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The role of macrophage ion
channels in the progression
of atherosclerosis
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Atherosclerosis is a complex inflammatory disease that affects the arteries and

can lead to severe complications such as heart attack and stroke. Macrophages, a

type of immune cell, play a crucial role in atherosclerosis initiation and

progression. Emerging studies revealed that ion channels regulate macrophage

activation, polarization, phagocytosis, and cytokine secretion. Moreover,

macrophage ion channel dysfunction is implicated in macrophage-derived

foam cell formation and atherogenesis. In this context, exploring the

regulatory role of ion channels in macrophage function and their impacts on

the progression of atherosclerosis emerges as a promising avenue for research.

Studies in the field will provide insights into novel therapeutic targets for the

treatment of atherosclerosis.
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1 Introduction

Atherosclerosis is a complex process that involves the interaction between oxidized

low-density lipoproteins (oxLDLs), macrophages, endothelial cells, and vascular smooth

muscle cells (1). It is an inflammatory disease of the large artery driven by macrophage

activation and infiltration. Through scavenger receptors, macrophages uptake oxLDLs and

other lipids, leading to foam cell formation and fatty streak lesions characteristic of early

atherosclerosis. The macrophage-derived foam cells frequently undergo apoptosis to give

rise to cholesterol-rich necrotic cores to advance atherosclerotic lesions (2).

Ion channels, transmembrane proteins that allow the flow of ions across cell

membranes, are emerging as important regulators of macrophage function (3, 4). Recent

studies have revealed diverse roles of ion channels in macrophages and their implications in

immune responses and inflammatory diseases, including atherosclerosis (5). In the present

review, we discuss ion channel regulation of macrophage function and summarize studies

in macrophage ion channel dysfunctions associated with pathogenesis of atherosclerosis.
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2 Macrophage in the progression
of atherosclerosis

Macrophages play a crucial role in the initiation, progression, and

complications of atherosclerosis (2, 6, 7). In the presence of risk factors

such as high blood pressure, dyslipidemia, diabetes, and smoking,

plasma lipoproteins enter the intima by permeating through the vessel

wall, where they are modified into oxidized lipoproteins including

oxLDLs (8–11). This leads to the activation of endothelial cells,

triggering the expression of adhesion and chemotactic factors that

attract monocytes. Consequently, monocytes differentiate into

macrophages and transform into foam cells in the intima.

The foam cells are formed by the uptake and accumulation of

oxLDLs through scavenger receptors in macrophages, leading to the

development of fatty streak lesions and atherosclerotic plaques (7).

Macrophages express several scavenger receptors including SR-A1

(Scavenger Receptor - Class A1) and CD36 (i.e., SR-B2, Scavenger

Receptor - Class B2). The SR-A1 binds to the modified LDL such as

oxLDL and is involved in the subendothelial translocation of LDL. SR-

A1 function is associated with JNK2 signal pathway, it was reported

that JNK2-dependent phosphorylation of SR-A1 promotes the uptake

of LDL in macrophage and enhances the foam cell formation (12).

The CD36 is the predominant scavenger receptor for oxLDL, and the

binding between CD36 and oxLDL triggers TLRs signaling pathway to

promote pro-inflammatory responses to mediate the progression of

foam cell formation and atherosclerosis (13).

Meanwhile, macrophages in atherosclerotic lesions produce

various inflammatory cytokines such as IL-1b, IL-6, IL-12, IL-18,
and TNF to promote smooth muscle cell proliferation and recruit

other inflammatory cells (14). For example, IL-1b induces angiogenesis
through the recruitment of myeloid and endothelial cells. IL-6

promotes activation of endothelial cells and induces smooth muscle

cells proliferation. IL-12 stimulates the differentiation of T cells and

recruits T cells into the atherosclerotic plaques. IL-18 enhances the

expression of scavenger receptor CD36 to accelerate atherosclerosis.

And TNF induces expression of adhesion molecules and enhances the

recruitment of other inflammatory cytokines into the plaques. Taken

together, these sustained inflammatory responses create an atherogenic

environment, further regulating plaque progression (2).

Within the microenvironment of atherosclerotic plaques,

macrophages receive various stimulation and polarize into distinct

subtypes. The macrophage subtypes, including M1 and M2, play

diverse roles in the advancement of atherosclerosis. The M1

macrophages secrete pro-inflammatory cytokines, contribute to plaque

instability, and promote thrombosis. In contrast, M2 macrophages

exhibit anti-inflammatory properties, promote tissue repair, and aid in

the resolution of inflammation. Imbalances in macrophage polarization

affect plaque stabilization in the development of atherosclerosis (6).
3 Ion channels in macrophages

Ion channels are transmembrane proteins that enable the passage

of ions across cell membranes and regulate physiological processes

(15–23). Recent studies have shown ion channels regulate macrophage
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function (3, 4). Several ion channels in macrophages are implicated in

immune responses and inflammatory diseases. The macrophage ion

channels include potassium channel, transient receptor potential

(TRP) channel, calcium channel, mechanosensitive Piezo channel,

chloride channel, and proton channel (3–5).

Potassium channels are crucial regulators of macrophage

membrane potential and ion homeostasis. Macrophages express a

variety of potassium channels, including inward-rectifying

potassium channels (Kir), voltage-gated potassium channels (Kv),

and Ca2+-activated potassium channels (KCa) (5, 24). These

channels modulate macrophage membrane potential, calcium

signaling, cytokine release, and phagocytosis. Dysregulation of

potassium channels can lead to abnormal macrophage activation

and cause chronic inflammation (25, 26).

TRP channels are a diverse family of cation channels that play

important roles in various physiological and pathological processes

(27). Several TRP channels, such as TRPA1, TRPC3, TRPM2, and

TRPV4, are expressed in macrophages (5). Emerging evidence suggests

their involvement in macrophage function and inflammatory

responses. TRP channels have been shown to modulate macrophage

M1/M2 polarization and play roles in calcium homeostasis and reactive

oxygen species (ROS) production. Some TRP channels have been

implicated in the formation of macrophage-derived foam cells and the

development of atherosclerosis (28–34).

Macrophages also express multiple types of calcium channels,

including store-operated calcium channels (SOCCs) and voltage-gated

calcium channels (Cav) (3, 5). Calcium ions (Ca2+) serve as universal

second messengers and play a central role in macrophage signaling.

Calcium influx through the calcium channels triggers intracellular

signaling cascades, leading to macrophage activation, phagocytosis,

and cytokine secretion. Abnormal calcium signaling in macrophages

has been associated with various inflammatory diseases (35, 36).

In addition, macrophages express chloride channels involved in

cellular volume regulation and mechanosensitive Piezo1 that

mediated cellular mechano-signaling. Macrophages also express

proton channels regulating the activation of phagocyte NADPH

oxidase to regulate the process of phagocytosis (3, 5).
4 Macrophage ion channels
associated with atherosclerosis

In the development of atherosclerosis, macrophage ion channels

play important roles in several key cellular events, such as macrophage

polarization and infiltration, cell proliferation and migration, and foam

cell apoptosis. Recent studies indicated that macrophage ion channels

are associated with the pathogenesis of atherosclerosis (Table 1).
4.1 Calcium-activated potassium channel (KCa)

The KCa3.1 is the predominant subtype of calcium-activated

potassium channels in macrophages. KCa3.1 regulates macrophage

activity and plays an essential role in the progression of atherosclerosis.

One study found that KCa3.1 expression is upregulated in

macrophages within atherosclerotic plaques in Apoe-/- mouse
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model of atherosclerosis and human patients. Inhibition of KCa3.1

with the treatment of TRAM-34 and clotrimazole prevents

macrophage activation (37). Moreover, the migratory response of

KCa3.1
-/- macrophages was significantly reduced than in KCa3.1

+/+

macrophages, indicating a role of KCa3.1 in the activation of

macrophages during the atherosclerosis progression. Xu et al.

showed that KCa3.1 regulates macrophage polarization. Blocking

KCa3.1 suppresses macrophage polarization towards the M1

phenotype, reducing atherosclerotic plaque instability (25).

Moreover, a recent study discovered that KCa3.1 modifies the
Frontiers in Immunology 03
development of atherosclerosis via the STAT3/CD36 signaling

axis (38).
4.2 Voltage dependent potassium channel (Kv)

Kv1.3 is one of the voltage-gated potassium channels

predominantly expressed in macrophages. Kv1.3 regulates the

membrane potential of immune cells and is an important modulator

of calcium signaling and cytokine production. In macrophages, Kv1.3
TABLE 1 The role of macrophage ion channels in atherosclerosis.

Ion
channel Gene Roles in atherosclerosis Study model of

atherosclerosis Reference

KCa3.1 KCNN4

KCa3.1contributes to atherogenesis in mice and humans. Apoe-/- mice Toyama et al. (37),

Blocking KCa3.1 suppresses plaque instability by inhibiting macrophage polarization
toward an M1 phenotype.

Apoe-/- mice Xu et al. (25),

Blockade of macrophage KCa3.1 inhibits cellular oxLDL accumulation and decreases
proinflammation factors expression via STAT3/CD36 axis.

Apoe-/- mice Jiang et al. (38),

Kv1.3 KCNA3

Blockade of Kv1.3 prevents plaque formation. Rats Wu et al. (39),

Kv1.3 is a potential binding partner of preImplantation factor (40) and regulates PIF–
mediated atherosclerosis.

Apoe-/- mice Chen et al. (40),

Mediates macrophage migration in atherosclerosis by regulating ERK activity. In vitro Kan et al. (26),

Kv1.3 regulates connexin37-mediated atherosclerosis. Apoe-/- mice Liao et al. (41),

KATP

(Kir6.1/
6.2)

KCNJ8,
KCNJ11

Atherosclerosis impairs relaxation of the carotid artery in response to activation of
KATP channel.

Monkeys Faraci et al. (42)

KATP/ERK1/2 pathway is implicated in macrophage-derived foam cell formation. In vitro Zhao et al. (43)

KATP mutants are risk factors for atherosclerosis. Population study Chatterjee et al. (44)

Kir2.1 KCNJ2
Kir2.1 regulates lipid uptake and foam cell formation through modulating the

expression of scavenger receptors.
In vitro Zhang et al. (45)

TRPA1 TRPA1

Activation of TRPA1 protects against atherosclerosis. Trpa1-/-Apoe-/- mice Zhao et al. (30)

TRPA1 regulates macrophages phenotype plasticity, deletion of TRPA1 increases
atherosclerosis plaques.

Trpa1-/-Apoe-/- mice Wang et al. (29)

TPRC1 TPRC1 TPRC1 is highly expressed in macrophage-rich atheroma areas. Pigs Li et al. (46)

TRPC3 TRPC3

Deficiency of TRPC3 reduces early lesion burden and necrotic core of advanced
plaques; TRPC3-deficient macrophages polarized to the M1 phenotype show reduced

apoptosis.
Trpc3-/-Apoe-/- mice Tano et al. (47)

Overexpression of the TRPC3 increases atherosclerotic lesions. TgESTrpc3Apoe-/- mice
Smedlund et al. (48),
Smedlund et al. (49)

Deficiency of TRPC3 in macrophages reduces necrosis and content of M1 macrophages
in atherosclerotic plaques.

LysMcreTrpc3flox/floxLdlr-/-

mice
Solanki et al. (32)

Deficiency of TRPC3 in macrophages reduces calcification and osteogenic features in
advanced atherosclerotic plaques.

LysMcreTrpc3flox/floxLdlr-/-

mice
Dube et al. (31)

The miR-26a alleviates the development of atherosclerosis by regulating TRPC3. Apoe-/- mice Feng et al. (50)

TRPM2 TRPM2

TRPM2 enhances vascular reactivity during development of atherosclerosis. Apoe-/- mice Dai et al. (51)

TRPM2 deletions protects against atherosclerosis by suppresses the activation of the
CD36 signaling.

Trpm2-/-Apoe-/- mice;
Cd11bcreTrpm2flox/flox

Apoe-/- mice
Zong et al. (28)

TRPM2 contributes to the progression of hypercholesterolemia-induced atherosclerosis. Trpm2-/-Apoe-/- mice Zhang et al. (52)

(Continued)
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regulates the activation and proliferation of the cells, as well as the

production of pro-inflammatory cytokines such as tumor necrosis

factor-alpha (TNF-a) and interleukin-1 beta (IL-1b).
Previous studies showed that pharmacological inhibition of Kv1.3

channels reduces atherosclerotic lesion area in mouse models (39),

suggesting a pro-atherosclerotic role of Kv1.3. The mechanisms by

which Kv1.3 underlies the development of atherosclerosis are associated

with preimplantation factor (58) and extracellular signal-regulated

kinase (ERK) signaling pathway. Kv1.3 is proposed to be a binding

partner of PIF and regulates PIF-mediated atherosclerosis (40). Kv1.3

has also been shown to modify ERK activity to promote macrophage

migration during the progression of atherosclerosis. Inhibition of Kv1.3

channel attenuates macrophage migration and reduces the

phosphorylation level of ERK1/2 (26). Additionally, other studies

reported that connexin is involved in Kv1.3-mediated

atherosclerosis (41).
4.3 Inward-rectifying potassium channel (Kir)

The primary macrophage Kir involved in atherosclerosis is

ATP-sensitive potassium channels (Kir6.1/6.2, or KATP). In

macrophages, the KATP channel is essential for the regulation of

inflammation and the immune response.

The first study showing the relationship between KATP channel

and atherosclerosis is from a monkey model of atherosclerosis, and

it was shown that atherosclerosis impairs the relaxation of the

carotid artery in response to activation of the KATP channel (42).

Further studies revealed that KATP participates in macrophage-

derived foam cell formation. Zhao et al. found that the

downregulations of total cholesterol and esterified cholesterol

concentrations induced by hydrogen sulfide (H2S), were reversed

by KATP blocker glibenclamide, suggesting that KATP channel

promotes the formation of macrophage-derived foam cells (43).

Moreover, a population study indicated that KATP mutants are risk

factors for atherosclerosis (44).

In addition to KATP, another inward-rectifying potassium

channel Kir2.1 also participates in the development of
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atherosclerosis. Kir2.1 regulates macrophage maturation and

differentiation and plays a crucial role in lipid uptake and foam cell

formation by modulating the expression of scavenger receptors (45).
4.4 Transient receptor potential ankyrin
channel (TRPA)

The transient receptor potential ankyrin 1 (TRPA1) channel is a

non-selective cation channel widely expressed in immune cells,

including macrophages. TRPA1 channels play a key role in

regulating inflammation. In recent years, several studies have

explored the potential role of TRPA1 channels in atherosclerosis.

TRPA1 has been shown to regulate the cholesterol metabolism

of macrophage-derived foam cells. OxLDL-induced lipid

accumulation of macrophages is exacerbated by either inhibition

or loss of function of TRPA1, leading to the progression of

atherosclerotic plaques. On the other hand, treatment with

TRPA1 agonists alleviates the development of atherosclerosis in

Apoe-/- mice, indicating that TRPA1 protects against atherosclerosis

(30). A recent study found that TRPA1 modifies macrophage

phenotype plasticity. Inhibition of TRPA1 enhances M1 marker

genes expression whereas downregulates M2 genes expression (29).
4.5 Transient receptor potential canonical
channel (TRPC)

TPRC3 is one of the primary TRPC channels expressed in

macrophages. In atherosclerosis, macrophage TRPC3 channel

activation enhances inflammation and the development of

atherosclerotic plaques. TRPC3 channel activation in macrophages can

increase the expression of inflammatory cytokines and chemokines,

promote the recruitment of additional immune cells to the site of

inflammation, and contribute to the formation of atherosclerotic lesions.

A bone marrow transplantation study revealed that macrophage

deficiency of TRPC3 reduces early lesion burden and necrotic core

of advanced plaques in Apoe-/- mice (47). Moreover, macrophage-
TABLE 1 Continued

Ion
channel Gene Roles in atherosclerosis Study model of

atherosclerosis Reference

TRPV4 TRPV4

Activation of TRPV4 inhibits monocyte adhesion and atherosclerosis. Apoe-/- mice Xu et al. (53)

TRPV4 regulates oxLDL induced macrophage foam cell formation. Trpv4-/- mice
Goswami et al. (34);
Gupta et al. (33)

Inhibition of TRPV4 by ginkgetin abrogates JNK2 activation, inflammation in
macrophages, and macrophage foam cell formation.

C57BL/6 wild type mice Alharbi et al. (54)

Piezo1 Piezo1 Regulation of inflammatory response, and macrophage migration.
LysMcrePiezo1flox/flox Ldlr-/-

mice
Pan et al. (55)

VRCC LRRC8A VRCC regulates macrophage-derived foam cell formation and atherosclerosis. Apoe-/- mice Hong et al. (56)

SOCC Orai1 Inhibition of Orai1 SOCC attenuates the development of atherosclerosis. Apoe-/- mice Liang et al. (36)

Nav1.4,
Nav1.9

SCN4A,
SCN11A

Inhibition of Nav1.4/1.9 reduces atherosclerosis by suppressing macrophage
proliferation.

Apoe-/- mice Sun et al. (57)
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specific deletion of TRPC3 was reported to decrease necrosis and

content of apoptotic M1 macrophages in advanced atherosclerotic

plaques of mice (31, 32). The miR-26a was shown to alleviate the

development of atherosclerosis by regulating TRPC3 (50).

Additionally, studies in endothelial cells discovered that

endothelial overexpression of the human TRPC3 channel

increased the size and cellularity of advanced atherosclerotic

lesions in mice model of atherosclerosis (48, 49).

In addition to TRPC3, another TRPC channel TRPC1 has been

shown to be predominantly expressed in macrophage-rich

atheroma areas, indicating macrophage TRPC1 plays a role in

atherogenesis (46). The mechanisms by which TRPC1 channels

regulate macrophage function in atherosclerosis are not fully

understood. Further research is required to elucidate the signaling

pathways and molecular mechanisms involved in TRPC1-

mediated atherosclerosis.
4.6 Transient receptor potential melastatin
channel (TRPM)

Transient receptor potential melastatin channel member 2

(TRPM2) is highly expressed in macrophages and promotes

atherosclerotic progression (28, 51, 52). It was shown that both

global and macrophage-specific TRPM2 deletions could protect

Apoe-/- mice against atherosclerosis (28, 52). Inhibition of TRPM2

channel activity in macrophages decreases the production of ROS

and pro-inflammatory cytokines, and reduces the size of

atherosclerotic lesions in multiple mice models of atherosclerosis

(28, 52). TRPM2 deficiency in macrophages decreases the uptake of

oxLDL, and reduces macrophage infiltration, foam cell formation,

and inflammatory responses. Further studies showed that TRPM2

activation is required for CD36-induced oxLDL uptake and

macrophage inflammatory responses. Deletion of the TRPM2

gene or inhibiting TRPM2 channel activity suppresses the

activation of the CD36 signaling, suggesting that the TRPM2–

CD36 axis plays a vital role in atherogenesis (28).
4.7 Transient receptor potential vanilloid
channel (TRPV)

Transient receptor potential vanilloid channel member 4

(TRPV4) has been implicated in the formation of macrophage-

derived foam cells and the development of atherosclerosis.

TRPV4 is expressed and functional in mouse macrophages. It

is required for oxLDL-induced macrophage foam cell formation

and regulates the uptake of oxLDL (33, 34). Inhibition of TRPV4

by ginkgetin abrogates JNK2 activation, inflammation in

macrophages, and macrophage foam cell formation (54). These

results indicate that TRPV4 activity is essential for macrophage

foam cell formation and atherosclerosis progression. In addition

to its direct effects on macrophages, TRPV4 contributes to

atherosclerosis by regulating endothelial cell function. In a

study using human monocytes, inhibition of TRPV4 reduces
Frontiers in Immunology 05
monocyte/macrophage adhesion to endothelial cells to regulate

the progression of atherosclerosis (53).
4.8 Other ion channels

In addition to potassium channels and TRP channels, several

other macrophage ion channels were implicated in atherosclerosis.

Recent studies have revealed that Piezo type mechanosensitive

ion channel 1 (Piezo1) in macrophage has been implicated in

atherosclerosis (55, 59, 60). This channel appears to play a pro-

atherosclerotic role in atherogenesis. It was shown that macrophage

specific deletion of Piezo1 gene significantly reduced atherosclerotic

plaques in Ldlr-/- mice model of atherosclerosis (55). Piezo1 was

proposed to participate in macrophage inflammatory activation,

proliferation, and migration/infiltration to mediate the progression

of atherosclerosis (59, 60).

Additionally, macrophage chloride channels have been linked

with atherosclerosis (56). It was reported that volume-regulated

chloride channel (VRCC) plays an essential role in macrophage

foam cell formation (56), and the activity of VRCC was enhanced in

Apoe-/- mice model of atherosclerosis. The activation of VRCC

accelerated the formation of macrophage foam cells, whereas the

chloride blockers inhibition of VRCC impaired the foam cell

formation (56).

Moreover, macrophage calcium and sodium channels are also

linked with atherogenesis. It was shown that Orai1 store-operated

calcium channel (SOCC) is required for oxLDL-induced Ca2+ influx

in macrophages. And in vivo studies revealed that inhibition of

Orai1 SOCC attenuates the development of atherosclerosis (36). In

addition, inhibition of voltage-gated sodium channel (Nav)

suppressed macrophage proliferation and reduced atherosclerotic

lesions in the Apoe-/-mouse model, shedding light on the role of Nav
sodium channels in atherogenesis (57).
5 Conclusions and perspectives

We discuss ion channels regulation of macrophage function

during the progression of atherosclerosis, as well as summarize

recent studies in macrophage ion channel families associated with

atherosclerosis. Macrophages are critical players in the pathogenesis

of atherosclerosis, influencing multiple stages of plaque

development and plaque stability. Ion channels play critical roles

in macrophage biology, regulating diverse cellular processes that

impact macrophage activation, polarization, phagocytosis, and

cytokine secretion. Dysregulation of ion channels is implicated in

macrophage-mediated atherogenesis, making them attractive

targets for therapeutic intervention.

Although significant progress was made in the functional

characterization of the K+, TRP, Ca2+, and Cl- channels in the

progression of atherosclerosis (Figure 1), emerging evidence

indicated other macrophage ion channels, such as intracellular

channels and H+ channels, are potentially novel targets

against atherosclerosis.
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For example, studies have shown that ryanodine receptor 3

(RyR3) channel mutations are associated with atherosclerosis in

populations (61). RyR3 is one of the ryanodine receptor channel

isoforms expressed on the endoplasmic reticulum of immune cells,

including macrophages (62, 63), RyR3 mutations may cause the

dysfunction of the channel, which in turn, lead to abnormal calcium

signaling linked with the development of atherosclerosis.

Meanwhile, accumulated evidence suggests that Hv1 proton

channel is associated with atherosclerosis. Hv1 channel controls

acid extrusion from cells and regulates cellular pH homeostasis (64).

It is highly expressed in macrophages, and its activity promotes

macrophage migration and inflammatory cytokines secretion (65,

66). The microarray data has revealed that Hv1 was remarkably

upregulated during atherogenesis and downregulated along with

the atherosclerotic lesion regression (67), indicating that Hv1 is

linked with atherogenesis and involved in the pathological process

of this disease.

Moreover, acid-sensing ion channel member 1 (ASIC1) was

recently proposed to play a role in atherosclerotic development.

ASIC1 channel in macrophages decreases ATP-binding cassette

transporter A1 (ABCA1)-mediated cholesterol efflux, indicating a

role of macrophage ASIC1 in lipid metabolism and atherosclerosis

progression (68).
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Future studies are required to characterize new roles of these

channels in the pathogenesis of atherosclerosis. Meanwhile,

studies have shown that ion channels regulate genetic

expression in various cells (69–72), it remains to determine if

ion channels regulate the gene transcriptional networks

controlling macrophage activation linked with atherogenesis.

The investigation in this field will extend our understanding of

the function of macrophage ion channels in human diseases and

discover novel targets against atherosclerosis.
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FIGURE 1

Macrophage ion channels in atherosclerosis. Macrophages express a variety of ion channels, and some of them have been characterized to
contribute to the pathophysiology of atherosclerosis. The macrophage ion channels implicated in atherogenesis include K+ channels (KCa3.1, Kv1.3,
KATP, Kir2.1), TRP channels (TRPA1, TRPC1, TRPC3, TRPM2, TRPV4), Orai1 Ca2+ channel, volume-regulated Cl- channel VRCC, mechanosensitive
Piezo1, and voltage-gated Na+ channels Nav. (MF: macrophages; AS: atherosclerosis; SR: scavenger receptor).
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