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complementarity features
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Introduction: T-cell receptor (TCR) recognition of foreign peptides presented

by the major histocompatibility complex (MHC) initiates the adaptive immune

response against pathogens. While a large number of TCR sequences specific to

different antigenic peptides are known to date, the structural data describing the

conformation and contacting residues for TCR-peptide-MHC complexes is

relatively limited. In the present study we aim to extend and analyze the set of

available structures by performing highly accurate template-based modeling of

these complexes using TCR sequences with known specificity.

Methods: Identification of CDR3 sequences and their further clustering, based

on available spatial structures, V- and J-genes of corresponding T-cell receptors,

and epitopes, was performed using the VDJdb database. Modeling of the

selected CDR3 loops was conducted using a stepwise introduction of single

amino acid substitutions to the template PDB structures, followed by

optimization of the TCR-peptide-MHC contacting interface using the Rosetta

package applications. Statistical analysis and recursive feature elimination

procedures were carried out on computed energy values and properties of

contacting amino acid residues between CDR3 loops and peptides, using R.

Results: Using the set of 29 complex templates (including a template with SARS-

CoV-2 antigen) and 732 specificity records, we built a database of 1585 model

structures carrying substitutions in either TCRa or TCRb chains with some

models representing the result of different mutation pathways for the same

final structure. This database allowed us to analyze features of amino acid

contacts in TCR - peptide interfaces that govern antigen recognition

preferences and interpret these interactions in terms of physicochemical

properties of interacting residues.
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Conclusion: Our results provide a methodology for creating high-quality TCR-

peptide-MHC models for antigens of interest that can be utilized to predict

TCR specificity.
KEYWORDS

T-cell receptor, antigen recognition, TCR-peptide-MHC complex, structural
modeling, database
1 Introduction
Specific interaction between T-cell receptors (TCRs) and major

histocompatibility complex (MHC)-peptide complexes is a key

initiation factor of adaptive immunity-driven physiological

processes (1) that happens upon recognition of an infected or

antigen-presenting cell by cognate T-cell. TCR molecules are

heterodimers encoded by genes formed via the process of V(D)J-

rearrangement that ensures the presence of a highly diverse (>108

combinations of TCRa - TCRb chain pairs) TCR sequences

in an individual, required to recognize and target previously

unencountered pathogens viewed through the lens of MHC

molecules presenting peptides (2, 3). Describing molecular

mechanisms governing antigen recognition is therefore the

cornerstone of adaptive immunity studies making it possible to

predict immune responses to specific antigens, as well as cross-

reactivity and selectivity of TCRs in the near future (4). Moreover,

present methods, even high-throughput ones such as 10X single-

cell sequencing with dCODE dextramers (5), cannot yield enough

TCR specificity data to cover the space of all possible TCR:

pMHC interactions.

Currently, several databases gathering experimental

information about TCR-peptide recognition are available to the

research community: VDJdb, IEDB, McPAS-TCR (6–8). These

resources store and aggregate data on primary TCR sequences,

cognate epitopes and MHC context mined using literature search.

In addition there are more than 280 crystal structures stored in

the Protein Data Bank (PDB) that encode the geometry and

physical contacts in TCR-peptide-MHC complexes (9, 10).

Several computational approaches have been developed for

homology-based modeling of individual TCR structures or TCRs

in their ternary complex with peptide-MHC molecules they

recognize. Promising software tools and approaches in this area

include the TCRmodel (11) and TCR-pMHC-models (12) services.

In addition to homology modeling approaches, it has been

demonstrated that the AlphaFold software, which is based on deep

learning techniques and has revolutionized the field of protein

structure prediction, can be employed for de-novo modeling of

TCR-peptide-MHC complexes. However, the performance of

AlphaFold in this context has shown inconsistency. Nonetheless,

there is a highly promising pipeline, built upon AlphaFold, that

shows potential for enhancing the accuracy of predictions by fine-

tuning the modeling parameters, with a particular focus on the
02
specific structural characteristics and regions of TCR-peptide-MHC

complexes, such as the CDR3 loops (13).

Recent studies, focused on structural bioinformatics and

molecular modeling of TCR-peptide-MHC complexes, can be

categorized into two primary areas of research. The first area

involves large-scale modeling approaches and mathematical

modeling of a significant amount of structural data, while the

second area is devoted to a detailed examination of individual

complexes and enhancing the precision of binding specificity and

affinity inference.

Large-scale attempts to model multiple TCR-peptide-MHC

complexes have been carried out in a number of recent studies,

most of them were focused on serving as a proof-of-concept and as

a benchmark for modeling software, not directly aimed at general

applications, such as studying regularities in TCR-peptide-MHC

recognition at the residue level or imputing a missing complex

structure for a TCR linked to a certain disease. For example, a large

database of over 23,000 TCR complex structures with pMHC was

generated (14) using template-based approaches for TCR

[Repertoire Builder (15), LYRA (16)], peptide - MHC binding

prediction (NetMHCpan (17)), and molecular docking (e.g. one

can use FlexPepDock (18) to impute peptides in MHC groove),

although individual accuracies for these complexes, especially

CDR3 loop conformations was not thoroughly validated in each

individual case.

Machine learning algorithms have demonstrated their

usefulness in predicting TCR-peptide interactions employing high

similarity (HS) and random sampling strategies for deep learning

models (19) and evaluating binding affinity by training a random

forest classifier model using the ATLAS database (20).

On the other hand, it was demonstrated using two contrasting

TCR-peptide-MHC test sets that the MMPB/GBSA approach can

be effectively applied during the binding affinity calculation.

However, the protocol needs to be adjusted based on the

similarity of the compared structures (21). Analysis of multiple

molecular docking approaches (22) and their corresponding scoring

functions has indicated that hydrophobic and electrostatic

interactions play important roles in TCR-peptide-MHC

recognition. Additionally, a priori knowledge of contacting

residues of TCR and peptide has been shown to improve

modeling of the entire complex, including highly flexible

CDR3 loops.

The importance of hydrophobic interactions and pi-stacking

forces in TCR contacts with HLA-A*02-restricted peptides, was also
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analyzed and illustrated using molecular dynamics simulations and

binding free energy calculations (23).

Despite the fact that much attention has been paid to the study

of SARS-CoV2 recently, only a few COVID-associated TCRs have a

resolved TCR-peptide-MHC structure to date (24–27). Having a

variety of structures with SARS-CoV-2 epitopes can aid in studying

T-cell recognition of infected cells, especially since the number of

known COVID-associated TCRs is constantly growing (6).The

study of TCR – peptide MHC complexes is important in

understanding the immune response to SARS-CoV-2 vaccinations

and the viral immune evasion strategies employed by VOCs

(Variants of concern). Mutations in T cell epitopes can disrupt

recognition by TCRs, which highlights the importance of

modeling and studying the spatial structures of TCR – peptide

MHC complexes.

There are several main factors that guide antigen recognition in

TCR-peptide-MHC complex: placement of the peptide in the MHC

groove, pairing of TCR- alpha and beta chains, specific orientation

of pMHC complex against T-cell receptor and selective interaction

of TCR residues with MHC and peptide.

Most studies suggest that TCRs recognize peptide-MHC

complexes via CDR1-3 loops. While CDR1 and CDR2 loops

stabilize binding with MHC molecules and target small parts of a

protein, most of the interaction between TCR and antigen occurs

via CDR3, which are omega-loops of 10-20 amino acids (28, 29).

Also, it has been shown that CDR3 loop sequence’s mid-region

creates most of the contacts with peptide due to the loop and

peptide geometry. Additionally, both alpha and beta chains

contribute to antigen recognition, although sometimes this

contribution is disproportionate (30).

The present study reports the results of large-scale template-

based modeling of the VDJdb, which is a curated database of TCR

sequences with known specificities. We aim at traversing the set of

TCR:pMHC specificity records that differ by a fixed number of

amino acid substitutions from the original template, as it was shown

that 1-3 consequent substitutions rarely impact antigen specificity

(31). Our primary aim is to establish a pipeline that can be easily

employed to create accurate and reliable spatial structures for

studies that report massive sequencing of TCRs specific to a panel

of antigens. By applying this pipeline to the existing database we

aim at providing access to structural data for immunologists and

biologists unfamiliar with in silico structural modeling. We also

demonstrate, as a proof-of-concept, that such modeling can be used

to study features of residue interactions in TCR:pMHC complexes,

and report statistics of various physicochemical interactions

between TCR and peptide.
2 Methods

2.1 Identification of CDR3 sequences
clusters recognizing the same epitope

Clustering of CDR3 sequences from the T-cell receptor

sequences that recognize the same epitope according to the

VDJdb database (6) was performed in three major steps. First, a
Frontiers in Immunology 03
“core” of a cluster was designated by one of the CDR3 sequences

presented in a PDB structure. Second, new CDR3 sequences

(neighbors) were placed in the cluster if they could be generated

step-by-step introducing single amino acid substitutions one at a

time. The CDR3 sequences should have the same lengths, so no

deletions or insertions were allowed. Additionally, the V- and J-

genes of corresponding TCRs should be the same as the one

carrying the “core” CDR3 loop. Pairing of TCRa - TCRb chains

was not taken into account. Third, the Hamming distance between

the core and each of the neighbor CDR3 sequences in the cluster

was limited to 3. Thus, the mutation path from the CDR3 sequence

from the PDB database and the most diverse sequence in the cluster

should consist of not more than 3 consequent single mutations.

The validation of our proposed modeling approach and the

explanation of why we selected a limit of 3 mutations is discussed

in Supplementary Note 1.
2.2 Step-by-step modeling of CDR3 loops

A Rosetta release-215 package (32) was used to implement an in

silico single amino acid mutation modeling approach. The

Rosettascripts mover “MutateResidue” was used to replace

selected residues while retaining main chain heavy atom positions

according to the initial template structures, modifying only side

chain atoms.

Further structural and energy optimization was performed

using the Minimization or PackRotamers movers implemented in

RosettaScripts. The energy minimization procedure has the

potential to cause significant changes and “overfitting” in the

spatial organization of the entire complexes or their contacting

parts. To address this issue, the minimization protocol incorporated

C-alpha atoms coordinate constraints with a coord_dev parameter

set to 0.5. The L-BFGSminimization algorithm was utilized with the

ref2015 score function. Additionally, the repacking protocol of

Rosettascripts was employed to optimize contacting residues in

modeled TCR-peptide-MHC complexes. Repacking was performed

for CDR3 loop and peptide residues situated closer than 10Å from

each other, as these residues were considered as contacting in

modeled complexes.
2.3 Structural data analysis

Identification of close CDR3 and peptide residues in

modeled complexes was performed using in house Java and Bash

scripts. Contacting parts of residues (side and main chains) were

identified using Residue Interaction Network Generator approach

(RING) (33).

The energy values for contacting CDR3 - peptide interfaces in both

the initial templates and the modeled structures were calculated using

the Rosetta interface_energy application. The calculation also included

the determination of per-residue impacts. In this process, the residues

of the CDR3 loop of interest were designated as “-face1”, while the

peptide residues were designated as “-face2”. Energy values were

calculated using three variations of Rosetta ref2015 scoring function:
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“full” ref2015 energy function with all default energy terms included,

and two “limited” variations, set by lists of selected terms. The first

preset (“Large patch”) included fa_atr (attractive portion of the

Lennard Jones potential), fa_sol (Lazaridis-Karplus solvation

energy), hbond_sr_bb (h-bond energy, short-range backbone-

backbone), hbond_lr_bb (bond energy, long-range backbone-

backbone), hbond_bb_sc (h-bond energy, backbone-sidechain) and

hbond_sc (h-bond energy, sidechain-sidechain) energy terms. The

second (“Small patch”) consisted of the same terms as the “Large

patch”, except for hbond_sr_bb and hbond_bb_sc.

Amino acid descriptors and indices were calculated using

“Peptides” (BLOSUM similarity matrix indices, Kidera factors,

VHSE, Cruciani properties, zScales, FASGAI) and “HDMD”

(Atchley factors) packages in R (34, 35).
2.4 Statistical analysis and
machine learning

Statistical analysis of computed energy values of the modeled

structures and properties of contacting amino acid residues in TCR-

peptide-MHC complexes was performed using R packages. RFE

analysis was performed on the training set consisting of 94 amino

acid descriptors, calculated for contacting amino acid residues in

CDR3 loops of TCRs and peptides to select the most important

descriptors for predicting the target variable. Random forest

algorithm was then used to train a model, which was used to

make predictions on the testing set. Per-residue energy values were

grouped into 5 clusters and used as target variables during the RFE

analysis and RF modeling. The performance of the model was

evaluated using confusion matrix analysis. Calculations and data

preparation were performed using Caret and RandomForest

packages in R.
3 Results

3.1 Building a compendium of TCR: pMHC
models for VDJdb

In this study we developed a bioinformatic pipeline for

modeling T cell receptor CDR3 loops by stepwise introduction of

single amino acid mutations to known spatial structures of

complexes used it to construct 1585 TCR-peptide-MHC models

and analyzed contacting residues between CDR3 loops and peptides

in modeled complexes. The pipeline applied in our approach is

shown in Figures 1A, B. In the first step we curated a pre-processed

and annotated (see Methods) database of TCR-peptide-MHC

structures from PDB and built clusters of annotated CDR3

sequences recognizing the same epitope from VDJdb, using

CDR3 loops from known PDBs as cores. In the next stage we

calculated pathways for consequent introduction of single amino

acid substitutions to cover all sequences in selected clusters, starting

from known PDB structures. The actual extent of VDJdb coverage

by our modeling approach is depicted in Figure 1C, and the

modeling paths are presented in Supplementary Figure S1.
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Using 1030 unique mutation pathways, all initial structures

were altered and further optimized using Rosetta protocols. As a

result, we built 1585 models based on 29 template structures from

the PDB database, which contain 247 unique sequences of CDR3

loops for TCR-alpha and 485 for TCR-beta chains. The total

number of modeled structures is greater than the number of

unique pathways or unique CDR3 sequences because the same

CDR3 loops carrying, for example, two or three substitutions can be

modeled through various intermediate sequences (Figure 1D).

Additionally, different initial PDB templates could be used to

model the same CDR3 loops. All modeled CDR3 sequences are

presented in Supplementary Figure S2, and the number of models

according to TCR chains, presence of contact with peptide, and type

of contact are presented in Supplementary Table S1.

The initial templates are presented in Table 1. It is worth noting

that some PDB templates carried identical TCR chains. During

further analysis, models built based on such templates were

grouped, and their calculated spatial and energy properties were

averaged. These grouped structures would be referred to as

“non-redundant”.
3.2 Analysis of CDR3: peptide contacts in
modeled structures

Using a 5Å cutoff distance, contacting (or “interacting”)

residues of “mutated” CDR3 loops and peptides were identified in

all modeled structures and structures obtained from the PDB

database. It was shown that only about half of them carried

substitution in contacting positions: approximately 48% (763

models out of 1585) in all TCR-peptide-MHC complex models

and ~51% (551 models out of 1085) in the non-redundant set

of structures.

Since all the modeled TCRs in the cluster have the same

specificity as TCR in the core crystal structure, we expect that

modeled amino acid substitutions should not dramatically influence

the binding between TCR and epitope. That might be the reason

why many amino acid variations were found in non-contacting

positions - they are simply distal and do not alter TCR-pMHC

interface. Additionally, it can be assumed that the remaining

substitutions in contacting positions should not dramatically

change the affinity level of binding between CDR3 loops and

epitopes in the way that can alter their specificity. We assume

that as we consider only single amino acid substitutions between

CDR3 sequences belonging to the cluster of highly similar TCRs

recognizing the same epitope.

CDR3–peptide interactions were analyzed in all initial templates.

For each structure the most energetically valuable positions in CDR3

loops were identified through per-residue energy calculations for

CDR3 alpha- and beta-peptide interfaces. Positions in CDR3 loops

with the lowest energy values were selected. Similar to other energy

calculations described in the article, three types of energy scoring

functions were used: “full” Rosetta interface energy and two of its

limited variations: “Large patch” and “Small patch” presets. When

these scorings were ambiguous in terms of minimal energy value, we

included all candidate positions (Table S2). These results were
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compared with estimated frequencies of amino acid variations in each

position on CDR3 loops in our modeled structures. It was found out

that only 11% of all mutations and 23% of mutations in contacting

residues were in energetically valuable positions. In the non-

redundant set the rate was slightly higher: 15% and 29%

respectively. These results also indicate that substitutions mainly

occur in regions of CDR3 loops that are not very important for

epitope recognition, thus preserving specificity and affinity of binding

in TCR-peptide-MHC complexes.

All amino acid pairs involved in CDR3-peptide interactions

were identified and counted in all modeled and 152 original

structures of human TCR-peptide-MHCI complexes. Interactions

between amino acid residues of CDR3 loops and peptides were

classified based on their distances and contacting parts: main chain
Frontiers in Immunology 05
or side chain groups. We considered either all contacts (a single

TCR residue can contact several peptide residues located in

distance<5Å) or only closest contacting residues (for each TCR

residue only a single contact with the closest residue in the peptide

was considered). Four groups were formed based on these

parameters (1): all contacting residue pairs, (2) closest contacting

residues (for each TCR residue only a single contact with the closest

residue in the peptide was considered), (3) residues contacting

through side chain groups, and (4) closest contacting residues

through side chain groups. For the third and fourth groups we

considered only contacts in which at least one of the residues

interact through a side chain group. Analysis of side chain groups is

crucial because practically all physicochemical features of amino

acid residues are “encoded” in side chain groups.
A B

DC

FIGURE 1

(A) Pipeline used in the stepwise amino acid mutation modeling approach applied in the present study. (B) Mutation path in one of the studied CDR3 clusters
starting from a known 2NX5 PDB structure (36) carrying CAVQASGGSYIPTF CDR3a loop. (C) CDR3 sequence similarity map of VDJdb, layout of a graph with
edges connecting CDR3 sequences that differ by no more than a single amino acid mismatch. CDR3 sequences having PDB templates are shown with
labels. Orange points show VDJdb entries that were classified as belonging to a sequence homology motif (described in (37)), red points are connected
components built around PDB structure templates, TCR:pMHC records connected by no more than 3 subsequent amino acid substitutions to a PDB that
were modeled in present study are shown with black crosses. (D) An example of the mutation pathways in which the same CDR3 loops could be modeled
using different intermediate sequences. The corresponding pathways are shown with bold red arrows.
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The number of all found contacting amino acid pairs between

CDR3 loops and peptides in original and modeled structures is

presented in Figure S3.

It can be seen that, even though there are some new contacting

residue pairs in the modeled structures that were not found in the

original structures, the majority was not unique.

We visually inspected the contacting residues in the CDR3 alpha

and beta clusters modeled from the core sequences presented in 7RTR

and 7N1F original PDB structures. These structures contain TRAV12-

2*01/TRAJ30*01 TCRa chain with “CAVNRDDKIIF” CDR3,
Frontiers in Immunology 06
TRBV7-9*01/TRBJ2-7*01 TCRb chain with “CASSPDIEQYF”

CDR3, and YLQPRTFLL SARS-CoV2 epitope presented by MHCI.

Using selected clusters, 54 unique single amino acid substitutions were

modeled: 16 substitutions were introduced to the CDR3 loop of TCR

alpha and 38 to TCR beta.

Analyzing all these modeled substitutions, it was found out that

in most cases they were in non-contacting positions according to

the corresponding original structures. Contacting residues were

only changed to similar amino acids, while more dissimilar ones

only appeared in positions where contact with the peptide was
TABLE 1 Details for initial PDB templates and the number VDJdb entries modeled as structures.

Template annotation Modeled structures

PDB Peptide TCRa
V-gene

TCRa
J-gene

TCRb
V-gene

TCRb
J-gene

MHC gene Unique CDR3a Unique CDR3b

5nqk ELAGIGILTV TRAV12-2*01 TRAJ45*01 TRBV19*01 TRBJ2-2*01 HLA-A2 1 –

5nht ELAGIGILTV TRAV12-2*01 TRAJ45*01 TRBV19*01 TRBJ2-2*01 HLA-A2 4 –

2nx5 EPLPQGQLTAY TRAV1-2*01 TRAJ6*01 TRBV10-3*01 TRBJ1-5*01 HLA-B35 5 4

1mi5 FLRGRAYGL TRAV26-2*01 TRAJ52*01 TRBV7-8*01 TRBJ2-7*01 HLA-B8 – 5

5isz GILGFVFTL TRAV24*01 TRAJ27*01 TRBV19*01 TRBJ2-7*01 HLA-A2 – 2

5euo GILGFVFTL TRAV27*01 TRAJ37*01 TRBV19*01 TRBJ2-7*01 HLA-A2 61 216

2vlr GILGFVFTL TRAV27*01 TRAJ42*01 TRBV19*01 TRBJ2-7*01 HLA-A2

29 79
1oga GILGFVFTL TRAV27*01 TRAJ42*01 TRBV19*01 TRBJ2-7*01 HLA-A2

2vlj GILGFVFTL TRAV27*01 TRAJ42*01 TRBV19*01 TRBJ2-7*01 HLA-A2

2vlk GILGFVFTL TRAV27*01 TRAJ42*01 TRBV19*01 TRBJ2-7*01 HLA-A2

5e6i GILGFVFTL TRAV35*01 TRAJ37*01 TRBV27*01 TRBJ2-2*01 HLA-A2 5 2

5jhd GILGFVFTL TRAV38-2/DV8*01 TRAJ52*01 TRBV19*01 TRBJ1-2*01 HLA-A2 1 83

3o4l GLCTLVAML TRAV5*01 TRAJ31*01 TRBV20-1*01 TRBJ1-2*01 HLA-A2 17 23

3mv7 HPVGEADYFEY TRAV20*01 TRAJ58*01 TRBV9*01 TRBJ2-2*01 HLA-B35

7 6
3mv8 HPVGEADYFEY TRAV20*01 TRAJ58*01 TRBV9*01 TRBJ2-2*01 HLA-B35

3mv9 HPVGEADYFEY TRAV20*01 TRAJ58*01 TRBV9*01 TRBJ2-2*01 HLA-B35

4pri HPVGEADYFEY TRAV20*01 TRAJ58*01 TRBV9*01 TRBJ2-2*01 HLA-B35

2ypl KAFSPEVIPMF TRAV5*01 TRAJ13*01 TRBV19*01 TRBJ1-2*01 HLA-B57 3 18

4g9f KRWIIMGLNK TRAV14DV4*01 TRAJ21*01 TRBV6-5*01 TRBJ1-1*01 HLA-B27 – 2

1ao7 LLFGYPVYV TRAV12-2*01 TRAJ24*01 TRBV6-5*01 TRBJ2-7*01 HLA-A2
1 –

4ftv LLFGYPVYV TRAV12-2*01 TRAJ24*01 TRBV6-5*01 TRBJ2-7*01 HLA-A2

3gsn NLVPMVATV TRAV24*01 TRAJ49*01 TRBV6-5*01 TRBJ1-2*01 HLA-A2 3 –

5d2l NLVPMVATV TRAV24*01 TRAJ49*01 TRBV7-2*01 TRBJ2-5*01 HLA-A2 8 20

5d2n NLVPMVATV TRAV26-2*01 TRAJ43*01 TRBV7-6*01 TRBJ1-4*01 HLA-A2 17 19

6vmx RPPIFIRRL TRAV24*01 TRAJ37*01 TRBV4-1*01 TRBJ1-2*01 HLA-B7 2 –

4mji TAFTIPSI TRAV17*01 TRAJ22*01 TRBV7-3*01 TRBJ2-2*01 HLA-B51 1 1

7n6e YLQPRTFLL TRAV12-1*01 TRAJ43*01 TRBV19*01 TRBJ2-2*01 HLA-A2 68 –

7n1f YLQPRTFLL TRAV12-2*01 TRAJ30*01 TRBV7-9*01 TRBJ2-7*01 HLA-A2
15 34

7rtr YLQPRTFLL TRAV12-2*01 TRAJ30*01 TRBV7-9*01 TRBJ2-7*01 HLA-A2
Dash (“-”) indicates there were no VDJdb records with 1-3 mismatches we could model using our approach.
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formed by main chain atoms. Therefore, changes of side chain

groups should not influence CDR3-peptide binding.

The modeled substitutions are shown in Figure 2, and

corresponding information about the contacting residues between

the CDR3 loops and peptide is presented in Table 2.

During the inspection of the selected modeled structures

(Table 2) it was observed that only two contacting positions

carried multiple variations of amino acids: Asp-6 in the CDR3a
and Pro-5 in the CDR3b loop. In both cases, the side chain groups

of the mutated residues were oriented towards the MHC molecule

instead of the epitope. Two other positions carried one or two

variants of substituted amino acids that were quite similar to the

original in terms of their physicochemical properties: Glu instead of
Frontiers in Immunology 07
Asp in the 6th position and Val or Ser instead of ILE in the 7th

position of CDR3b loop.
3.3 Correlation of CDR3: peptide binding
energy values and amino acid properties

It was previously shown (38) that the most important energy

terms during the calculation of free binding energies between TCRs

and peptides were the attractive van der Waals impact energy,

solvation energy, and side-chain – side-chain hydrogen bond

energy, while the repulsive van der Waals term was insignificant.

Thus, in our research, energy values for contacting residues and
FIGURE 2

Modeled amino acid substitutions in CDR3 loops in TCR:peptide:MHC complexes containing SARS-CoV-2 spike epitopes YLQPRTFLL. Contacting
residues are represented as sticks, modeled substitutions are represented as lines and close contacts are illustrated as dashed sticks. CDR3 loop of
TCRa is colored green, TCRb is colored cyan, and the peptide residues are colored magenta.
TABLE 2 Contacting residues in modeled TCR:peptide:MHC complexes, built based on 7RTR and 7N1F original PDB structures.

CDR3 Peptide Interaction
Modeled substitutions

chain residue position residue position Type of interaction cdr3 peptide

TCRa

Asn 4
Pro 4 VDW side chain side chain

none
Arg 5 VDW side chain side chain

Asp 6
Pro 4 VDW main chain main chain

multiple
Arg 5 VDW main chain side chain

Asp 7

Pro 4 VDW side chain main chain

noneArg 5 HBOND side chain side chain

Thr 6 HBOND side chain side chain

TCRb

Pro 5 Leu 8 VDW main chain side chain multiple

Asp 6

Arg 5 IONIC side chain side chain

GLUThr 6 VDW side chain main chain

Phe 7 VDW side chain side chain

Ile 7 Arg 5 VDW side chain side chain VAL, SER
Annotation of interactions is presented in accordance with the results of the analysis of residue interaction networks. Provided amino acid numbering starts from the beginning of the
corresponding substructure – CDR3 loop or peptide.
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interfaces between modified CDR3 loops and peptides in all

modeled complexes were calculated using full Rosetta scoring

functions and two of its limited variations: “Large patch” and

“Small patch” presets (see the “Methods” section). As all models

were built using stepwise introduction of single amino acid

substitutions, we calculated the changes in the values of interface

energies between complexes that differ by 1 amino acid. These

changes in energy values represent the impacts of point amino acid

variations on the affinity of complexes. Henceforth that type of

values would be referred to as “dEnergy”.

3.3.1 Correlation between BLOSUM scores and
dEnergy values

Two types of BLOSUM matrices (BLOSUM62 and

BLOSUM100) were used to study the consistency between amino

acid substitution scores and their impact on dEnergy in modeled

complexes. Pearson’s correlations were calculated between absolute

values of free energy adjustments caused by mutation and one of

three modified BLOSUM indices of corresponding substitutions:

Clustered Target Frequencies (QIJ), Clustered Scoring Matrix in

Bit Units (SIJ) or most commonly used Clustered Scoring Matrix
Frontiers in Immunology 08
in 1/2 Bit Units (BLA). Adjusted index values were calculated

as follows:

BLOSi(substitution) − BLOSi(from) − BLOSi(to)
2

where BLOSi (substitution) - BLOSUM index of studied substitution

BLOSi (from) - BLOSUM index of a match of origin residue

BLOSi (to) - BLOSUM index of a match of new residue

As BLOSUM scores represent the ratio of the likelihood of two

amino acids being exchanged with biological significance, it is more

reasonable to compare them with absolute values of dEnergy

without taking into consideration its sign. Thus, we can evaluate

the impact of substitutions to similar or dissimilar amino acids.

Energy values were calculated using the full Rosetta scoring

function and “Large patch” and “Small patch” presets.

Correlations were analyzed for all mutated residues in CDR3

loops and separately for substitutions in only contacting positions.

Top 20 corresponding correlation values and p-values are presented

in Table 3.

It was observed that the correlations between different

BLOSUM62 or BLOSUM100 indexes and absolute delta energy
TABLE 3 Correlation values, calculated for BLOSUM scores and absolute values of dEnergy after the introduction of amino acid substitutions in
modeled complexes.

Blosum index
All mutations Contacting mutations Energy

scoring Optimization
Pearson correlation P-value Pearson correlation P-value

BLA.62.v2 -0.136 2.03E-04 -0.219 7.76E-06 Small patch Minimized

BLA.62.v2 -0.135 2.36E-04 -0.205 2.69E-05 Large patch Minimized

SIJ.62.v2 -0.112 0.002 -0.182 2.16E-04 Small patch Minimized

SIJ.100.v2 -0.097 0.008 -0.165 6.67E-11 Small patch Minimized

SIJ.62.v2 -0.107 0.004 -0.164 0.001 Large patch Minimized

BLA.100.v2 -0.096 0.009 -0.164 1.86E-10 Small patch Minimized

BLA.62.v2 -0.135 4.34E-05 -0.161 3.07E-04 Large patch Repacked

SIJ.100.v2 -0.084 0.022 -0.137 0.005 Large patch Minimized

BLA.100.v2 -0.083 0.024 -0.136 0.006 Large patch Minimized

BLA.62.v2 -0.123 1.79E-04 -0.133 0.003 Small patch Repacked

BLA.62.v2 -0.055 0.119 -0.128 0.008 Rosetta Minimized

SIJ.62.v2 -0.117 4.01E-04 -0.126 0.005 Large patch Repacked

SIJ.62.v2 -0.050 0.154 -0.113 0.019 Rosetta Minimized

SIJ.100.v2 -0.107 0.001 -0.110 0.014 Large patch Repacked

SIJ.62.v2 -0.082 0.011 -0.109 0.015 Rosetta Repacked

SIJ.100.v2 -0.085 0.009 -0.102 0.023 Rosetta Repacked

BLA.100.v2 -0.106 0.001 -0.099 0.026 Large patch Repacked

BLA.100.v2 -0.038 0.287 -0.099 0.040 Rosetta Minimized

BLA.62.v2 -0.071 0.028 -0.097 0.029 Rosetta Repacked

SIJ.100.v2 -0.040 0.261 -0.097 0.044 Rosetta Minimized
Statistically significant test results (P ≤ 0.05) are highlighted in bold font.
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values were very poor overall. The best correlation was observed

between BLA.62 values and the absolute value of dEnergy,

calculated using the “Small patch” preset in structures that carried

mutations in contacting positions. Pearson correlation values (R

coefficient) was -0.22 and -0.13 for minimized and repacked

structures respectively. The results are presented in Figure 3. It

can also be observed that correlation is better for TCRb chains,

which corresponds to previously shown results that beta-chains are

more crucial for the specificity of peptide recognition and binding.

These results show that standard BLOSUM matrices might not

be as informative in the analysis of full CDR3 sequences, their

clusterization and prediction of binding with specific peptides. The

highest correlation was observed when only containing residues

were considered. This fact highlights that instead of aligning and

analyzing full CDR3 sequences, special attention should be paid to

contacting parts.

Despite the low correlations overall, it was mentioned that using

energy minimization as the final optimization of models led to a

slight improvement of corresponding values compared to repacking.

This can be explained by the “fitting” of contacting interfaces in TCR-

peptide-MHC complexes after repacking of “mutated”models, which

resulted in “smoothing” (reduction) of the substitution impact.

3.3.2 Influence of remoteness of contacting
amino acids on dEnergy

We additionally analyzed the impact of the distance between

substituted residues and peptides on dEnergy of TCR-peptide-

MHC binding. In cases when mutated residue in CDR3 interacted

with more than one residue of epitope, we used minimal distance

values. It was shown that the total Pearson correlation values
Frontiers in Immunology 09
between distance and absolute values of dEnergy in minimized

modeled structures were -0.27, -0.39 and -0.41 for energy values

calculated using the full Rosetta scoring function, “Large-” and

“Small patch” presets respectively. The negativity in correlation

values indicates that the more distant a modeled substitution is

from the peptide, the less it impacts dEnergy values, which makes

biophysical sense.

Analyzing these dependencies for TCRa and TCRb separately, it

can be seen that correlation was better for TCRb in comparison with

TCRa. These results indicate that CDR3 loops of beta-chains might

have a greater impact on peptide recognition than TCR-alpha’s.

Corresponding correlations, calculated for repacked structures were

smaller: -0.074, -0.26 and -0.18. This decrease in correlation also

supports the concept of “fitting” of mutated CDR3 residues after

repacking optimization. Correlation graphs are presented in Figure 4.

3.3.3 Correlation between physicochemical
properties of cognate CDR3 and epitope residues

Using “Peptides” and “HDMD” R packages, seven groups of

amino acid descriptors were calculated for the contacting residues

in CDR3 loops and peptides in original and mutated TCR-peptide-

MHC complex structures. It should be mentioned that only

mutated positions were taken into account. The descriptor groups

were as follows: BLOSUM indices (BLOS1-BLOS10), Kidera factors

(KF1-KF13), VHSE (VHSE1- VHSE 8), Cruciani properties (PP1-

PP3), zScales (Z1-Z5), FASGAI (F1-F6) and Atchley factors (PAH,

PSS, MS, CC, EC) (39).

The majority of calculated indices can be grouped according to the

specific physicochemical features they represent: hydrophobicity, steric

properties, electronic, and secondary structure features (Table 4).
FIGURE 3

Correlation of BLOSUM62 matrix indices and absolute values of dEnergy, calculated for modeled structures. Corresponding values for TCRa and
TCRb are colored red and blue.
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The rest of the descriptors, for example, BLOS4 and BLOS9

correlate with several properties and the specific one cannot

be prioritized.

To analyze the consistency between properties of contacting

residues in CDR3 loops and epitopes, we performed rank

correlation analysis of the corresponding factors and indices.

Spearman correlations were calculated within selected groups of

descriptors for all interacting residues, the closest contacting

residues, and amino acid pairs interacting through at least one

side chain group. The most valuable correlations in groups of

descriptors were identified using the Shapiro-Wilk test. Paired

correlations and their distribution for selected groups of indices

are presented in Figure 5, and best correlations are listed in Table 5.

The best correlation values were calculated for the hydrophobic

and steric groups of descriptors in minimized structures, and their

distribution was non-normal, according to the Shapiro–Wilk test

(p-values were 3x10-5 and 0.0085, respectively). After repacking of

modeled structures, which led to structural fitting of contacting

residues and displacement of their side-chain groups, the

correlations of steric descriptors became weaker, while the
Frontiers in Immunology 10
correlations of hydrophobic descriptors still remained highly

significant (p-value = 6x10-5).
3.4 Identifying residue binding features
in CDR3: peptide interface using
machine learning

At the final stage we performed RFE (Recursive Feature

Elimination) analysis and applied the Random Forest (RF)

algorithm to make predictive models for the per-residue

contacting energy values for amino acid residue pairs in CDR3

loops and peptides. RF was selected as it can handle high-

dimensional data and is unlikely to do overfitting, while also

allowing to easily assess feature importance which is needed in

exploratory analysis.

To include a wider range of valid pairwise contacts between

CDR3 loops and TCRs, we calculated amino acid descriptors and

energy values for known TCR-peptide-MHC complexes available in

the PDB database. In total, we added 152 structures of human T-cell

receptors with peptides and MHC-I triple complexes to the analysis.

As our modeled structures were optimized using energy

minimization or repacking of contacting residues, corresponding

structures were treated separately and combined with selected

resolved structures from the PDB database. The two extended

datasets, containing 94 amino acid descriptors and affinity values

(per-residue energies) for all the studied contacting residues were

divided into training and testing sets in 70% to 30% proportion.

Affinity values were converted to 5 groups (factors) using

quantile values.
FIGURE 4

Correlation between the remoteness of contacting residues in CDR3-peptide interface and absolute dEnergy values. Overall correlation values are
presented in black, and linear fittings calculated for TCR-alpha and TCR-beta chains independently are presented in red and blue respectively.
TABLE 4 Groups of studied amino acid descriptors.

Property Amino acid indices

Hydrophobicity Z1, PP2, F1, VHSE1, VHSE2, Blos1, KF4, KF10

Steric properties a.ms, Z2, F3, VHSE3, VHSE4, Blos1, Blos2, Blos3, KF2

Electronic
properties

a.pah, a.ec, Z3, PP1, F6, VHSE5, VHSE6, VHSE7,
VHSE8

Secondary structure a.pss, F2, Blos1, Blos3, KF1, KF3, KF5, KF8
Names of the Atchley indices were shortened using “a.” prefix.
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Discretizing the target variables is a common step in machine

learning procedures such as Random Forest, and there are several

reasons for doing so. First, dividing the affinity values into

meaningful groups can make it easier to interpret the results.

Second, discretizing the values can help mitigate the effects of

outliers and noise in the data. Finally, it can be useful for

classification tasks, such as predicting whether a given interaction is

“strong” or “weak”.
Frontiers in Immunology 11
During RFE analysis of the extended datasets containing either

minimized or repacked modeled structures, we identified 10 and 13

variables, respectively, as the most important predictors of the

affinity values. These descriptors are presented in Table 6.

Upon analyzing the selected descriptors, it is noticeable that

most of them belonged to amino acids from CDR3 loops, and the

majority of the top 5 descriptors were related to the hydrophobic

properties of the studied residues.
A

B

FIGURE 5

Correlations of calculated descriptors between contacting residues of CDR3 loops and epitopes. The presented correlation analysis was performed
for the closest contacting residues, interacting through at least one side-chain group in (A) minimized and (B) repacked models. Paired correlation
values are represented as waffle plots, and their distribution in groups is shown as histograms. Statistical significance of correlation is labeled with “*”,
“**” and “***” for P-values< 0.05, 0.01 and 0.001 respectively.
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Evaluating the models built for the two selected datasets using

testing data showed that the quality of their predictions was

relatively similar for repacked and minimized structures.
Frontiers in Immunology 12
The accuracy of the model built using minimized structures was

0.4212 with a 95% confidence interval of 0.3905 - 0.4524, and the

accuracy of the model using repacked structures was 0.448 with a

95% confidence interval of 0.417 - 0.4793. The Kappa statistic for

the “minimized”model was 0.2765, and for the “repacked”model, it

was 0.3098. The slightly higher accuracy of the model built using the

extended data set of repacked structures and the higher Kappa

statistic indicates better agreement between predicted and actual

values compared to the second model built using minimized

structures. The McNemar’s Test P-Value was also lower for the

“repacked” model, suggesting that it may be a more reliable model.
4 Discussion

In this study we proposed an in silico approach for template-

based modeling of highly similar CDR3 loops in full TCR-peptide–

MHC complexes using stepwise introduction of single amino acid

substitutions. Using our approach, we modeled 1585 structures

based on 29 templates and studied the non-redundant set of

structures by grouping identical TCR alpha and beta chains and

utilized the dataset to study the determinants of antigen recognition

on a single-residue level. Our results greatly extend the number of

available structures with different hypervariable CDR3 sequence

variants, including 16 synthetic TCR alpha structures and 38 TCR

beta structures modeled based on 7RTR and 7N1F SARS-CoV-2

antigen-TCR complex templates.
TABLE 5 Top correlation values between calculated CDR3 and epitope residues indices.

Descriptor type CDR3
descriptor

Peptide
descriptor Correlation p-value p-value

(adjusted) Optimization and contact type

A. Positive correlations

Steric VHSE4 p.Blos1 0.32 1.09E-09 4.15E-06 Minimized, closest, side-chain

Hydrophobic

Blos1 Z1 0.33 4.93E-11 1.86E-07

Repacked, closest, side-chain
Z1 Blos1 0.31 6.34E-10 2.40E-06

F1 VHSE1 0.31 9.46E-10 3.57E-06

Blos1 KF4 0.30 3.88E-09 1.46E-05

B. Negative correlations

Steric

VHSE6 VHSE5 -0.30 1.13E-08 4.27E-05
Minimized, closest, side-chain

VHSE6 F5 -0.31 4.09E-09 1.54E-05

Blos1 F3 -0.31 8.2E-10 3.09E-06 Repacked, closest, side-chain

Hydrophobic

Blos3 F3 -0.30 2.95E-09 1.11E-05

Repacked, closest, side-chain

Z1 VHSE1 -0.31 1.96E-09 7.41E-06

F1 Z1 -0.31 6.1E-10 2.30E-06

F1 KF4 -0.32 5.59E-10 2.11E-06

F1 Blos1 -0.32 3.22E-10 1.21E-06

F1 KF10 -0.32 2.82E-10 1,07E-06

Blos1 VHSE1 -0.33 8.12E-11 3.07E-07

Electronic a.ec a.ec -0.31 6.59E-09 2.49E-05 Minimized, closest, side-chain
TABLE 6 Selected amino acid descriptors during Random Feature
Elimination procedure.

Minimized + original Repacked + original

p.F1 (H) p.F1 (H)

cdr3.VHSE1 (H) cdr3.VHSE1 (H)

cdr3.Z1 (H) cdr3.Z1 (H)

cdr3.KF10 (H) cdr3.KF10 (H)

cdr3.KF4 (H) cdr3.KF4 (H)

cdr3.VHSE7 (E) cdr3.VHSE7 (E)

cdr3.Blos8 cdr3.VHSE8 (E)

cdr3.a.ms (S) cdr3.a.ms (S)

p.a.cc cdr3.F2 (SS)

cdr3.KF7 cdr3.KF7

cdr3.Blos7

cdr3.F5

cdr3.Blos10
The top,5 descriptors according to the calculated importance are highlighted in bold font. The
properties represented by the descriptors are labeled as follows: H, hydrophobic; E, electronic;
S, steric; SS, secondary structure.
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Upon analyzing these structures, we observed that widely used

standard BLOSUM62 and BLOSUM100 scores have little

correlation with the impact of amino acid mutations in CDR3

loops on TCR–epitope binding energy as long as those substitutions

appear in non-contacting parts of loops. This finding suggests that

the analysis and comparison of CDR3 sequences in context of

epitope recognition should mainly consider contacting residues,

and conventional full-length sequence alignment alone is not

sufficient to compare binding affinity of CDR3 sequences to the

same antigen.

Also, we found that contacting residues in CDR3b can have a

greater effect on TCR–peptide recognition than those in CDR3a

loops. This conclusion is based on the analysis of the impact of

CDR3 amino acid variations on interaction energy values,

depending on their remoteness from peptides and correlation

between BLOSUM indices and calculated absolute values of

dEnergy of interacting interfaces. In both cases corresponding

properties and values of CDR3b residues showed better

correlations in comparison to CDR3a.

Analysis of physicochemical properties of contacting residues in

CDR3 loops and epitopes, described by different descriptors,

showed that hydrophobicity may be an important factor

governing recognition and affinity of binding between CDR3

loops and epitopes in TCR-peptide-MHC complexes, yet in all

analysis correlation values were moderate. This is in agreement with

the fact that all studied amino acid residue substitutions have

limited impact on binding of CDR3 loops to peptides in order to

preserve T-cell receptor’s recognition.

The pipeline described in this paper can be reused when more

templates and/or TCR specificity data becomes available, greatly

extending the amount of available structural data on antigen

recognition by TCRs. Possible extensions to this work include

models in which the antigen is substituted by a similar peptide

that binds the same MHC in order to monitor for potential TCR

cross-reactivity and perform in-depth study of the determinants of

TCR specificity using molecular dynamics.
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