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Prognostic and tumor
microenvironmental feature of
clear cell renal cell carcinoma
revealed by m6A and lactylation
modification-related genes

Lin Yang †, Xiaoyu Wang †, Jiahao Liu †, Xiaoqiang Liu †, Sheng Li,
Fuchun Zheng, Qianxi Dong, Songhui Xu*, Jing Xiong*

and Bin Fu*

Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, China
Background: Both lactylation andm6Amodification have important implications

for the development of clear cell renal cell carcinoma (ccRCC), and we aimed to

use crosstalk genes of both to reveal the prognostic and immunological features

of ccRCC.

Methods: Our first step was to look for lactylation-related genes that differed

between normal and tumor tissues, and then by correlation analysis, we found

the genes associated with M6A. Following that, ccRCC subtypes will be identified

and risk models will be constructed to compare the prognosis and tumor

microenvironment among different subgroups. A nomogram was constructed

to predict the prognosis of ccRCC, and in vitro, experiments were conducted to

validate the expression and function of key genes.

Results: We screened 100 crosstalk genes and identified 2 ccRCC subtypes. A

total of 11 prognostic genes were screened for building a risk model. we

observed higher immune scores, elevated tumor mutational burden, and

microsatellite instability scores in the high-risk group. Therefore, individuals

classified as high-risk would derive greater benefits from immunotherapy. The

nomogram’s ability to predict overall survival with a 1-year AUC of 0.863

demonstrates its significant practical utility. In addition, HIBCH was identified

as a potential therapeutic target and its expression and function were verified by

in vitro experiments.

Conclusion: In addition to developing a precise prognostic nomogram for

patients with ccRCC, our study also discovered the potential of HIBCH as a

biomarker for the disease.
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Background

Renal cell carcinoma (RCC), particularly clear cell cancers

which account for approximately 80% of cases, are highly

aggressive and heterogeneous tumors (1). Due to the lack of

specific symptoms in early RCC, nearly 30% of patients present

with distant metastases at the time of initial diagnosis, which is one

of the major reasons for the poor prognosis of RCC patients (2, 3).

An excellent outcome is usually achieved by surgically resecting the

primary lesion of a low-risk limited clear cell renal cell carcinoma

(ccRCC), but a significant proportion of patients still recur within a

short period (approximately 40%). Patients with high-risk

metastatic or limited ccRCC must undergo systemic therapy to

improve their prognosis (4, 5). In recent years, combination

therapies based on anti-angiogenic agents and immune

checkpoint inhibitors have been shown to improve the survival of

ccRCC patients (6). Nevertheless, the current problem is that

effective long-term treatment responses can only be observed in a

small number of patients (7, 8). In the era of precision medicine, it is

crucial to thoroughly understand the tumor microenvironment

(TME) and identify biomarkers associated with therapeutic

response to effectively manage ccRCC patients in the long term.

Aerobic glycolysis is an important feature of tumor cell energy

metabolism known as the “Warburg effect”, which leads to a large

accumulation of lactic acid in the TME (9). Recent findings suggest

that lactate in TME can regulate immune cell metabolism through

mitochondrial metabolic pathways, thereby affecting immune

surveillance and escape-related behaviors (10, 11). A study by

Zhao et al. proposed a novel epigenetic modification that

translates the cellular metabolic state into a stable gene expression

pattern through histone lactylation modification (12). This provides

a new direction for understanding the mechanisms by which lactate

regulates cellular metabolism and immune function. Currently, it

has been demonstrated that lactylation plays a key role in the

progression of ccRCC. Yang et al. found that Inactive von Hippel-

Lindau-triggered (VHL) histone lactylation can drive the

progression of ccRCC (13). More interestingly, Yu and Xiong

et al. found that histone lactylation drives N6-adenylation

methylation modifications (m6A) to promote tumor progression

and immunosuppression (14, 15). Moreover, ccRCC progression

and immune landscapes are strongly influenced by m6A

modification (16). However, the impact of crosstalk between
Abbreviations: RCC, Renal cell carcinoma; ccRCC, Clear cell renal cell

carcinoma; TME, Tumor microenvironment; VHL, Von Hippel-Lindau-

triggered; m6A, N6-adenylation methylation modifications; TCGA, The Cancer

Genome Atlas; FC, Fold change; DEGs, Differentially expressed genes; DECGs,

Differentially expressed crosstalk genes; TMB, Tumor mutational load; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCS, Principal

component analysis; OS, Overall survival; HLA, Human leukocyte antigen;

LASSO, Least absolute shrinkage and selector operation analysis; K-M, Kaplan-

Meier; GSEA, Gene set enrichment analysis, IPS, Immunophenotype score; ROC,

Receiver Operating Characteristics; AUC, Area Under Curve; DCA, Decision

curve analysis; MTGs, Mitochondria genes; FBS, Fetal bovine serum; qPCR,

Quantitative PCR.
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histone lactylation and m6A modification on the ccRCC TME

is unclear.

Therefore, we utilized the interaction between histone

lactylation and m6A modification-related genes to forecast patient

survival and assess the response to immunotherapy in ccRCC.
Methods

Datasets

A training set of TCGA-KIRC data was downloaded from the

Cancer Genome Atlas (TCGA) database, which contained gene

expression data from 541 tumor tissues and 72 normal tissue

samples, as well as corresponding clinical information. The E-

MTAB-1980 validation set, which contains clinical and gene

expression data from 101 patients with ccRCC, was generated from

ArrayExpress. Our next step was to remove genes with raw counts

below 10 in more than 25% of the samples. The TPM data were

transformed into log2 (TPM+1). There are 1223 genes associated

with lactylation modification according to Zhang et al. (12).
Correlation and difference analysis

The 1223 lactylation modification-related genes were subjected

to Pearson correlation analysis with 23 m6A genes to obtain

crosstalk genes with screening criteria of correlation>0.5 and

padj<0.01. To identify differentially expressed genes (DEGs)

between cancer and paracancerous tissues, we used the “DESeq2”

package [padj <0.05, |log2fold change (FC)|>1]. Subsequently, the

crosstalk genes were merged with DEGs and the intersection was

taken to finally obtain the differentially expressed crosstalk genes

(DECGs). The correlation results between DECGs were visualized

using the “circlize” package.

Each sample’s tumor mutation load (TMB) was calculated using

the “Maftools” package. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses of DECGs

were performed using the “clusterProfiler” package.
Identification of ccRCC subtypes

We identified ccRCC clinical subtypes using the consensus

clustering R package “ConsensusClusterPlus” (17). The ability of

DECGs to discriminate between subtypes was assessed using

principal component analysis (PCA). After that, we compared the

differences between subtypes in terms of clinical variables (age,

gender, grade, and stage) as well as overall survival (OS).
The immune landscape
of different subtypes

Every sample was analyzed for the TME score using the

“estimate” package. In each TCGA-KIRC sample, immune cell
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infiltration was assessed using the online analysis tool TIMER2.0

(CIBERSORT algorithm). Based on our knowledge of the close

relationship between immune-inhibitory, immune-stimulatory, and

human leukocyte antigen (HLA) genes and TME, a comparison of

expression levels between subtypes was made (18, 19).
Constructing risk model

Univariate COX regression analysis was first performed on the

DECGs to screen for genes associated with OS according to p<0.05,

and they were used to perform a least absolute shrinkage and

selection operation (LASSO) analysis to screen for genes most

associated with prognosis for constructing the risk model and to

derive a risk coefficient for each gene. The expression of each

modeled gene was multiplied by the risk coefficient to calculate

the risk score for each patient. Each group of patients was

categorized according to the median risk score. To test whether

the model was able to discriminate between patients at different

risks, PCA and Kaplan-Meier (K-M) survival analyses were

performed. In addition, the relationship between clinical variables

and risk scores for different clinical characteristics in the high- and

low-risk groups was assessed.
Immune landscape
and enrichment analysis

Based on the above results, we evaluated the differences between

the two risk groups in terms of TME scores, immune cell

infiltration, and immune-related gene expression. Then, we

calculated immune-related function scores using the “ GSEABase”

and “GSVA” packages based on the “ immune. gmt” file. The DEGs

were determined using the “limma” package, followed by GO,

KEGG, and gene set enrichment analysis (GSEA) using

“ClusterProfiler”. The “enrichplot” and “GseaVis” packages were

used to visualize the enrichment analysis results.

As a result of the analysis above, we obtained the sample TMB

and then downloaded the MSI score file via the “cBioPortalData”

package. We defined samples as MSI when the score exceeded 0.3,

and MSS if the score was below it. Moreover, the “easier” package

calculates an immunotherapy response score based on TME

character is t ics , where higher scores indicate greater

immunotherapy sensitivity (20). We downloaded each patient’s

immunophenotype score (IPS) from the Cancer Immunome Atlas

(TCIA, https://tcia.at/home) and divided it into <=8 and >8 groups

according to IPS. The relationship between these metrics and risk

scores was finally evaluated to reflect the predictive value of risk

scores on immunotherapy response.
Constructing a nomogram

Through multivariate and univariate COX regressions, several

independent predictors of OS were identified. A nomogram was

then created with the help of the “survival” and “rms” packages.
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Calibration plots, Receiver Operating Characteristics (ROC), and

Area Under Curve (AUC) were used to assess the predictive

capability of the nomogram. Decision curve analysis (DCA) was

used to determine the clinical value of the nomogram.
Comprehensive analysis of key genes

Both the metabolism of lactate and the lactylation modification

process are closely related to the function of mitochondria. We

obtained 1136 mitochondria genes (MTGs) from the MitoCarta 3.0

database (https://www.broadinstitute.org/) and then took

intersections with risk model genes to obtain key genes. Following

the pan-cancer analysis, key genes were assessed for differential

expression and prognostic value across multiple cancer types. An

assessment of the association between clinical features and TME of

ccRCC was conducted using the TISIDB database (http://

c i s .hku .hk/TISIDB/) . The ChEA3 database (ht tps : / /

maayanlab.cloud/chea3/#top) was used to obtain potential TF

regulating key genes, and we selected the “Mean Rank” panel and

took the top 10 genes for subsequent analysis and further screened

the TF regulating key genes by differential analysis and K-M

survival analysis. Patients with ccRCC were categorized into two

groups according to the expression of key genes. After performing a

differential analysis using the “limma” package, downstream

pathways were identified using GO, KEGG, and GSEA analyses.
Cell culture, transfection, and infection

Cell lines used in this study were obtained from Procell Life

Science&Technology Co., Ltd (Wuhan, China). An incubator

containing 37°C and 5% CO2 was used to grow HK-2 and

ACHN cells. Medium: MEM + 10% fetal bovine serum (FBS) +

1% antibiotics (HK-2 and ACHN), 1640 + 10% FBS + 1%

antibiotics (786-O).

The overexpression plasmids and control plasmids of HIBCH

were synthesized by Obio Technology (Shanghai) Corp., Ltd. We

transfected the plasmid into 293T cells using calcium phosphate

transfection to collect the viral fluid, which was then used to infect

ACHN and 786-O cells, resulting in elevated levels of HIBCH

expression in the cells. The RNA extraction was performed 48 hours

after cell infection, and PCR was carried out to determine

overexpression efficiency. Meanwhile, further cell phenotyping

experiments were carried out.
Quantitative PCR

For RNA extraction, we used TRIzol reagent (Invitrogen,

Thermo Fisher Scientific, Inc.) (Eight pairs of ccRCC cancer and

paracancerous tissue specimens were obtained from the Human

Genetic Resources Center, The First Affiliated Hospital of

Nanchang University.), and then reverse transcribed by Takara

PrimeScript RT kit (Takara Bio, Inc., Otsu, Japan). The qPCR was

performed on a Roche LightCycler96 real-time fluorescent
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quantitative PCR system using an SYBR premix Ex Taq kit (Takara

Bio, Inc., Otsu, Japan). The relative expression of genes was

calculated based on the 2^-DDCt method. Primer sequences:

HIBCH-F: 5’-GGAGTTGGTCTCTCAGTCCATG-3’, HIBCH-R:

5’-CCAAGTTTTCCTTGGAGTCGTGG-3’.
Cell migration

Cell migration was measured using 24-well transwell chambers,

each upper chamber was inoculated with approximately 30,000

cells, and 200ul of FBS-free medium was added; the lower chamber

was filled with 600ul of medium containing 20% FBS and counted

after 36 hours. Cells were cultured to 80% density in 6-well plates,

scratched, and then switched to an FBS-free medium and

photographed in the same field of view at 0 h and 24 h, respectively.
Statistical analysis

Statistical analyses were conducted using R (version 4.2.2) or

GraphPad Prism (version 9.0), and p<0.05 was considered

statistically significant. Analysis of variance was used to compare

categorical variables, and t-tests were used to compare continuous

variables. Correlations between continuous variables were

examined by Spearman or Pearson correlation analysis. Non-

parametric samples comparing two independent samples were

compared using Wilcoxon, while multiple independent samples

were compared using Kruskal-Wallis.
Results

Screening and analysis of DECGs

By correlation analysis, we obtained 604 crosstalk genes,

including 105 DEGs (Figure 1A). Then we removed 5 genes that

were not detected in the validation cohort and finally obtained 100

DECGs. As shown in the volcano plot, there were 27 low and 73 high-

expressed genes in the tumor tissue (Figure 1B). Subsequently,

correlation network plots demonstrated a close association between

DECGs (Figure 1C). the results of GO and KEGG analysis suggested

that DECGs may be involved in biological processes such as protein

modification and energy metabolism, and may play an important role

in the HIF-1 signaling pathway (Figure 1D). Interestingly, the VHL/

HIF pathway is linked to lactate production in ccRCC (13), which

certainly suggests to us that these DECGs deserve to be studied in

depth. According to Figure 1E, DECGs are mutated in 45.83% of

samples, withMTOR showing the highest mutation frequency (18%).
Clinical features of the two
ccRCC subtypes

Two subtypes of ccRCC were identified (Figure 2A), and the

PCA confirmed this (Figure 2B). A comparison of the clinical
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characteristics of the two subtypes was conducted following that.

In the TCGA cohort, age and gender did not differ between the two

groups, whereas the distribution of grading and stage showed

significant differences, with the C2 group having a higher nuclear

grade and a more advanced clinical stage (Figure 2C). Although the

E-MTAB-1980 cohort also showed the same trend, the C2 group in

the cohort had more male patients (Figure 2D). The C2 group

suffered a worse prognosis in both cohorts according to the K-M

survival analysis (Figure 2E). In addition, the Sankey diagram more

visually demonstrates the close association between subtypes and

clinical features (Figure 2F).
Two subtypes of the immune landscape

The results showed that all scores, except for tumor purity,

showed higher levels in the C2 group (Figure 3A). Figure 3B shows

that the two subtypes infiltrated differently with immune cells, for

example, the C1 group had more abundant monocytes and

macrophages; the C2 group was infiltrated with more T cell

follicular helper (TFH), T cell regulatory (Tregs), and NK cell

activated. In addition, it is clear from the heat map that most of

the immunoinhibitory, immunostimulatory, and HLA genes were

expressed at higher levels in the C1 group (Figures 3C–E). In

conclusion, all of the above results indicate that the ccRCC

subtypes identified by DECGs have distinct TME and clinical

characteristics. Therefore, an in-depth analysis of the predictive

value of DECGs for the prognosis and immunotherapy of ccRCC

is warranted.
Prognostic risk characteristics
of ccRCC patients

For the risk model, LASSO regression analysis identified 11

prognostic genes in the training set (Figure 4A). All were

associated with a better prognosis, except TTLL3 and CHFR

(Figure 4B). Risk score per patient = SORL1*(-0.056) + HIBCH*

(-0.122) + KDR*(-0.047) + VASH1*(-0.016) + VWA7*(-0.036) +

TMEM25*(-0.202) + PLCL1*(-0.116) + PRUNE2*(-0.055) +

TTLL3*0.069+CHFR*0.501+ABCG1*(-0.054). According to

PCA, these 11 risk genes (RGs) could be assigned to different

risk groups of ccRCC patients (Figure 4C). K-M survival curves

show that the high-risk group has shorter long-term survival times

(Figure 4D). The validation cohort also demonstrated similar

results. Figures 4E, F demonstrate the distribution of survival

status and RGs with a risk score, which is almost consistent with

the trend in both cohorts.

Subsequently, we analyzed the risk characteristics of the

different clinical variables. Among patients of different ages (<=65

vs >65), gender (Male vs Female), grades (G1/2 vs G3/4), and stages

(Stage I/II vs Stage III/IV), the cumulative risk was increasing year

by year in the high-risk group and was consistently higher than in

the low-risk group (Figures 5A–D). We also found large differences

in risk scores between variables within each variable. Although risk

scores did not differ significantly between the two age groups, male,
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high-core graded (G3/4), and late-stage (Stage III/IV) patients

tended to have higher risk scores (Figures 5E–H). In the Sankey

diagram depicting the correlation between C1/C2 subtypes and risk

groupings, we can observe that the C2 group with a worse prognosis

is almost exclusively distributed in the high-risk group, whereas the

C1 group, with a slightly better prognosis, is in a homogeneous

distribution in the two risk groups (SF1 I).
Immunological characterization and
enrichment analysis of the two risk groups

In the TME score, both the immune score and the estimated

score were higher in the high-risk group (Figure 6A). And the

higher abundance of CD8 T cells and TFH clustered in the high-risk

group (Figure 6B), which usually exerts anti-tumor immune effects.

Additionally, only a few HLA genes showed differential expression,

but most of the immunoinhibitory and immunostimulatory were

different from them. High-risk patients expressed more CD96,

CTLA4, IL10RB, LAG3, LGALS9, PDCD1, and TIGIT levels

among immunoinhibitory molecules. The same is true for
Frontiers in Immunology 05
immunostimulatory, most of which are highly expressed in high-

wind samples, such as CD70, IL6, and TNFRSF18 (Figure 6C). A

similar expression pattern was observed in cohort E-MTAB-

1980 (Figure 6D).

The immune-related function scores were generally higher in

the high-risk group than in the other group (Figures 7A, B).

Furthermore, the results of GO, KEGG, and GSEA also showed a

strong association of risk grouping with immune-related functions.

Biological pathways and functions related to immunity were

enriched in DEGs between high- and low-risk groups (Figure 7B).

Moreover, primary immunodeficiency and cytokine-cytokine

receptor interaction pathways were enriched in the high-risk

group (Figure 7C). The series of results suggest a close association

between risk groups and the immune microenvironment, especially

in high-risk groups.
Prediction of immunotherapy response

Patients with ccRCC were analyzed based on TMB, MSI, IPS,

and easier scores to predict their response to immunotherapy.
B

C

D

E

A

FIGURE 1

Identification and preliminary analysis of DECGs. (A) Venn diagram of crosstalk genes and DEGs intersected. (B) Volcano plots show the differential
distribution of DECGs. (C) Correlation network diagram of DECGs. (D) DECGs are enriched for biological functions and BP, Biological Process; MF,
Molecular function; CC, Cellular component). (E) Mutational landscape of DECGs.
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High-risk samples showed significantly higher levels of TMB and

easier scores, and the samples in the MSI group had higher risk

scores (Figures 8A–C). Similarly, higher scores in the IPS scores

about immune checkpoints were associated with higher risk

scores (Figure 8D). According to the above results, TME differs

greatly between the two risk groups, and the immunotherapy

response may be more durable and effective in patients at high

risk. Interestingly, we got the same results in a bladder cancer

immunotherapy cohort. We found that patients in the immune-
Frontiers in Immunology 06
responsive group had higher risk scores and more high-risk

patients (Figure 8E).
Nomogram accurately predicts survival of
ccRCC patients

Using the training set, we performed univariate and

multivariate COX regression analysis to identify independent
B

C

D

E F

A

FIGURE 2

DECGs-based ccRCC subtypes. (A) Consensus clustering identified 2 ccRCC subtypes. (B) Principal component analysis based on DECGs. (C, D)
Distribution of the 2 subtypes across clinical variables in the TCGA and E-MTAB-1980 cohorts. (E) K-M analysis to compare survival differences
between the 2 subtypes. (F) Sankey diagrams show the interchangeable relationships between clinical variables, subtypes, and survival status.
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predictors of OS, including age, stage, and risk score (Figures 9A, B).

Based on the sum of the corresponding scores for each factor, a

nomogram was constructed to predict patient survival at 1, 3, and 5

years (Figure 9C). Both the training and validation data sets showed

the predicted probabilities to be almost in line with the actual

probabilities (Figure 9D). Furthermore, the results of the ROC

analysis also showed strong predictive performance of the model

with 1-year AUC=0.863 for the TCGA cohort and 1-year

AUC=0.900 for the validation cohort (Figure 9E). The DCA
Frontiers in Immunology 07
demonstrated that the nomogram was superior to the TNM

staging for clinical purposes (Figure 9F).
The role of the key gene HIBCH in ccRCC

From risk model genes, we identified HIBCH, a gene closely

related to the mitochondrial function that may play a role in the

development of ccRCC (Figure 10A). To begin with, HIBCH is
B C

D E

A

FIGURE 3

Immune landscape of the 2 subtypes. (A) Differences in TME scores between C1 and C2 groups. (B) Heat map of the distribution of 22 immune cells
in the two subtypes. (C–E) Heat map of the difference in expression levels of HLA genes, immunoinhibitory, and immunostimulatory in the two
subtypes. "**" <0.01, and "***" <0.001.
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expressed at lower levels in tumor tissues, and high levels are

associated with better clinical outcomes (Figures 10B, C). High

levels of HIBCH expression are associated with lower tumor grades

and stages, reflecting its relationship to clinical variables

(Figure 10D). The immune microenvironment and HIBCH also

appear closely linked, which classify ccRCC into 6 immune subtypes

and may be useful to classify different types of ccRCC according to

their immune response (Figure 10E). In addition to having a

negative correlation with immune cell infiltration, HIBCH

expression was also found to be negatively correlated with TME
Frontiers in Immunology 08
scores (Figures 10F, G). More interestingly, the immune

checkpoints CTLA4 and PDCD1 showed a negative correlation

with the expression level of HIBCH as well (Figure 10H). According

to the pan-cancer analysis, HIBCH displayed similar effects in

numerous cancers (SF2). Based on these findings, there may be a

mechanism through which HIBCH interacts with ccRCC’s immune

microenvironment, which may influence tumor development and

treatment response.

To further explore the regulatory mechanisms of HIBCH in

ccRCC, we identified several potential TFs that regulate HIBCH
B

C D

E F

A

FIGURE 4

Risk model based on 11 genes. (A) LASSO regression analysis was performed to identify the genes used to construct the risk model. (B) Hazard ratio
of the 11 model genes. (C) Principal component analysis based on model genes. (D) K-M analysis comparing OS of high and low-risk groups. (E, F)
Trends in the distribution of survival status and model gene expression levels with changes in risk scores.
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expression, as well as potential pathways that inhibit ccRCC

development. The co-expression heat map demonstrated the

relationship between HIBCH expression and the top 10 TFs, most

of which had high correlation coefficient values (Figure 11A).

Difference analyses revealed significant differences between

tumors and normal tissues in the expression levels of SPI1,

GATA1, NR1H3, FLI1, SP2, MYBL2, and TFAP2C (Figure 11B).

Subsequent K-M survival analysis of these DEGs revealed that FLI1,

SP2, MYBL2, and TFAP2C were associated with OS (Figure 11C).

Moreover, SP2 was lowly expressed in tumor tissues and associated

with a good prognosis, while MYBL2 was highly expressed in tumor

tissues and associated with a poorer prognosis. It is more likely that

these two genes play a role in the regulation of HIBCH, but more

experiments are needed to verify this conjecture. Following

enrichment analysis, DEGs between high and low HIBCH

expression groups had enriched biological functions associated

with immunity (Figure 11D). More importantly, the GSEA results

suggested that HIBCH is closely associated with FCGR-related
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pathways (Figure 11E). This gene family encodes the receptor for

the Fc portion of immunoglobulin G, which is involved in a range of

immune processes. This further suggests a complex mechanism of

interaction between HIBCH and the immune microenvironment

and has the potential to be a relevant biomarker for

immunotherapeutic response.
Experimental verification results

Our in vitro studies revealed that HIBCH was higher expressed

in HK2 than in ACHN and 786-O (Figure 12A). Moreover, by

extracting RNA from kidney cancer and paraneoplastic tissues for

qPCR, the same results were obtained, and the cancer tissues

expressed lower levels of HIBCH (Figure 12B). Subsequently, we

further explored the effect of abnormal expression of HIBCH on the

migration ability of kidney cancer cells to elucidate its role in the

metastasis of kidney cancer. Figure 12C showed that we successfully
B C D

E F G H

A

FIGURE 5

Risk characteristics for each subgroup of clinical variables. (A–D): Cumulative hazard over time for <=65 and >65 years of age, male and female, G1/
2 and G3/4, and Stage I/II and III/IV patients in high and low-risk groups. (E–H): Differences in risk scores between patients <=65 years and >65
years, male and female patients, G1/2 and G3/4 patients, StageI/II and StageIII/IV.
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overexpressed HIBCH in ACHN and 786-O. As compared to the

overexpression group, the number of cells in the control group was

significantly higher (Figure 12D); in the scratch assay, the control

cell migration rate was also higher (Figures 12E, F), and these results

were statistically significant.
Discussion

There are two primary mechanisms responsible for tumor

occurrence and development: inactivation of tumor suppressors
Frontiers in Immunology 10
and activation of tumor promoters. In this process, epigenetic

modifications play a key role in regulating the expression of genes

(21). Current studies have shown that epigenetic aberrations are

common in RCC, especially histone modifications, and are closely

associated with their prognosis and treatment (22, 23). According to

Zhang et al., histone lactylation modification (12) is a new

epigenetic modification modality that provides new insights into

the pathogenesis of RCC. Cancer is characterized by two crucial

features: immune escape and metabolic reprogramming. Linking

these aspects together is lactate, a metabolite that facilitates

immunosuppression through lactylation modification. Recent
B

C D

A

FIGURE 6

Immunological characteristics of the two risk groups. (A) Differences in TME scores between the high and low-risk groups. (B) Levels of infiltration of
22 immune cell types in the two risk groups. (C, D) HLA gene, immunoinhibitory, and immunostimulatory expression levels in the TCGA and E-
MTAB-1980 cohorts in the high- and low-risk groups. “*” <0.5, "**" <0.01, and "***" <0.001.
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research reveals that high levels of lactate in the tumor

microenvironment (TME) hinder T cell-mediated immune

responses, effectively facilitating tumor immune evasion.

Additionally, histone lactylation in macrophages drives a

transition toward an immunosuppressive M2 macrophage

phenotype (10, 13, 24). This evidence suggests that tumor

metabolism and lactylation modification can modulate each other

and influence the function of immune cells in TME (25, 26). As a

result, it is imperative to investigate in depth the effect of histone

lactylation modifications on TME in ccRCC to predict patient

survival and immunotherapeutic response.

In this study, we identified DEGs with histone lactylation

modifications interfering with m6A, which were used to reveal

the prognosis and TME characteristics of ccRCC. At first, the

DECG obtained by screening classified ccRCC patients into two
Frontiers in Immunology 11
subtypes with different clinical and immunological characteristics,

and then we constructed a risk model based on 11 prognostic genes.

Patients at higher risk have shorter survival but had higher levels of

TMB, MSI, and anti-tumor immune cell infiltration, and the easier

score suggested that this group of patients was more sensitive to

immune checkpoint inhibitors. The screening of patients suitable

for immunotherapy is an urgent clinical problem, and our results

are certainly instructive for the design of future prospective studies.

The nomogram is a practical prediction tool that has important

reference value in both the clinical decision-making of ccRCC and

the long-term management of the disease.

As seen in our findings, patients in different risk groups have

very different TME characteristics, with high-risk patients having

higher immune scores. However, we also observed that the C2

subtype, which has a worse prognosis, has a lower immunization
B

C D

A

FIGURE 7

Biofunctional and pathway analysis. (A, B) Comparison of immune-related functions between high and low-risk groups. (C) Results of GO and KEGG
enrichment analysis. (D) Visualization results of GSEA. “*” <0.5, "**" <0.01, and "***" <0.001.
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score than the C1 group, which may seem paradoxical. A Sankey

diagram of the correlation between the C1/C2 subtypes and the risk

grouping may explain this phenomenon, and that the C1 group,

which has a slightly better prognosis, is not all distributed in the

low-risk group, and that it contains a significant portion of high-

risk patients. Therefore, there is some heterogeneity within the C1

group, and a more detailed delineation is needed in the future.
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It is well known that the TME at which the tumor cells are

located is one of the key reasons for this difference (27, 28). Various

cells, stroma, and non-cellular components together constitute the

TME, and not only do these components have complex interactions

with each other, but they are also influenced by other factors such as

metabolic and epigenetic modifications (19, 29, 30). Both lactylation

modifications and m6A modifications can influence the TME, and
B C

D

E

A

FIGURE 8

Prediction of the immune response. (A) TMB levels in high and low-risk groups, Pearson correlation analysis of TMB and risk scores. (B) Differences
in risk scores between MSI and MSS groups, Pearson correlation analysis of risk scores with MSI scores. (C) Differences in easier scores in high and
low-risk groups, and Pearson correlation analysis with risk scores. (D) The relationship between IPS grouping and risk scores. (E) Relationship
between immunotherapy response and risk scores in a bladder cancer immunotherapy cohort.
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they can not only affect the chemotaxis and activation of immune

cells, but also regulate the molecules on the surface of immune cells,

and thus the function of immune cells and the intensity of immune

responses (31–33). The study by Jia Xiong et al. confirmed the effect

of the interaction between these two epimodification modalities on

the immune microenvironment (15), in other words, they may have

synergistic effects in the immune microenvironment of tumors,

jointly affecting tumor growth and the effectiveness of

immunotherapy. For the first time, we have combined the
Frontiers in Immunology 13
analysis of these two epigenetic modifications for exploring the

heterogeneity of ccRCC in terms of TME. More importantly, our

model is not only able to accurately predict the long-term survival

of patients but also has implications for immunotherapy.

Furthermore, we have identified a crucial gene in the model

known as HIBCH (3-Hydroxyisobutyryl-CoA Hydrolase), which is

an enzyme that plays a vital role in the metabolism of fatty acids

(34). It also means that HIBCH is not only closely related to histone

lactylation modification (12), but may also influence the process of
B

C D

E F

A

FIGURE 9

Nomogram predicts survival probability. (A, B) Univariate and multivariate COX regression analysis. (C) Nomogram constructed based on TCGA
cohort. (D) Nomogram calibration plots for 1, 3, and 5 years. (E) 1, 3, and 5-year ROC curves and ACU to assess the predictive performance of the
model. (F) 5-year DCA curves to assess the clinical application value of the model.
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mitochondrial energy metabolism. HIBCH’s role in cancer is

currently unknown in the current state of research. Shan et al.

delved into the implications of HIBCH in the progression and

treatment of colorectal cancer. Colorectal cancers express higher

levels of HIBCH, and its function depends on its localization in
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mitochondria, and blocking the function of HIBCH not only can

inhibit the growth of cancer cells but also can improve the efficacy

of targeted therapy (35). In our study, HIBCH was suggested to be

reduced in expression in ccRCC and associated with a good

prognosis, and the results of in vitro experiments also showed
B C

D E

F G

A

H

FIGURE 10

The significance of HIBCH in ccRCC. (A) The Venn diagram identified the key gene HIBCH. (B) HIBCH expression levels in tumor and normal tissues.
(C) K-M survival curves between high and low expression groups of HIBCH. (D) HIBCH expression levels in samples of different grades and stages.
(E) HIBCH can classify ccRCC into 6 immune subtypes. (F, G) Lollipop plot of the correlation between HIBCH and immune cell infiltration level, TME
score. (H) Correlation of HIBCH with the expression of CTLA4, PDCD1. "***" <0.001.
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that HIBCH inhibits the migration ability of kidney cancer cells. To

our knowledge, mitochondrial energy metabolism is not only

closely related to the process of lactate metabolism (36) but also

plays an important role in the progression of ccRCC (37).

Therefore, we believe that HIBCH is important for finding new

biomarkers in the field of ccRCC, however, more rigorous in vitro

and in vivo experiments are still needed in the future to clarify the

specific mechanism of HIBCH action in ccRCC.

In conclusion, our study provides a novel perspective on

the prognostic significance and characteristics of the tumor
Frontiers in Immunology 15
microenvironment (TME) in clear cell renal cell carcinoma

(ccRCC). We have developed a reliable nomogram and

identified a potentially valuable biomarker. However, it is

important to acknowledge certain limitations in our study.

The first limitation of our study is that we rely mainly on

retrospective data collected from public databases. It also

means that we lacked much valuable clinical information to

perform a comprehensive analysis. A second limitation is that we

did not fully elucidate the specific mechanisms driving the

key gene functions. While our study has limitations, it
B

C

D E

A

FIGURE 11

Regulatory mechanisms of HIBCH. (A) Heat map of HIBCH co-expression with the top 10 potential TFs. (B) Expression levels of potential TFs in
tumor and normal tissues. (C) K-M survival curves of the screened TFs. (D) Visualized scatter plots of GO and KEGG analysis. (E) Visualized-mountain
range plot of the top 5 of |NES| in GSEA analysis results. “*” <0.5, "**" <0.01, and "***" <0.001.
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contributes to our understanding of ccRCC and provides a basis

for future research.
Conclusion

From an epigenetic standpoint, our research has uncovered

distinct traits within the TME of ccRCC. Moreover, we have

successfully established robust prognostic models that accurately

predict patient outcomes and offer valuable insights for the effective

utilization of immunotherapy. Furthermore, our data analysis and
Frontiers in Immunology 16
in vitro experiments have pinpointed a promising therapeutic target

for ccRCC treatment, namely HIBCH. These findings hold great

potential for advancing the field of ccRCC research and potentially

improving patient outcomes.
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