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Background: Immunoglobulin A nephropathy (IgAN) is one of the leading causes

of end-stage kidney disease (ESKD). Many studies have shown the significance of

pathological manifestations in predicting the outcome of patients with IgAN,

especially T-score of Oxford classification. Evaluating prognosis may be

hampered in patients without renal biopsy.

Methods: A baseline dataset of 690 patients with IgAN and an independent

follow-up dataset of 1,168 patients were used as training and testing sets to

develop the pathology T-score prediction (Tpre) model based on the stacking

algorithm, respectively. The 5-year ESKD prediction models using clinical

variables (base model), clinical variables and real pathological T-score (base

model plus Tbio), and clinical variables and Tpre (base model plus Tpre) were

developed separately in 1,168 patients with regular follow-up to evaluate

whether Tpre could assist in predicting ESKD. In addition, an external validation

set consisting of 355 patients was used to evaluate the performance of the 5-year

ESKD prediction model using Tpre.

Results: The features selected by AUCRF for the Tpre model included age, systolic

arterial pressure, diastolic arterial pressure, proteinuria, eGFR, serum IgA, and uric

acid. The AUC of the Tpre was 0.82 (95% CI: 0.80–0.85) in an independent testing

set. For the 5-year ESKD prediction model, the AUC of the base model was 0.86

(95% CI: 0.75–0.97). When the Tbio was added to the base model, there was an

increase in AUC [from 0.86 (95% CI: 0.75–0.97) to 0.92 (95% CI: 0.85–0.98); P =

0.03]. There was no difference in AUC between the base model plus Tpre and the

base model plus Tbio [0.90 (95% CI: 0.82–0.99) vs. 0.92 (95% CI: 0.85–0.98), P =
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0.52]. The AUC of the 5-year ESKD prediction model using Tpre was 0.93 (95% CI:

0.87–0.99) in the external validation set.

Conclusion: A pathology T-score prediction (Tpre) model using routine clinical

characteristics was constructed, which could predict the pathological severity

and assist clinicians to predict the prognosis of IgAN patients lacking kidney

pathology scores.
KEYWORDS

IgA nephropathy, machine learning, Oxford classification system, prediction model,
end-stage kidney disease
1 Introduction

Immunoglobulin A (IgA) nephropathy (IgAN) is one of the

most common forms of glomerulonephritis worldwide. The clinical

manifestations are heterogeneous, ranging from asymptomatic

proteinuria or microscopic hematuria to rapid deterioration in

kidney function (1). It was reported that approximately 20%–30%

of patients with IgAN would progress to kidney failure within 20

years (2). Therefore, early identification of high-risk patients with

IgAN prone to ESKD is beneficial for early intervention in delaying

disease progression. Great endeavors have been taken by many

researchers to search for the risk factors for developing ESKD in

patients with IgAN. Generally accepted risk factors affecting the

progression of IgAN included decreased glomerular filtration rate

(GFR), 24-h proteinuria >1 g/day, hypertension, and renal

pathological manifestations (3–9). These risk factors have been

used to build various scoring models for predicting the prognosis of

IgAN based on traditional statistical methods (4, 10–14). However,

these scoring models are constructed by the small sample sizes and

different pathological scoring criteria, which may affect the accuracy

and generalization of these scoring models. Moreover, the

interactions between the characteristics and their effect on ESKD,

the non-linear relationship among predictors, and the effects of

therapeutic regimens make the interpretation of the data

more complicated.

Machine learning, as a branch discipline of artificial intelligence,

has obvious advantages in processing high-dimensional and sparse

data. Machine learning algorithms can learn the relationship between

input features and target outcomes as well as the relationship between

features through a large amount of training data. Several studies have

successfully constructed ESKD prediction models for patients with

IgAN through machine learning algorithms (15–20). By comparing

the performance of traditional statistical methods and different

machine learning algorithms in predicting ESKD or halving of

estimated glomerular filtration rate from baseline, Chen et al.

showed that the XGBoost algorithm performed best (16). XGBoost,

as a machine learning algorithm, assembles the weak prediction

models to construct a prediction model (16, 21). Several studies

have tried to construct event prediction models for a specific clinical

outcome based on the XGBoost algorithm (22, 23). However, no
02
matter whether it was a traditional prediction formula or a machine

learning-based predictive model in IgAN, pathology scores showed

consistently significant weighting among many parameters (15, 16,

19, 24). In 2009, the Oxford classification, an international consensus,

was proposed to classify IgA nephropathy based on histopathological

features to predict its prognosis and guide clinical treatment. The

revised Oxford classification in 2017 divided IgAN into five

categories, namely, “(1) mesangial hypercellularity (M); (2)

endocapillary hypercellularity (E); (3) segmental glomerulosclerosis

(S); (4) tubular atrophy/interstitial fibrosis (T); (5) cellular/

fibrocellular crescents (C)” (25), which were shown to be the

independent predictors in predicting renal outcome (24, 26). Since

2009, over 20 validation studies have tried to prove the predictive

value of the MEST scores in some retrospective cohorts of patients

with IgAN, which provided consistent evidence that the mesangial

hypercellularity (M), segmental glomerulosclerosis (S), and tubular

atrophy/interstitial fibrosis (T) each reliably provided prognostic

value by univariate analysis (26), but T lesion was suggested to be

the strongest predictor of renal survival. Hernan et al. summarized

the results of these studies and found that M was of independent

prognostic value in 5 out of 19, E in 4 out of 19, S in 7 out of 19, and T

in 13 out of 19 (26). The C-score was adopted in the revised

classification system in 2017, and three of the five prognostic

studies on IgA nephropathy showed that C-score was associated

with poor prognosis (26–28). In the constructed IgAN prognosis

prediction models, it was observed that the T lesions showed greater

weight in predicting prognosis compared with many other clinical

and pathological parameters (14, 16). For example, in the prognosis

prediction model constructed by Chen et al., there were three indexes

that can be integrated to predict ESKD, namely, T, global sclerosis,

and urine protein, among which the T-score ranked first in the weight

of importance (16). However, the T-score is derived from the kidney

biopsy, an invasive manipulation, sometimes refused by patients and

cannot be repeated in clinical routine for detecting disease

progression. Hence, it is of great significance to explore whether

pathological T lesions can be predicted by the patient’s clinical

variables at the same time.

The purposes of our study are 1) to construct a pathology T-

score (Tpre) prediction model based on the patient’s clinical

variables at the same time which may be able to predict whether
frontiersin.org
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there is a pathological T lesion and 2) to evaluate whether the

predicted T can be used to assist in predicting ESKD.
2 Methods

2.1 Study participants

This study had two independent datasets. Dataset 1, a baseline

dataset without follow-up data, comprised 690 patients with IgAN.

These patients received the kidney biopsy in our center but returned

to local for follow-up. Dataset 2, a follow-up dataset (PKU-IgAN

cohort), included 1,808 patients with IgAN who were registered and

with long-term follow-up in the Peking University First Hospital

IgAN database from 1997 to 2020 (29). All patients with IgAN were

diagnosed based on the histologic and immunofluorescence study of

the renal biopsy, and those with <8 glomeruli per biopsy section were

excluded (29). After excluding 243 patients without blood lipid data,

28 patients presented at younger than 16 years of age, and 14 patients

presented acute kidney failure, 1,523 patients in dataset 2 were finally

enrolled in this study, consisting of 1,168 patients with Oxford

MEST-C scores and 355 patients lacking Oxford MEST-C scores.

Finally, a total of 690 patients in dataset 1 and 1,168 patients

with Oxford MEST-C scores in dataset 2 were enrolled in our study
Frontiers in Immunology 03
as the modeling group, and 355 patients without Oxford MEST-C

scores in dataset 2 were enrolled in this study as the external

validation group (Figure 1).

All clinical characteristics were collected at the time of the renal

biopsy. The estimated glomerular filtration rate (eGFR) was

calculated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) formula (30). Renal biopsies were

categorized according to established criteria for the Oxford

MEST-C scoring system (24, 26, 31). Mean arterial pressure

(MAP, mm Hg) was defined as diastolic pressure plus a third of

the pulse pressure. The end-stage kidney disease (ESKD) was

defined as eGFR <15 ml/min/1.73 m2, dialysis, or kidney

transplantation. Our study was approved by the Ethics

Committee of Peking University First Hospital (IRB number

2020Y197). Written informed consent was provided by

all participants.
2.2 Pathology T-score prediction model

The pathology T-score prediction (Tpre) model, constructed by

the stacking algorithm, was used to predict whether IgAN patients

would have T lesions (yes or no). The stacking algorithm is an

integrated machine learning algorithm that can summarize several
FIGURE 1

The flowchart of this study. WSVM, weighted support vector machine; WRF, weighted random forest; WLR, weighted logistic regression; AKI, acute
kidney injury.
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models and predict new observations. It utilizes the prediction of a

collection of models as input for training a second-level model. This

second-level model aims to find the best combination of the

prediction of first-level models. Stacking can shield the

capabilities of a range of well-performing models so that a better

output prediction model can be achieved (32). In our study, we

combined three machine learning algorithms, namely, support

vector machine (SVM), random forest (RF), and logistic

regression as first-level models, and then logistic regression as the

second-level model to output the final probability of the binary T-

score (with or without tubular atrophy/interstitial fibrosis, Tpre).

The input variables used in this model were chosen by AUCRF

(33), a method using the random forest to find the optimal set for

prediction. Variables entered into the AUCRF included age, sex,

body mass index, systolic arterial pressure, diastolic arterial

pressure, mean arterial pressure, hypertension, eGFR, proteinuria,

microhematuria, history of gross hematuria, serum IgA, serum uric

acid, serum triglycerides, total cholesterol, high-density lipoprotein,

and low-density lipoprotein.
2.3 Five-year ESKD prediction model

Several studies have demonstrated the value of tubular atrophy/

interstitial fibrosis (T) in predicting ESKD in patients with IgAN

(16, 19, 24, 34, 35). To evaluate whether the predicted T-score could

help predict ESKD and how effective it was, we constructed a 5-year

ESKD prediction model based on the XGBoost algorithm. To

illustrate the significance of tubular atrophy/interstitial fibrosis in

predicting ESKD, we first constructed a 5-year ESKD prediction

model with only clinical variables as input variables (base model).

Then, the 5-year ESKD prediction model using clinical variables

and the real pathological T lesions score (Tbio, T0 was assigned 0, T1

and T2 were assigned 1) was also developed (base model plus Tbio)

to evaluate the additive value of atrophy/interstitial fibrosis (T) in

predicting ESKD. Finally, to evaluate whether the value of Tpre in

predicting ESKD of patients with IgAN was consistent with real

pathological T lesions (Tbio) when the base model plus Tbio was

trained in the training set, the Tbio of the testing set was replaced by

the corresponding Tpre predicted by the pathology T-score

prediction model and then the testing set was used to evaluate the

model performance (the base model plus Tpre). For the base model

plus Tpre, the purpose of training the model using real pathological

T-score (Tbio) was for the model to learn the true value of T for

predicting ESKD.

XGBoost is a kind of ensemble of the decision tree, whose

advantages include higher-order interactions and complex non-

linear relationships between the model features and the outcome

(21). It has been shown to achieve impressive performance in

predicting renal failure risk and provide explanations for variables

by ranking their importance (16, 34). We also applied other

machine learning algorithms to our data set for evaluating

whether the predicted T could be used in ESKD prediction

models based on different algorithms, including RF, penalized

regression, artificial neural network (ANN), and SVM.
Frontiers in Immunology 04
Characteristics selected by the Cox proportional hazards model

were collected at the time of the renal biopsy at enrollment [age, sex,

systolic arterial pressure, diastolic arterial pressure, proteinuria,

eGFR, serum IgA, serum uric acid, serum triglycerides,

total cholesterol, low-density lipoprotein, and history of previous

use of renin–angiotensin system (RAS) inhibitors and

immunosuppressants as well as pathological T lesions], whereas

the binary outcome (ESKD within 5 years after diagnostic kidney

biopsy, yes or no) represented the output data. For these variables,

we imputed missing values to the means for continuous

characteristics and the mode for categorical characteristics.

Because of missing information on serum triglycerides, total

cholesterol, and low-density lipoprotein in some cases, 243

patients without blood lipid data were excluded to avoid

inaccuracy due to missing value filling (Figure 1).

To confirm that the Tpre can be used in the ESKD prediction

model at multiple levels, we also constructed a lifetime ESKD

prediction model based on XGBoost. The process and approach

were the same as building the 5-year ESKD prediction model. The

primary outcome was time-to-event ESKD. The survival time for

the kidney without ESKD event was calculated from the kidney

biopsy to the last follow-up.

The XGBoost was allowed to generate boosting trees at most

110 times, and the maximum depth of each tree was constrained to

5. To avoid overfitting, we further set the L2 regularization term on

weights as 1 and stop training if the performance did not improve

by more than 15 rounds. At last, the optimal prediction model

parameters and architectures were selected by the five-fold

cross-validation.

The patients of dataset 2 without Oxford MEST-C scores

combined with the corresponding Tpre were used as an additional

external validation set to evaluate the performance of the ESKD

prediction model using Tpre.
2.4 Statistical analysis

The sociodemographic and clinical variables were calculated

and expressed as the mean ± standard deviation for variables with

approximately symmetrical distributions and as median

(interquartile range 25th–75th percentile) for variables with

skewed distribution. All categorical variables are expressed as

frequencies and percentages. Univariate analyses based on the

Cox proportional hazards model (36) were conducted to evaluate

the association between the baseline clinical characteristics and

ESKD event. Clinical characteristics associated with ESKD event in

univariate analysis (P < 0.05) or if they were clinically relevant were

used as input features of the 5-year ESKD prediction model.

For predicting 5-year ESKD status (yes or no) and T-score (0 or

1), the performance of the models was assessed by calculating the

accuracy, sensitivity, specificity, and area under the receiver

operating characteristic (ROC) curve (AUC). For predicting

lifetime ESKD risk, we quantify the performance of the model by

concordance statistic (C-statistic), which is a general concept of the

area under the curve (AUC) for time-to-event survival data (37).
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The C-statistic compares the rank of predicting probability and the

rank of the survival time in the real world. The calibration ability of

the models was assessed by the Hosmer–Lemeshow test and

calibration scatter plot, in which P-value >0.05 indicated no very

significant difference between the predicted probability predicted by

the model and the true outcome frequencies during a certain time

period. SPSS version 26.0 software and R 3.6.3 were used for the

statistical analysis. All P-values were two-tailed, and P <0.05 was

considered statistically significant.
3 Results

3.1 Characteristics of the study participants

The clinical characteristics of 690 patients with IgAN in dataset

1 are shown in Table 1. The mean age of these patients was 32.38 ±

11.32 years at the time of renal biopsy. The male-to-female ratio was

1.2:1. The mean arterial pressure was 94.44 ± 14.02 mm Hg. The

median value of eGFR was 84.66 (range, 63.32–107.50) ml/min per

1.73 m2, and daily proteinuria was 1.38 (range, 0.66–2.89) g/day.

For the 1,168 follow-up patients with Oxford MEST-C scores in

dataset 2, the mean age was 35.10 ± 11.73 years at the time of renal
Frontiers in Immunology 05
biopsy. The male-to-female ratio was 1:1. The mean arterial pressure

was 93.59 ± 11.42 mm Hg. The eGFR was 85.91 (range, 60.94–

107.23) ml/min per 1.73 m2, and daily proteinuria was 1.27 (range,

0.66–2.45) g/day (Table 1). For the variables used to train the

pathology T-score prediction (Tpre) model, there were no

statistically significant differences in clinical parameters between

dataset 1 and dataset 2 except for age (32.38 ± 11.32 vs. 35.10 ±

11.73, P = 1.00 × 10−6), serum IgA level (3.13 ± 1.21 vs. 3.29 ± 1.20, P

= 0.01), and serum uric acid level (347.10 ± 114.95 vs. 367.63 ±

101.86, P = 1.52 × 10−4). Among these, 158 patients (13.53%) had

reached the event of ESKD during the median 67.5-month follow-up.

The unadjusted hazard ratios (HRs) between the different variables

and ESKD are reported in Table 2. The risk of ESKD significantly

increased for every 10.0 mm Hg increase in the MAP [HR: 1.34, 95%

confidence interval (CI): 1.18–1.53, P = 1.10 × 10−5] and increased for

every 1.0 g/day in the daily proteinuria (HR: 1.10, 95% CI: 1.05–1.15,

P = 1.60 × 10−5). For each ml/min per 1.73 m2 decrease in eGFR, the

risk of ESKD increased by 4% (HR: 0.96, 95% CI: 0.96–0.97, P = 1.24

× 10−27). For each mg/dl increase in uric acid, the risk of ESKD

increased by 38% (HR: 1.38, 95% CI: 1.29–1.49, P = 1.47 × 10−19).

Moreover, there was the strongest association between the risk of

ESKD and the presence of tubulointerstitial lesions (HR: 3.34, 95%

CI: 2.73–4.07, P = 1.72 × 10−32).
TABLE 1 Baseline characteristics of patients with IgAN enrolled in this study to construct the pathology T-score prediction model at the time of
kidney biopsy.

Characteristics
Training set Testing set P-value

(dataset 1) (dataset 2 with MEST-C scores)

Patients (n) 690 1,168

Age at biopsy, years 32.38 ± 11.32 35.10 ± 11.73 1.00 × 10−6

Sex (male/female) 370/320 583/585 0.12

Systolic blood pressure, mm Hg 124.77 ± 18.28 123.67 ± 15.09 0.18

Diastolic blood pressure, mm Hg 79.28 ± 13.11 78.54 ± 11.00 0.22

Mean arterial pressure, mm Hg 94.44 ± 14.02 93.59 ± 11.42 0.17

eGFR, ml/min per 1.73 m2 84.66 (63.32–107.50) 85.91 (60.94–107.23) 0.69

Proteinuria, g/day 1.38 (0.66–2.89) 1.27 (0.66–2.45) 0.10

Serum IgA level, g/l 3.13 ± 1.21 3.29 ± 1.20 0.01

Uric acid, mmol/l 347.10 ± 114.95 367.63 ± 101.86 1.52 × 10−4

Triglycerides, mmol/l 1.61 (1.10–2.38) 1.62 (1.07–2.42) 0.64

Total cholesterol, mmol/l 4.70 (3.99–5.61) 4.77 (4.02–5.67) 0.23

Low-density lipoprotein, mmol/l 2.71 (2.12–3.33) 2.75 (2.23–3.38) 0.19

Renal biopsy, n/n (%)

Mesangial (M) 1 560/690 (81.16%) 461/1,168 (39.47%) 3.37 × 10−68

Endocapillary (E) 1 128/690 (18.55%) 400/1,168 (34.25%) 4.23 × 10−13

Glomerular sclerosis (S) 1 225/690 (32.61%) 733/1,168 (62.76%) 3.33 × 10−36

Tubulointerstitial damage (T1+T2) 182/690 (26.38%) 392/1,168 (33.56%) 1.00 × 10−3
fr
Data are expressed as mean ± SD, median (interquartile range), absolute, and percent frequency.
IgAN, immunoglobulin A nephropathy; eGFR, estimated glomerular filtration rate.
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3.2 Performance of the pathology T-score
prediction model

Feature reductions were conducted using the AUCRF

algorithm, which was used to select the optimal random forest

model with the least number of predictive variables to predict the

presence or absence of T lesions. Clinical variables with a

probability of selection higher than 0.7 were selected in repeated

cross-validation of the optimal random forest model (optimal AUC

= 0.82). Finally, the features selected by AUCRF for the T prediction

model included age, systolic arterial pressure, diastolic arterial

pressure, proteinuria, eGFR, serum IgA, and uric acid (Figure 2).

The 690 IgAN patients with Oxford MEST-C scores in dataset 1 as

the training set were taken to develop a pathology T-score

prediction model. The 1,168 IgAN patients with Oxford MEST-C

scores in dataset 2 as the testing set were used only for reporting the

performance of the model and were not used for development or

fine-tuning.

If a predictive model has an AUC of higher than 0.75, it will be

considered to have a good discriminating ability. The pathology T

prediction model achieved a discrimination of 0.82 (95% CI: 0.80–
Frontiers in Immunology 06
0.85) [area under the receiver operating characteristic (ROC) curve

(AUC)] in the testing set (Figure 3A). The ROC curve had 0.74

sensitivity and 0.77 specificity, which indicated that it had better

clinical utility.
3.3 Performance of the 5-year ESKD
prediction model

The unadjusted Cox regression analysis suggested that sex,

systolic arterial pressure, diastolic arterial pressure, proteinuria,

eGFR, uric acid, triglycerides, and tubular atrophy/interstitial

fibrosis (T) were risk factors for developing ESKD (Table 2). A

study supported elevated serum IgA as a causal factor in IgA

nephropathy through Mendelian randomization (38). Some

studies have suggested the association between the poor prognosis

of renal disease and dyslipidemia. Higher triglycerides and

cholesterol levels have been proven to be independent risk factors

for the progression of kidney disease (39). Hence, clinical variables

(age, sex, systolic arterial pressure, diastolic arterial pressure,

proteinuria, eGFR, serum IgA, uric acid, triglycerides, total
TABLE 2 Risk estimated by Cox proportional hazard model for ESKD in patients of dataset 2 with Oxford MEST-C scores.

Risk factor Non-ESKD (n = 1,010) ESKD (n = 158) P-value HR (95% CI)

Age, years 35.21 ± 11.84 34.41 ± 11.02 0.55 1.00 (0.98–1.01)

Male (%) 482 (47.72%) 101 (63.92%) 1.96 × 10−4 1.85 (1.34–2.57)

Systolic arterial pressure, mm Hg 123.00 ± 14.70 128.02 ± 16.77 3.00 × 10−6 1.02 (1.01–1.03)

Diastolic arterial pressure, mm Hg 78.13 ± 10.66 81.18 ± 12.71 2.88 × 10−4 1.03 (1.01–1.04)

Mean arterial pressure, mm Hg 93.09 ± 11.06 96.80 ± 13.10 1.10 × 10−5 1.03 (1.02–1.04)

Proteinuria, g/day 1.17 (0.61–2.28) 1.99 (1.15–3.56) 1.60 × 10−5 1.10 (1.05–1.15)

eGFR, ml/min per 1.73 m2 89.13 (66.05–110.14) 53.69 (37.47–85.39) 1.24 × 10−27 0.96 (0.96–0.97)

Serum IgA level, g/l 3.30 ± 1.22 3.17 ± 0.99 0.27 0.93 (0.81–1.06)

Uric acid, mmol/l 358.08 ± 97.12 429.22 ± 110.27 1.47 × 10−19 1.01 (1.00–1.01)

Triglycerides, mmol/l 1.59 (1.06–2.37) 1.85 (1.13–2.69) 0.01 1.12 (1.03–1.23)

Total cholesterol, mmol/l 4.77 (4.03–5.66) 4.76 (3.99–5.84) 0.72 1.02 (0.93–1.11)

Low-density lipoprotein, mmol/l 2.75 (2.24–3.36) 2.75 (2.19–3.59) 0.77 1.02 (0.90–1.16)

Renal biopsy

M0/M1 636/374 (62.97%/37.03%) 71/87 (44.94%/55.06%) 2.00 × 10−6 2.14 (1.56–2.93)

E0/E1 668/342 (66.14%/33.86%) 100/58 (63.29%/36.71%) 0.36 1.16 (0.84–1.61)

S0/S1 402/608 (39.80%/60.20%) 33/125 (20.89%/79.11%) 2.10 × 10−5 2.31 (1.57–3.39)

T0/T1+T2 723/287 (71.58%/28.42%) 53/105 (33.54%/66.46%) 1.72 × 10−32 3.34 (2.73–4.07)

C0/C1+C2 421/589 (41.68%/58.32%) 54/104 (34.18%/65.82%) 1.00 × 10−3 1.47 (1.17–1.86)

Therapy

Renin–angiotensin system blocks 960 (95.05%) 151 (95.57%) 0.14 0.57 (0.26–1.21)

Corticosteroids/cytotoxic drugs 474 (46.93%) 107 (67.72%) 3.60 × 10−5 2.02 (1.45–2.82)

Follow-up, months 67.50 (37.75–105.25) 67.50 (38.00–97.25)
Data are expressed as mean ± SD, median (interquartile range), absolute, and percent frequency.
ESKD, end-stage kidney disease; CI, confidence interval; HR, hazard ratio; eGFR, estimated glomerular filtration rate.
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cholesterol, low-density lipoprotein, history of previous use of RAS

inhibitors and immunosuppressants) and the pathology T lesions

(Tbio, T0 was assigned 0, T1 and T2 were assigned 1) were used as

the input variables of the 5-year ESKD prediction model.

To make the predictive model achieve a good performance, the

1,168 follow-up IgAN patients with Oxford MEST-C scores in

dataset 2 were randomly divided into training and testing sets at a

ratio of 8:2. The training set included 936 patients and the testing set

included 232 patients. The training set was used to perform five-fold
Frontiers in Immunology 07
cross-validation to select the optimal prediction model. The testing

set was used to assess the performance.

The performance value of the 5-year ESKD prediction model

using only the above clinical variables as input variables (base

model) was 0.86 (95% CI: 0.75–0.97) in the test set (Figure 3B).

To test whether the Tbio could improve the predictive performance

of the 5-year ESKD prediction model, we added Tbio to the base

model. An increase in AUC [from 0.86 (95% CI: 0.75–0.97) to 0.92

(95% CI: 0.85–0.98); P = 0.03] showed a better discriminating

ability, which indicated that the T was important for judging the

prognosis of patients with IgAN (Figure 3B). To test whether Tpre
had a similar effect on judging the prognosis of IgAN patients, after

training the 5-year ESKD prediction model with the training set, we

replaced the Tbio in the testing set with the corresponding Tpre to see

the discrimination effect. The AUC was 0.90 (95% CI: 0.82–0.99) in

the testing set (Figure 3B). The performance of the base model plus

Tpre did not differ from that of the base model plus Tbio [AUC for

the base model plus Tpre 0.90 (95% CI: 0.82–0.99) vs. AUC for the

base model plus Tbio 0.92 (95% CI: 0.85–0.98), P = 0.52, Table 3],

which showed that the value of the Tpre in predicting the ESKD of

patients was comparable to that of Tbio. The calibration of the three

prediction models is shown in Figures 4A–C. The P-values for the

Hosmer–Lemeshow test of the base model, the base model plus Tbio,

and the base model plus Tpre were 0.42, 0.79, and 0.92, respectively,

which indicated that these models had a good calibration. These

results suggested the importance of T in predicting ESKD, and Tpre
can be used to assist clinicians in assessing the prognosis of patients

without pathology reports.

Table 4 shows the performance of the 5-year ESKD prediction

model based on different machine learning algorithms in the testing

set using Tpre. All models have good prediction performance, which
A B

FIGURE 3

Receiver operating characteristic curves of the prediction models. The receiver operating characteristic curves for (A) the pathology T-score
prediction (Tpre) model and (B) the 5-year ESKD prediction model. The base model was the 5-year ESKD prediction model based on the XGBoost
algorithm with only clinical variables as input variables. The base model + Tbio was the 5-year ESKD prediction model based on XGBoost using
clinical variables and the real pathological T lesions score (Tbio, T0 was assigned 0, and T1 and T2 were assigned 1). The base model + Tpre was when
the base model plus Tbio was trained using clinical variables and Tbio, and the Tbio of the testing set was replaced by the corresponding Tpre predicted
by the pathology T-score prediction model. The clinical variables used for the 5-year ESKD prediction model included age, sex, systolic arterial
pressure, diastolic arterial pressure, proteinuria, eGFR, serum IgA, uric acid, triglycerides, total cholesterol, low-density lipoprotein, and history of
previous use of renin–angiotensin system (RAS) inhibitors and immunosuppressants. AUC, area under the curve.
FIGURE 2

Variables selected by AUCRF for the pathology T-score prediction
model. The importance scores of the clinical variables with a
probability of selection higher than 0.7 in repeated cross-validation
of the optimal random forest model to predict the presence or
absence of T lesions.
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indicated that Tpre could be used in ESKD predictive models built

on different algorithms.

For the lifetime ESKD prediction model based on XGBoost

using only clinical variables (base model), the C-statistic was 0.82

(95% CI: 0.80–0.84) in the testing set. The discriminating ability of

the base model plus Tpre was also comparable to the base model plus

Tbio [C-statistic: 0.85 (95% CI: 0.83–0.86) vs. 0.85 (95% CI: 0.83–

0.86), P = 0.11] in the testing set.
3.4 External validation of the ESKD
prediction model using Tpre

The 355 patients without MEST-C scores in dataset 2 were

included as the external validation population for evaluating the

performance of the 5-year ESKD prediction model. Because

patients did not have MEST-C scores, the Tpre predicted by the

pathology T-score prediction model was used in the 5-year ESKD

prediction model. The AUC of the 5-year ESKD prediction model
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using Tpre based on XGBoost was 0.93 (95% CI: 0.87–0.99). We

listed the AUC of the applied other machine learning algorithms

in Table 5.

In the lifetime ESKD prediction model using Tpre, the C-statistic

was 0.92 (95% CI: 0.90–0.94). We have shown here that both

models have a good performance in the external validation set,

indicating the reliability of Tpre for assisting in evaluating the

prognosis of IgAN.
4 Discussion

We developed a pathology T-score prediction (Tpre) model that

can predict whether the patient with IgAN may have

tubulointerstitial lesions at this time based on clinical variables

when the patient did not undergo a renal biopsy or did not want to

repeat the renal biopsy for progression assessment. We further

constructed the 5-year/lifetime ESKD prediction model based on

the XGBoost algorithm to confirm the importance of T in
A B C

FIGURE 4

Calibration plots of the 5-year ESKD prediction models. The calibration plots for (A) the base model, (B) the base model plus Tbio, and (C) the base
model plus Tpre. The P-values for the Hosmer–Lemeshow test of the base model, the base model plus Tbio, and the base model plus Tpre were 0.42,
0.79, and 0.92, respectively, which indicated that these models had a good calibration.
TABLE 4 Performance of the 5-year ESKD prediction model using Tpre based on different machine learning algorithms in the testing set.

Model Accuracy Sensitivity Specificity AUC

XGBoost 0.86 0.86 0.86 0.90

Random forest 0.82 0.79 0.87 0.89

Penalized regression 0.80 0.93 0.80 0.88

Artificial neural network 0.78 0.86 0.77 0.86

Support vector machine 0.71 0.86 0.62 0.77
frontier
The model was trained using clinical variables and the Tbio, and the Tbio was replaced with the corresponding Tpre predicted by the pathology T-score prediction model in the test subset.
TABLE 3 Performance comparison for the prediction on 5-year ESKD status with different predictors in the testing subset.

Model Accuracy Sensitivity Specificity AUC

Clinical variables 0.85 0.79 0.86 0.86

Clinical variables plus Tbio 0.83 0.93 0.78 0.92

Clinical variables plus Tpre 0.86 0.86 0.86 0.90
The clinical variables include age, sex, systolic arterial pressure, diastolic arterial pressure, proteinuria, eGFR, serum IgA, uric acid, triglycerides, total cholesterol, low-density lipoprotein, and
history of previous use of renin–angiotensin system (RAS) inhibitors and immunosuppressants.
Tbio, the real pathological T-score quantified as either 0 (absent) or 1 (T1 or T2); Tpre, the pathological T-score predicted by the baseline pathology T-score prediction (Tpre) model.
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predicting ESKD, and Tpre can replace the real pathological T

lesions for assisting clinicians in evaluating the prognosis of IgAN

patients without pathology reports. In addition, the ESKD

prediction model built based on different machine learning

algorithms had good discriminating ability by using clinical

variables and Tpre, which indicated the reliability and universality

of Tpre for assisting in evaluating the prognosis of IgAN.

For developing the pathology T-score (Tpre) prediction model,

we first used the AUCRF algorithm to select the clinical variables that

may be associated with the tubulointerstitial lesions. Feature

selection before training the predictive model can prevent

dimensional disaster, reduce training time, prevent overfitting,

enhance model generalization ability, and enhance the

understanding of features and feature values, which also

determines the upper limit of the effect of a machine learning task.

The AUCRF is based on the RF algorithm, which is used for feature

reduction based on optimizing the area under the ROC curve (AUC)

of the random forest (33). It was found that age, systolic arterial

pressure, diastolic arterial pressure, proteinuria, eGFR, serum IgA,

and uric acid may be the clinical characteristics associated with

tubular atrophy/interstitial fibrosis. Mechanism studies are needed to

explore the inherent causality of these correlations and predictive

capability. There have been reports indicating the association

between reduced initial eGFR, higher initial MAP, proteinuria, and

tubular atrophy/interstitial fibrosis (31). Next, we used the stacking

algorithm to construct the pathology T-score prediction (Tpre) model

based on the clinical characteristics selected by the AUCRF. A single

learner has over- or underfitting problems, and to obtain a learner

with excellent generalization performance, we can train multiple

individual learners to form a strong learner through a certain

combination strategy. This method of integrating multiple

individual learners is called ensemble learning. Stacking is one of

the methods of ensemble learning. The advantage of integration is

that different models can learn different features of the data, and the

results after fusion tend to perform better (40). As our results

showed, when we used an independent dataset as the testing set,

the AUC of the pathological T-score prediction (Tpre) model reached

0.82, which indicates the good discriminating ability of this Tpre
prediction model.

A host of studies have indicated that pathological T lesions play

an important role in predicting prognosis (14, 35, 41). At the same

time, most current ESKD prediction models based on different

methods or algorithms all include pathology T-score (14, 16, 19).
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Nevertheless, a renal puncture is invasive, which may cause a series

of complications and has a host of contraindications, such as severe

hypertension, coagulation disorders, solitary kidney, and so on (42).

Furthermore, the number of patients at high risk of renal puncture

may increase in the near future because of the aging of the

population and the increased use of anticoagulant medication

(43). For the patients who lack the report of kidney biopsy or do

not want to undergo repeat renal puncture for disease progression

assessment and evaluation of the effect of drug therapy, the clinician

could not assess the prognosis of these patients with IgAN by using

the established ESKD prediction model. The pathology T-score

prediction (Tpre) model we developed may solve this problem. We

also constructed a 5-year/lifetime ESKD prediction model based on

XGBoost to assess whether the value of Tpre in predicting ESKD of

patients with IgAN was consistent with real pathological T-score.

The performance of the base model plus Tpre was similar to the base

model plus Tbio, which showed that the Tpre can replace the real

pathological T-score for prognostic prediction.

As far as we know, this study is the first to construct a pathology

T-score prediction model in IgA nephropathy. At the same time, it

is also the first study to use a machine learning algorithm to identify

clinical variables that may influence the development of tubular

atrophy/interstitial fibrosis, which may be useful for assessing the

prognosis and targeted medication guidance. However, there is a

limitation in our study. The model has been developed and tested in

a single-center cohort of patients with IgAN; therefore, multicenter

prospective cohort and ethnic-based cohort studies are necessary,

which will further confirm the reliability of the pathology T-score

prediction model, expand the scope of application of the model, and

provide possibilities for clinical application.

In conclusion, our pathology T-score prediction (Tpre) model is

a reliable tool for predicting the presence or absence of pathological

T lesions. At the same time, it can also be used to assist clinicians in

predicting the prognosis of patients with IgAN. A prospective

multicenter cohort study is necessary to explore the potential

value and robustness of this T prediction tool in the management

of IgA nephropathy.
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TABLE 5 Performance of the 5-year ESKD prediction model using Tpre based on different machine learning algorithms in the external validation set.

Model Accuracy Sensitivity Specificity AUC

XGBoost 0.82 1.00 0.81 0.93

Logistic regression 0.72 1.00 0.71 0.90

Artificial neural network 0.50 1.00 0.48 0.79

Support vector machine 0.87 0.67 0.87 0.74

Random forest 0.86 0.83 0.86 0.92
frontier
The characteristics used in the basic model include age, gender, SBP, DBP, eGFR, IgA, UTP, UA, TG, TCHO, LDL, history of corticosteroids/cytotoxic drugs, and renin–angiotensin system
blockers.
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