMP3 in FLS cells stimulated by TNF-a.
In vivo experiments confirmed that, after ipriflavone treatment, the

levels of LMW-HA in the joint cavity and serum of mice were

reduced. Therefore, we suspect that CEMIP may regulate the

expression of MMP1 and MMP3. Further studies are needed to

verify the relative relationship by which CEMIP regulates MMP1

and MMP3.

In the experiments on breast cancer brain metastasis, the

overexpression of CEMIP promotes the proliferation of cerebral

vascular epithelial cells. By injecting exosomes containing CEMIP,

part of blood–brain barrier is destroyed in mice, which provides an

opportunity for cancer cells to invade, and the high level of CEMIP

can rebuild the vascular microenvironment. Endothelial cells and

microglia show the activation of signaling pathways associated with

inflammation and tumor invasion (119). Silencing of CEMIP

notably inhibits angiogenesis in vitro and in vivo by increasing

the expression of semaphorin 3A (SEMA3A) and by decreasing the

expression of vascular endothelial growth factor A (VEGFA),

vascular endothelial (VE)–cadherin, phosphorylated ephrin type-

A receptor 2 (EphA2), and LMW-HA. Overexpression of CEMIP

promotes angiogenesis by increasing secretory VEGFA. However,

this activity can be reversed by the HA biosynthesis inhibitor 4-

methylumbelliferone (4-MU) (131), which may be a potential

tumor therapeutic target.
3.4 CEMIP suppresses apoptosis
of tumor cells

Programmed cell death occurs after detachment from the ECM,

which is called anoikis (132). Cancer cells have a certain chance to

escape from anoikis after breaking away from the ECM and

entering the blood, which is an important way for tumor cells to

successfully metastasize (133). Zhang et al. (134) investigated that

overexpressing CEMIP enhanced anoikis resistance in PCa cells via

the adenosine monophosphate-activated protein kinase (AMPK)/

glycogen synthase kinase 3beta (GSK3b)-catenin signaling pathway.

circRNAs are important players in the occurrence and development

of various malignancies. Circ_0004585 generated by the CEMIP

gene plays a crucial role in resisting apoptosis in PCa cells.

Circ_0004585 upregulates the expression of transmembrane 9

superfamily member 4 (TM9SF4) by combining with miR-1248,

inhibiting the phosphorylation of mammalian target of rapamycin

(mTOR) and promoting the inhibition of anoikis in PCa cells (33).
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Semaphorin is a kind of neuron axon guiding factor and has

been found to promote tumor apoptosis in tumor-related fields.

Shostak et al. (26) proved that CEMIP protects CaSki cells (cervical

cancer cells) from apoptosis induced by semaphorin. After

continuously stimulated by semaphorin for 72 h, 14.40% of

CEMIP-deficient cells were in the late stage of apoptosis,

compared with only 1.68% of the control group. In addition, with

the extension of time, the gap in apoptosis rate between the two

groups was gradually increased.

Ferroptosis is another modality of apoptosis (135). Recently, it

has indicated that upregulating CEMIP promotes ferroptosis

resistance during ECM isolation by promoting the uptake of

cystine in PCa cells. Meanwhile, silencing CEMIP deprives of its

ability to promote cystine uptake and restrain ferroptosis. The

interaction of CEMIP with inositol 1,4,5-triphosphate receptor

type 3 (ITPR3) regulates Ca2+ leakage of the ER, activates

calcium/calmodulin-dependent protein kinase II (CaMKII), and

further promotes phosphorylation and nuclear localization of

nuclear factor erythroid 2-related factor 2 (NRF2). This leads to

the elevated transcription of solute carrier family 7 member 11

(SLC7A11) in PCa cells, finally improving the survival of tumor

cells. The discovery of this pathway provides new insights into

therapeutic strategies for metastatic PCa (136).
3.5 CEMIP regulates autoimmunity

High levels of CEMIP and CEMIP-induced degradation of

LMW-HA have been detected in the synovial fluid, chondrocytes,

or synovial membranes of diseased joints in patients with RA. Yang

et al. (79) found that, compared with healthy people, there are

remarkable upregulation of CEMIP expression and the increased

proliferation and angiogenesis of synovium in patients with RA.

Similarly, Zhang et al. (13) demonstrated that CEMIP is secreted in

serum and that synovial fluid secretion is positively correlated with

LMW-HA in patients with RA, and the positive correlation

represents a more obvious trend as the disease gets worse.

In multiple sclerosis (MS), HA degradation lesions and CEMIP

expression are colocalized. Marella et al. (137) constructed an

experimental autoimmune encephakmyelitis (EAE) animal model,

observed a high expression of CEMIP in focal demyelinating

lesions, and found a large aggregation of degraded HA at the

lesion tissue. They found that CEMIP is expressed primarily by

activated astrocytes invading damaged tissue. Similar results were

observed in the tissues of a patient with MS. Inhibition of CEMIP

expression in astrocytes may become a novel therapeutic strategy

for MS.
3.6 CEMIP and infection

Staphylococcus aureus (S. aureus) and group A streptococcus

(GAS) are the main bacterial pathogens that cause invasive

infections of human skin. They have different means of invasion

(138). GAS mimics HA-rich ECM in the environment around the
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dermis layer by expressing long-chain HA on its surface, thus

preventing being killed by leukocytes (139). S. aureus also adapts

to HA and uses its hyaluronidase to strengthen virulence (140).

Dokoshi et al. (70) chose S. aureus as a model to explore the

interaction between the bacteria and the skin. After normal mice

were infected by S. aureus, the CEMIP mRNA level of wound skin

was increased. In the mice with knockout of the CEMIP gene, the

proliferation and infection abilities of S. aureus were significantly

reduced, and the skin wound recovered faster than that in normal

mice (70). LMW-HA produced by the degradation of CEMIP

provided numerous signals of injury. The infiltration of local

neutrophils, DCs, and monocytes was increased in CEMIP−/−

mice, which may help fight against infection. However, the

expression of T-box transcription factor (Tbet)+, retinoid-related

orphan receptor gamma T (RORgt)+, IFN-g+, and IL-17+T in the

spleen was decreased. It is suggested that the lack of CEMIP

expression may increase the local inflammatory reaction but

reduce the systemic inflammatory reaction after S. aureus

infection, which means that the systemic response of S. aureus

infection is reduced.
3.7 Promotion of fibrosis

Fibrosis is not a kind of disease, but the result of tissue repair

after damage (141). When the local tissue is damaged, fibroblasts

are activated and contracted, secreting inflammatory cytokines and

ECM components, such as collagen and fibronectin (142). However,

when the injury is repeated or serious, the continuous accumulation

of ECM components will lead to tissue structure disorder, organ

dysfunction, and eventually organ failure (143).

Studies have shown that CEMIP can activate fibroblasts and

induce fibrosis. Deroyer et al. (19) found that CEMIP in OA

cartilage from human and mouse was significantly higher than

that in the healthy group, and the fibrosis-related indicators,

COL1A1, COL3A1, and a-SMA, were significantly increased to

aggravate the degree of joint fibrosis. Further research studies

showed that CEMIP regulates a process of pro-fibrosis through

the TGF-b signaling pathway, suggesting that CEMIP is probably

an inducer of transdifferentiation of chondrocytes into “chondro-

myo-fibroblasts.” In their subsequent study, CEMIP also showed a

similar role of pro-fibrosis in the synovial membrane (7).
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During lung injury, excessive activation and proliferation of

fibroblasts can cause pulmonary fibrosis (144). Pirfenidone is a drug

for the treatment of idiopathic pulmonary fibrosis (IPF); however, it

is not clear whether its diagnosis target is lung fibroblasts (145). In

the study of Kwapiszewska et al. (69), CEMIP was considered to be

involved in the treatment of IPF with pirfenidone. The CEMIP level

of patients with IPF was higher than that of the healthy group. After

7 months of pirfenidone treatment, the level of pulmonary fibrosis

was decreased, and the level of CEMIP was also declined

significantly. Subsequently, CEMIP gene silencing was performed

on fibroblasts of IPF, which reduced the amount of collagen

produced by fibroblasts and weakened the ability of cell

proliferation and migration.
4 Potential applications of CEMIP

4.1 CEMIP was used as a therapeutic target

In view of the numerous and meaningful physiological and

pathological functions shown by CEMIP, it is promising to design

drugs targeting CEMIP to alleviate OA, anti-infection, delay skin

aging, and combat tumor proliferation and migration (Table 2).

4.1.1 Therapeutic strategy of OA
One of the damaging consequences of OA is the degradation of

HA, which leads to a reduction in relative molecular weight,

concentration, and active components. This reduces the

mechanical characteristics of the joint cavity and causes joint

dysfunction. Therefore, intra-articular injection of exogenous HA

can restore the concentration of HA in synovial fluid, help increase

the lubrication effect of synovial fluid, and achieve the purpose of

alleviating joint dysfunction (146). Another symptom is the release

of inflammatory cytokines, which prompt immune cells to attack

the injured area. In addition, nonsteroidal anti-inflammatory

medicines that block the action of inflammatory cytokines are

another method for treating arthritis (147).

In the previous chapters, we mentioned that the expression and

activity of CEMIP have increased in inflammatory cytokine-

mediated OA, which further induces more inflammatory

cytokines expression. In addition, excessive CEMIP accelerates

the degradation of HMW-HA into LMW-HA in joint cavity,
TABLE 2 Related applications of CEMIP as a therapeutic target.

Transfer method The molecules
contained

Therapeutic target Mechanism Reference

NA Anti-CEMIP monoclonal
antibodies

The joints of mice with
OA

Antibody neutralizes CEMIP (13)

NA PTX Colon cancer cells Stabilizing microtubules inhibited the promigratory
effect of CEMIP

(10)

Core–shell drug depot PTX and CEMIP-specific
shRNA

MDA-MB-231 Tumor-specific penetration, targeted drugs release (42)

Thermosensitive PLGA-PEG-
PLGA polymer

Dox and CEMIP-specific
shRNA

Mouse breast carcinoma 4
T1 cells

Tumor-specific penetration, targeted and
quantitative drug release

(43)
f

NA, not applicable.
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breaking the balance between synthesis and degradation of HA.

Zhang et al. (13) injected an anti-CEMIP monoclonal antibody into

the joints of OA mice, effectively alleviating the severity of arthritis

in mice and reducing the serum LMW-HA level and cytokine

secretion. Koike et al. (9) treated mouse chondrosarcoma cells

with ipriflavone and found that the expression of CEMIP

decreased. In vivo experiments, ipriflavone was found to increase

the accumulation of HA and inhibit the expression of MMP1 and

MMP3, effectively relieving the disease.

Therefore, inhibiting the expression and activity of CEMIP can

restore the balance between HA synthesis and degradation while

simultaneously reducing the secretion level of joint inflammatory

factors, which may be a new strategy for the treatment of OA.

4.1.2 Therapeutic strategy of bacterial infection
Skin wound bacterial infection frequently results in

inflammatory reactions, extensive ulceration, and even sepsis, a

potentially fatal condition. Moreover, with the increase of drug-

resistant bacteria, treatment is becoming more and more difficult,

resulting in prolonged wound healing. Conventional treatments

include debridement surgery, antibiotics, and wound dressings

(148). Dokoshi et al. (70) found that, after S. aureus infection in

mice, the expression of CEMIP was elevated and the process of

bacterial invasion into the skin was accelerated by degrading HA.

However, it remains unclear how bacterial invasion induces CEMIP

production, why only CEMIP was elevated, and whether this

phenomenon occurs across different bacterial infections.

Understanding how the skin initiates the digestion of HA has

important diagnostic and therapeutic implications for many

infectious and inflammatory diseases. Perhaps adding CEMIP-

related inhibitors to the currently used dressing can enhance its

efficacy, which is also something that we need to explore.

4.1.3 Delay skin aging
The skin has various biological purposes as a body organ that is

continuously in contact with the outside world. With age and

environmental stresses, such as ultraviolet radiation, damage from

pollutants and microorganisms can accelerate skin damage (149). A

network structure that is composed of HA and proteoglycans

envelops collagen and elastin fibers to maintain skin elasticity

(149). Research by Yoshida et al. (54) indicated that CEMIP

expression was increased in photoaged skin compared with that in

normal skin, and the expression of HAS1/2 was decreased.

Meanwhile, the expression of CEMIP was negatively correlated

with the amount of HA in the dermal papilla of photoaged skin.

CEMIP-mediated degradation of HA may lead to a decrease in the

molecular weight and quantity of HA in the dermal papillae of

photoaged skin. As a result, it destroys the integrity of the dermal

ECM and shows the symptoms of photoaging, such as skin wrinkles.

Therefore, downregulating CEMIP expression or inhibiting CEMIP-

mediated HA degradation in dermal cortex may provide an effective

new therapy for preventing photoaged skin damage.

4.1.4 Tumor-related treatment strategies
In previous chapters, we have outlined the existing information

on the role of CEMIP in tumor cell proliferation and metastasis.
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Our current understanding of the molecular mechanisms involved

in CEMIP is inadequate, but its potential applications are

worth exploring.

Studies have demonstrated that targeted delivery of shCEMIP

prevents CEMIP expression and is crucial for preventing tumor cell

proliferation and migration (60). This work provided additional

evidence that suppressing CEMIP expression can prevent the

growth of tumors, and it suggested that future research might

focus on developing CEMIP inhibitors. In a study on colorectal

cancer (10), CEMIP increased the phosphorylation of PP2A.

Through the influence of PP2A on microtubule instability,

stathmin, the downstream component of the CEMIP-PP2A

complex, increased cell motility. PTX, as a drug that can stabilize

microtubules and inhibit the effect of CEMIP, thus, attenuated the

movement of colon cancer cells. Whether other similar microtubule

stabilizers, such as docetaxel, ebomycin, and discodermolide6, have

similar functions needs further investigation.

4.1.5 Serum CEMIP as a diagnostic marker
CEMIP, as a secreted protein, has been poorly studied as a

serum biomarker. Research has shown that the combined detection

of CEMIP and CA19-9 improves the diagnostic accuracy of

pancreatic cancer (105). Higher CEMIP expression was also

detected in blood samples from patients with metastatic liver

cancer compared with that from healthy individuals, inconsistent

with previous studies that reported lower CEMIP expression in liver

tissue. In OA and RA, serum CEMIP expression also increased to

varying degrees (12, 13). The current studies are all based on small

sample size, lacking the support of large sample size, and the

relevant diagnostic specificity and sensitivity need to be

further studied.
4.2 Drug delivery system

For metastatic tumors, because of the lack of a deep

understanding of the mechanism and effective drug delivery

methods, the current treatment methods are difficult to defeat

metastatic tumors. Reprogramming of intelligent nanodrug

delivery system using tumor microenvironment has become a hot

topic in combined anti-tumor therapy.

Dong et al. (42) proposed a core–shell drug depot consisting of a

micellar core and a cross-linked gel shell for the site-directed shuttle

of PTX and CEMIP-specific shRNA. Poly (E-caprolactone) was

grafted onto a polyethyleneimine branched surface (PEI-PCL), and

hydrophobic PTX was embedded into the micellar core. CEMIP

and PEI were condensed by electrostatic interaction. Then, HA was

coated as a shell. The nanoscale drug depot has a hyaluronidase

(HAase)-triggered charge conversion and a desirable release profile.

Upon arrival at the designated region, the HA shell is degraded by

concentrated HAase, facilitating drug transport to individual

subcellular targeting sites. The rapid transport of micellar core

within the cell achieves endolysosome escape and cytoplasmic

liberation. Moreover, the interference with CEMIP expression by

sustained RNA interference (RNAi) can affect a variety of functions

such as apoptosis, migration, and invasion.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1222425
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1222425
Meanwhile, Wang et al. (43) proposed a similar method.

Specifically, a thermosensitive Poly(D,L-lactide-co-glycolide)-b-

poly(ethyleneoxide)-b-poly(D,L-lactide-co-glycolide) polymer was

introduced as an injectable hydrogel matrix, whose dosage volume

and frequency were carefully controlled according to tumor size and

gel degradation kinetics. Structurally, doxorubicin (Dox) and

arginine-terminated nanoparticles containing CEMIP-specific

shRNA were incorporated into the hydrogel, resulting in a local

and sustained drug reservoir for synergistic therapy. In addition,

Dox was used to block DNA replication/transcription, and

shCEMIP was used to continuously silence CEMIP expression to

regulate the invasive phenotype. It showed good results after the

animal experiments.

In general, the high expression of CEMIP in metastatic tumors

can be used to design drug nanoparticles coated with HA. When the

nanoparticles arrive in the tumor environment with a high level of

CEMIP in the circulatory system, HA can be degraded by CEMIP

secreted from the tumor, and anti-tumor drugs wrapped in the core

are released to achieve the purpose of precise drug delivery.

However, the difficulty of implementing this scheme lies in

precisely controlling the thickness of HA shell or adding new

materials to prevent the free hyaluronidase in the circulatory

system from degrading HA shell in advance. It can be predicted

that this scheme has a huge application prospect.
5 Conclusions

Overall, our understanding of CEMIP has made great progress

in the 20 years since it was first discovered. The main contribution

of this review is that we summarized the structure of CEMIP, the

factors that regulate CEMIP expression, the molecular mechanisms

of CEMIP, and its potential clinical applications. In addition to the

role of HA degradation, CEMIP plays an important role in

regulating the internal physiological activities of cells, such as

activating phosphorylation, regulating cell microenvironment,

inhibiting cell apoptosis and promoting tumor cell activity, and

changing the external environment to promote cell growth. This

review provides a comprehensive and detailed understanding for

those who want to understand CEMIP.

However, many challenges remain. First is whether CEMIP

p lay s some impor t an t and unknown ro l e in some

pathophysiological processes of non-tumor diseases. For example,

what is the specific mechanism by which inflammatory factors

regulate CEMIP, and how does the high concentration of CEMIP

further aggravate the inflammatory process? Second is whether such

a positive feedback mode of regulation really exists or whether there

are some new molecular mechanisms in this process that are

unknown. Furthermore, CEMIP has been shown to promote

EGFR pathway-related phosphorylation (26). The regulatory

mechanism of CEMIP in these protein post-translational

modifications (PTMs) remains unknown. Third is whether

CEMIP also promotes PTMs in other ways, such as glycosylation,

ubiquitination, and methylation to regulate the expression of some

proteins or not (150). It also requires further work to understand

the molecular function of the CEMIP protein in PTMs.
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Although our understanding of CEMIP is still limited, the

characteristics observed from studies suggest that it can be used

as a serum biomarker to predict the development of disease (105,

151), but, for now, we need more clinical sample data to further

verify its sensitivity and specificity. Meanwhile, combined with the

drug delivery technology described above, CEMIP can accurately

treat tumors, inflammation, and other diseases. A new generation of

wound dressings may be created as a result of research into the

unique mechanism of CEMIP in the immunological process of skin

wound infection. However, further research is needed on how to

develop these applications.
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Glossary

CEMIP cell migration–inducing protein

HYBID hyaluronan-binding protein involved in hyaluronan
depolymerization

HA hyaluronic acid

ECM extracellular matrix

ER endoplasmic reticulum

HSPA5 heat shock protein A5

BiP binding immunoglobulin protein

PCa prostate cancer

SCLC small cell lung cancer

HCC hepatocellular carcinoma

GC gastric cancer

PDAC pancreatic ductal adenocarcinoma

LSCC laryngeal squamous cell carcinoma

IL-6 interleukin-6

LMW-HA low–molecular weight hyaluronan

DAMP damage-associated molecular pattern

OA osteoarthritis

HMW-HA high–molecular weight hyaluronan

RA rheumatoid arthritis

FLS fibroblast-like synoviocyte

TNF-a tumor necrosis factor–alpha

TGF-b1 transforming growth factor–beta 1

ATF3 activating transcription factor 3

Bcl-2 B-cell lymphoma-2

REST repressor element 1 silencing transcription factor

RE1 repressor element 1

ncRNAs non-coding RNAs

miRNAs micro RNAs

circRNAs circle RNAs

lncRNAs long non-coding RNAs

ceRNAs competing endogenous RNAs

MSI 1 Musashi RNA-binding protein 1

H3K27me3 trimethylation of lysine on histone H3

TNBC triple-negative breast cancer

HIF-2a hypoxia-inducible factor 2a

RTKs receptor tyrosine kinases

MDSCs myeloid-derived suppressor cells

Treg regulatory T
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TAM tumor-associated macrophage

MMP matrix metalloproteinase

DCs dendritic cells

VEGF vascular endothelial-derived growth factor

ICB immune checkpoint blockade

SEMA3A semaphorin 3A

VEGFA vascular endothelial growth factor A

VE vascular endothelial

EphA2 ephrin type-A receptor 2

4-MU 4-methylumbelliferone

TM9SF4 transmembrane 9 superfamily member 4

ITPR3 inositol 1,4,5-triphosphate receptor type 3

CaMKII calcium/calmodulin-dependent protein kinase II

NRF2 nuclear factor erythroid 2-related factor 2

SLC7A11 solute carrier family 7 member 11

EAE encephakmyelitis

MS multiple sclerosis

S. aureus Staphylococcus aureus

GAS group A streptococcus

Tbet T-box transcription factor

RORgt retinoid-related orphan receptor gamma T

IFN-g interferon gamma

IPF idiopathic pulmonary fibrosis

PTX paclitaxel

Dox doxorubicin

EGFR epidermal growth factor receptor

STAT3 signal transducer and activator of transcription 3

PTMs post-translational modifications.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1222425
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Research on the biological mechanism and potential application of CEMIP
	1 Background
	2 Regulation of CEMIP expression
	2.1 Inflammatory factors
	2.2 Transcription factors
	2.3 Non-coding RNA
	2.4 Histone methylation modifications
	2.5 Hypoxia

	3 Biological mechanism of CEMIP
	3.1 CEMIP promoted HA degradation
	3.2 CEMIP promotes EGFR-associated phosphorylation levels
	3.3 CEMIP regulates the cellar microenvironment
	3.3.1 CEMIP promotes tumor cell proliferation and metastasis
	3.32 CEMIP regulates immune cells
	3.33 CEMIP and ECM

	3.4 CEMIP suppresses apoptosis of tumor cells
	3.5 CEMIP regulates autoimmunity
	3.6 CEMIP and infection
	3.7 Promotion of fibrosis

	4 Potential applications of CEMIP
	4.1 CEMIP was used as a therapeutic target
	4.1.1 Therapeutic strategy of OA
	4.1.2 Therapeutic strategy of bacterial infection
	4.1.3 Delay skin aging
	4.1.4 Tumor-related treatment strategies
	4.1.5 Serum CEMIP as a diagnostic marker

	4.2 Drug delivery system

	5 Conclusions
	Author contributions
	Funding
	Acknowledgments
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




