
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Peter J. Siska,
University Medical Center Regensburg,
Germany

REVIEWED BY

Yosra Bouraoui,
Jendouba University, Tunisia
Pengpeng Zhang,
Tianjin Medical University, China

*CORRESPONDENCE

Lushan Yu

yuls@zju.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 20 May 2023
ACCEPTED 06 July 2023

PUBLISHED 21 July 2023

CITATION

Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z,
Hu H, Lin N, Zeng S and Yu L (2023)
Unveiling tumor immune evasion
mechanisms: abnormal expression of
transporters on immune cells in the
tumor microenvironment.
Front. Immunol. 14:1225948.
doi: 10.3389/fimmu.2023.1225948

COPYRIGHT

© 2023 Chen, Wang, Hu, Liu, Qi, Tang, Hu,
Lin, Zeng and Yu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 21 July 2023

DOI 10.3389/fimmu.2023.1225948
Unveiling tumor immune evasion
mechanisms: abnormal
expression of transporters on
immune cells in the
tumor microenvironment

Lu Chen1,2,3†, Yuchen Wang1†, Qingqing Hu4, Yuxi Liu1,
Xuchen Qi5, Zhihua Tang6, Haihong Hu1, Nengming Lin2,7,
Su Zeng1 and Lushan Yu1,6,7,8*

1Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou, China, 2Key Laboratory of Clinical Cancer Pharmacology and
Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s
Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China, 3Center for
Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital
(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 4The Fourth
Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China, 5Department of
Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou,
Zhejiang, China, 6Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang
University School of Medicine), Shaoxing, China, 7Westlake Laboratory of Life Sciences and
Biomedicine of Zhejiang Province, Hangzhou, China, 8Department of Pharmacy, Second Affiliated
Hospital, School of Medicine, Zhejiang University, Hangzhou, China
The tumor microenvironment (TME) is a crucial driving factor for tumor

progression and it can hinder the body’s immune response by altering the

metabolic activity of immune cells. Both tumor and immune cells maintain

their proliferative characteristics and physiological functions through

transporter-mediated regulation of nutrient acquisition and metabolite efflux.

Transporters also play an important role in modulating immune responses in the

TME. In this review, we outline the metabolic characteristics of the TME and

systematically elaborate on the effects of abundant metabolites on immune cell

function and transporter expression. We also discuss the mechanism of tumor

immune escape due to transporter dysfunction. Finally, we introduce some

transporter-targeted antitumor therapeutic strategies, with the aim of

providing new insights into the development of antitumor drugs and rational

drug usage for clinical cancer therapy.
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1 Introduction

The tumor microenvironment (TME) is a complex ecosystem

that supports tumor cell survival and development. Tumor cells

constitute the majority of the TME, along with peripheral blood

vessels, stromal cells, extracellular matrix, and the secretion

products (such as cellular metabolites and cytokines) of various

cells (1). As a fundamental component of stromal cells, immune

cells are indispensable for inhibiting the occurrence and

development of tumors.

Tumor immune escape refers to the process whereby tumor

cells escape the immune system’s “surveillance” instead of being

eliminated, enabling them to proliferate and divide rapidly. The

mechanisms of tumor immune escape can be divided into two main

categories. One is that the TME suppresses antitumor immune

responses by altering the function of immune cells, and the other is

that tumor cells avoid being attacked by the immune system by

decreasing the expression levels of self-antigens, creating

defects in the antigen presentation machinery, or reducing their

immunogenicity (2).

Transporters are membrane-binding proteins that mediate the

passage of substrates through biological membranes. Transporters

play integral roles in the cellular uptake of nutrients and the efflux of

metabolic waste. Therefore, changes in the expression levels of

transporters regulate the growth and function of cells. The TME has

been found to affect the expression of transporters in immune cells,

which can impair the ability of immune cells to kill tumor cells and

control tumor progression.

This review provides an overview of the reciprocal regulatory

mechanisms among metabolites in the TME, transporters in

immune cells, and immune cell functions. In addition, we discuss

potential cancer treatment regimens that target transporters to

modulate immune responses, thus laying the groundwork for

more efficient and safe antitumor therapies.

2 The tumor microenvironment and
immune cells

2.1 Metabolic characteristics of the tumor
microenvironment

The oxidative decomposition of glucose provides the primary

energy source for cells. Normal cells acquire energy by thoroughly

oxidizing glucose to CO2 and water under aerobic conditions,

whereas tumor cells prefer to convert glucose into lactate via

glycolysis, even under oxygen-sufficient conditions. This is

referred to as the Warburg effect (3). Compared with oxidative

phosphorylation (OXPHOS), aerobic glycolysis results in

inefficient, but rapid, ATP production, accompanied by the

production of intermediates and metabolites that act as major

raw materials for cellular biosynthesis (4, 5). Collectively, aerobic

glycolysis is conducive to the rapid growth and proliferation of

tumor cells. Notably, the Warburg effect is not an exclusive feature

of tumor cell metabolism, because cells in different tumor tissue

regions preferentially utilize distinct metabolic pathways depending
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on the TME conditions and nutrient availability (6). Previous

research has shown that oxygenated tumor cells produce large

amounts of ATP through the oxidative phosphorylation of

glucose, whereas hypoxic tumor cells mainly utilize glycolysis to

supply energy and produce lactate for oxygenated tumor cells to fuel

oxidative metabolism (7). This coupled metabolic pattern is of great

significance for tumor cell growth and proliferation.

Glucose deficiency is a striking feature of the TME. The rapid

proliferation of tumor cells enhances glucose uptake through the

overexpression of the glucose transporters, GLUT1 and GLUT3, to

relieve glucose dependence, resulting in glucose deficiency in the

TME. It has been suggested that upregulated expression levels of

glucose transporters in tumor cells is closely associated with poor

cancer prognosis (8). Increased oxygen consumption resulting from

tumor cell hyperproliferation creates a hypoxic microenvironment

that contributes to tumor invasion and metastasis (9). In addition,

both aerobic glycolysis and glutamine catabolism in tumor cells

produce large amounts of lactate, rendering the TME acidic (10).

Although most cancer-metabolism-related studies have considered

lactate as a metabolic waste product in the Warburg effect, recent

studies have suggested that lactate is a potential fuel (11).

Lipids are another abundant metabolite in the TME, and their

accumulation is closely related to immune cell dysfunction and

tumor cell survival (12). Amino acids are primarily involved in

cellular component synthesis and energy metabolism (such as the

TCA cycle), which, along with their metabolites, contribute to

various effects on antitumor immune responses and tumor

growth in the TME (13). Moreover, the high accumulation of

nucleosides (especially ATP) in the TME contributes to tumor

immune escape (14, 15).

In general, the characteristics of the TME, including hypoxia,

acidification, lack of nutrients (such as glucose and amino acids),

and massive accumulation of immunosuppressive metabolites (such

as lactate, lipids, and nucleosides), effectively promote tumor

progression and influence antitumor immune responses.
2.2 Functions of immune cells in the TME

Immune cells in the TME are divided into three categories

based on their functions in tumor cells. The first group comprises

immune cells with antitumor effects, mainly CD8+ T cells, CD4+

Th1 cells, natural killer (NK) cells, and dendritic cells (DCs). The

second group consists of tumor-promoting immune cells, including

CD4+CD25+ T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and mast cells. Additionally, highly heterogeneous

macrophages and neutrophils exert distinct immune functions via

phenotypic changes in different local tissue microenvironments.

T cells are essential immune cells that can differentiate into

CD8+ T cells with cytotoxic activity and CD4+ T cells with helper

functions. CD8+ and CD4+ T cells have multiple cell subtypes that

play multifaceted roles in tumorigenesis according to the different

cytokines they produce (Table 1). The infiltration of CD8+ T cells

and CD4+ Th1 cells at the tumor site is a hallmark of a favorable

tumor prognosis (51), due to their production of the cytokines IFNg
and TNFa, which can effectively induce the cell cycle of tumor cells
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to arrest in the G1/G0 phase (20, 52). As the most powerful antigen-

presenting cells, DCs play key roles in innate and adaptive

immunity, as they can effectively activate resting T cells to

transform them into cytotoxic T lymphocytes to promote an

antitumor immune response (53). NK cells are also an integral

part of the antitumor immune response. They exert cytotoxic effects

on their target cells by forming immune synapses and directionally

secreting lysed particles, such as perforin and granzyme (54).

Tregs inhibit autoimmune reactions and maintain immune

homeostasis in vivo (55). Tregs expressing the transcription factor

Foxp3 are closely associated with a poor prognosis in multiple

cancers (56). Similarly, Th2 and Th17 cells contribute to tumor

occurrence and development (51). MDSCs are myeloid-derived

cells, including polymorphonuclear MDSCs (PMN-MDSCs) and

mononuclear MDSCs (M-MDSCs) (57). Tumor-infiltrating

MDSCs exert tumor-promoting effects by inducing the generation

of immunosuppressive Tregs and M2-type macrophages and

inhibiting T cell activation (58). Mast cells, also known as

basophils, are derived from myeloid cells and they secrete several

bioactive molecules with tumor-promoting functions, such as

angiogenic factors and matrix metalloproteinases (59). In

addition, IL-33-activated mast cells promote tumor outgrowth by

secreting macrophage chemokines to facilitate tumor-associated

macrophages (TAMs) recruitment to tumor sites (60).

Macrophages and neutrophils perform distinct functions

through environment-dependent phenotypic transformations. It is

generally believed that macrophages mainly fall into two categories:

type 1 (M1) and type 2 (M2) macrophages. M1 macrophages with

proinflammatory and tumor-suppressive effects primarily rely on

aerobic glycolysis for their energy supply, whereas M2 macrophages

utilize fatty acid oxidation (FAO) to fuel mitochondrial OXPHOS,

which is beneficial for repairing tissues, maintaining metabolic

homeostasis, and enhancing tumor progression (61). Tumor cells
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recruit TAMs with an M2-like phenotype to the tumor

microenvironment to disrupt immune surveillance (62). Similar

to TAMs, tumor-associated neutrophils (TANs) can be divided into

an N1 phenotype with antitumor activity and an N2 phenotype

with protumor activity. The immunosuppressive cytokine TGF-b,
which is overexpressed by tumor cells, can induce TAN polarization

toward the N2 phenotype (63).
2.3 Effects of metabolites on immune cell
function in the TME

2.3.1 Lipids
Lipids in the TME are pivotal for the suppression of antitumor

immune responses. Lipids reduce CD8+ T cell cytotoxicity by

inducing lipid peroxidation and ferroptosis (64, 65). Cholesterol

accumulation in tumor-infiltrating CD8+ T cells is also closely

related to the increased expression levels of immune checkpoint

factors and cell exhaustion (66). Excessive intracellular lipids in

DCs damage their antigen-presenting function and further inhibit T

cell priming in the TME (67, 68). In NK cells, high lipid levels lead

to a decrease in IFN-g levels and the induction of metabolic

reprogramming, thus significantly blunting their cytotoxic effects

on tumor cells (69). The TME induces a phenotypic switch fromM1

to M2 macrophages with lipid dependency. Lipid accumulation in

TAMs is required for cell differentiation and tumor-promoting

function (70). In addition, lipid-overloaded MDSCs have a stronger

immunosuppressive effect (71).

2.3.2 Glucose
Glucose is the major nutrient that fuels cellular metabolic

activity. Competition between tumor cells and T cells for glucose

leads to the exhaustion of tumor-infiltrating T lymphocytes in the
TABLE 1 T cell subsets and functions.

T cell types cell subsets Surface antigens Cytokines Antitumor reactivity References

CD4+ T cell Treg CD25、CTLA-4 IL-10, IL-35, TGFb Negative (16–19)

Th1 CXCR3、 CCR5 IFNg, TNF Positive (20, 21)

Th2 CCR4、CCR8、CRTH2 IL-3, IL-4,
IL-5, IL-13

IL-3, IL-5, IL-4: Positive
IL13: Negative

(22–28)

Th9 CXCR3、CCR3 CCR6 IL-9, IL10 Positive/Negative (28)

Th17 CCR4、CCR6 IL-17A, IL-17F,
IL-22

IL-17A, IL-17F: Positive/Negative
IL-22: Negative

(27, 29–36)

Th22 CCR4、CCR6、CXCR10 IL-22 Negative (27, 36)

Tfh CD40L、PD-1、CXCR5 IL-4, IL-21 IL-4: Negative
IL-21: Positive

(37–41)

CD8+ T cell Tc1 IL18R IFN-g, TNF-a Positive (42–44)

Tc2 CRTH2 IL-4, IL-5, IL-13 Positive (44–46)

Tc9 CCR6、PD-1 IL-9 Positive (47, 48)

Tc17 CD86、CD101 IL-17A, IL-17F,
IL-21, IL-22

Negative (43, 49, 50)

Tc22 ICOS、4-1BB IL-2, TNF-a, IL-22 Positive (50)
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TME (72). At the same time, T cells derived from the TME have

metabolic defects that manifest as decreased expression levels of

glucose transporters and metabolic enzymes, which are detrimental

to antitumor immune responses (73, 74). Because the increased

metabolic demands for glucose and glutamine in activated T cells

cannot be satisfied in the nutrient-deficient TME, protein

glycosylation, cell differentiation, and growth of T cells are

maintained (75, 76). Activated NK cells regulate metabolic

reprogramming toward glycolysis via mTORC1, to adapt to the

glucose-deficient TME (77). Similarly, Tregs inhibit glycolysis by

highly expressing Foxp3 to achieve better metabolic adaptation to

the low-glucose TME (78). Tumor-derived exosomes (TDEs)

endow TAMs with immunosuppressive phenotypes by enhancing

glucose uptake and metabolism (79).

2.3.3 Lactate
Excess lactate excretion improves tumor progression by enhancing

acidification and regulating multiple signaling pathways in different

cells (9). Lactate accumulation in the TME limits its efflux in a

concentration-dependent manner and promotes the expression of

lactate-uptake transporters, resulting in elevated levels of intracellular

lactate, which interfere with cell metabolism and immune function (80,

81). Similarly, lactate is essential for the maintenance of Treg activity.

Tumor-infiltrating Tregs exhibit upregulated expression levels of

lactate-uptake- and metabolism-related genes to acquire adaptability

and exert their immunosuppressive function (82). Additionally, in an

environment with high lactate concentrations, macrophages are prone

to M2 polarization, whereas the maturation of DCs is attenuated.

These findings are consistent with immunosuppression generated by

the TME (83).

2.3.4 Amino acids
Amino acids are closely associated with tumor development,

and amino acid deficiency in the TME typically triggers immune

cell dysfunction. Notably, the accumulation of certain amino acids,

such as kynurenic acid (Kyn), are closely correlated with tumor

development and progression. Kyn-mediated AHR signal

conduction is a key mechanism that regulates the interaction

between Tregs, TAMs, and CD8+ T cells to endow the TME with

immunosuppressive properties (84–88). Branched-chain amino

acids (BCCAs) are essential contributors to tumor growth.

Upregulation of the BCCA transaminase 1, which is involved in

BCCA catabolism, has been observed in various tumors (89). The

accumulation of the BCCA metabolites, branch chain keto acids

(BCKAs), excreted by glioblastoma cells via monocarboxylate

transporter 1 (MCT1), suppresses antitumor immune responses

by attenuating the phagocytic activity of macrophages (90).
2.3.5 Nucleosides
Hypoxic conditions induce ATP accumulation in the TME.

Extracellular ATP can be rapidly degraded into adenosine, an

immunosuppressive effector that participates in key signaling

pathways that regulate tumor immune responses (15). In

lymphocytes, signal transduction between adenosine and the A2A

adenosine receptor inhibits cytotoxic T cell activation, while
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favoring Treg proliferation and immunosuppressive activity (91,

92). Regarding myeloid cells, adenosine enhances the IL-10-induced

activation of M2 macrophages and PMN-MDSC expansion (93,

94). The ectonucleoside triphosphate diphosphohydrolase,

ENTPD2, which is highly expressed in many types of tumors,

hydrolyzes extracellular ATP into 5’-AMP to maintain the

immunosuppressive function of M-MDSCs (95).
3 Effects of metabolic transporters
on immune cells in the
tumor microenvironment

3.1 Lipid transporters

According to the “Comprehensive Classification System for

Lipids” published by the International Lipid Classification and

Nomenclature Committee in 2005, lipids can be divided

into the following eight categories: fatty acyls, glycerolipids,

glycerophospholipids, sphingolipids, sterol lipids, prenol lipids,

saccharolipids, and polyketides (96). Since lipids are cellular

nutrients and signaling molecules, functional changes in lipid

transporters are key modulators of the immune response. Several

transmembrane and intracellular transporters mediate lipid

transport (Figure 1). The CD36 transporter and fatty acid

transport proteins (FATPs) are major lipid uptake transporters.

Lipids are ingested intracellularly by the CD36 transporter in the

form of low-density lipoprotein (LDL), very-low-density

lipoprotein (VLDL), and fatty acids (61, 70). The FATP family,

which is composed of six members (FATP1-6), mediates exogenous

fatty acid uptake with different tissue expression patterns (97). Fatty

acid binding proteins (FABPs) are a family of small proteins that act

as intracellular fatty acid transporters (98), while ABCA1 and

ABCG1 can synergistically mediate intracellular cholesterol

efflux (99).

3.1.1 CD36
The scavenger receptor, CD36, which has a lipid transport

function, is widely expressed in various types of immune cells.

The TME promotes tumor cell proliferation by interfering with

CD36-mediated lipid metabolism in immune cells. Increased CD36

expression levels in CD8+ T cells allows the accumulation of lipid

peroxides in cells and leads to the decreased secretion of cytotoxic

factors, causing the dysfunction of tumor-infiltrating CD8+ T cells

(64, 65). CD36 also functions as a regulator of tumor-infiltrating

Tregs. The CD36-PPARb signaling pathway mediates

mitochondrial fitness and NAD production to support Tregs,

which are more adaptable to low glucose and high lactate levels

(78, 100). M2 macrophage activation is dependent on FAO. M2

macrophages increase LDL and VLDL uptake by upregulating

CD36 expression levels, followed by lysosomal acidic lipase

hydrolysis to provide fatty acids as substrates for FAO (61). CD36

directly mediates fatty acid transport. Increased CD36 expression

levels in TAMs is conducive to an immunosuppressive function and

cancer progression by enhancing fatty acid absorption and FAO
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(70). As a crucial regulator of TAM polarization, S100A4

upregulates CD36 expression levels by acting on PPAR-g to

induce FAO and then drives the M2-like polarization of TAMs

(101). Lipid accumulation associated with the upregulation of CD36

and CD204 in DCs reduces antigen processing by DCs, limiting T

cell priming (67, 68). MDSCs increase exogenous lipid uptake by

upregulating the expression of multiple lipid transporters involved

in metabolic reprogramming to support their immunosuppressive

functions (71, 102). CD36 upregulation is closely related to Pim1-

PPARg signal transduction by PIM1 kinase, thus enhancing lipid

metabolism and the immunosuppressive function of MDSCs (103).

Similarly, lipid accumulation in NK cells caused by high CD36

expression levels, also attenuates the toxic effects on cancer

cells (104).

3.1.2 The FATP/FABP family
FATPs encoded by the SLC27A family mediate the uptake of

exogenous fatty acids and exhibit acetyl-CoA synthetase activity

(105). Veglia et al. reported that the high expression levels of FATP2

(SLC27A2) in tumor-infiltrating PMN-MDSCs results in enhanced

arachidonic acid uptake and prostaglandin E2 synthesis, thus

endowing PMN-MDSCs with immunosuppressive activity (106).

Subsequent studies by Adeshakin et al. showed that lipid

accumulation in MDSCs induces immunosuppressive activity by

enhancing mitochondrial function and activating reactive oxygen

species (105).

FABPs encoded by FABP1-9 genes are other key proteins

involved in intracellular lipid transportation, with a high affinity

for long-chain fatty acids (98). Previous studies have found that M2

macrophages preferentially upregulate FABP4 expression and play

a tumor-promoting role through FABP4-dependent IL-6/STAT3
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signaling (107). In contrast, FABP5 in M1 macrophages enhances

the recruitment of tumor-killer immune cells, such as effector T

cells and NK cells, to the tumor site by inducing IFN-b secretion,

thus promoting antitumor immune responses (108). FABP5 has

been implicated as a regulator of macrophage phenotypes,

contributing to M2 polarization, and FABP5 deficiency is hostile

to the anti-inflammatory response of murine macrophages (109).

High FABP5 expression levels in tumor-infiltrating Tregs enhance

mitochondrial disturbances, type I IFN signaling, and

immunosuppressive activity (110).

3.1.3 ATP-binding cassette transporters
ATP-binding cassette (ABC) transporters are members of the

ABC protein superfamily. They couple ATP hydrolysis with

substrate transport. As an integral component of the cell

membrane structure, cholesterol is a key regulatory effector of the

immune response. For example, T cell activation mediated by T cell

receptor (TCR) signaling relies on intracellular cholesterol (111,

112). The ABC transporters ABCA1 and ABCG1 are the

predominant cholesterol efflux transporters in immune cells.

ABCG1 is a negative regulator of lymphocyte proliferation, and

the loss of ABCG1 leads to enhanced TCR signaling in CD4+ T cells

and promotes cell proliferation by promoting the accumulation of

cholesterol (113). However, the effect of cholesterol on CD8+-T-

cell-mediated antitumor immune responses remains controversial.

The reduction in cholesterol uptake by CD8+ T cells induced by the

TME inhibits TCR signaling and antitumor activity (114). Previous

studies have also demonstrated that intracellular cholesterol

negatively regulates the antitumor function of CD8+ T cells (66,

115). Accordingly, further studies are needed to determine the

regulatory effects of cholesterol on T cell function.
FIGURE 1

Transmembrane transportation of lipids. Transmembrane transport of lipids is mediated by various transport proteins. FATPs and CD36 are mainly
responsible for mediating exogenous FA uptake. LDL and VLDL can also achieve intracellular transport through CD36, and then hydrolyzed by LAL
into FA. Intracellular FA can be transported to different organelles or compartments for subsequent local lipid metabolism by FABPs, or excreted by
ABC transporters. Fatty acid (FA), The fatty acid transporter family (FATPs), The fatty acid binding proteins (FABPs), Lysosomal acidic lipase (LAL),
Low-density lipoprotein (LDL), Very low-density lipoprotein (VLDL).
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ABCA1 and ABCG1 mediate cholesterol efflux from

macrophages (99). Cholesterol metabolites and oxysterols inhibit

T cell proliferation and immune effector capacity by activating LXR

to induce ABCA1 and ABCG1 upregulation in macrophages (116).

In ABCG1-deficient macrophages, cholesterol accumulation

promotes proinflammatory gene expression mediated by NF-kB,
thereby inducing macrophage polarization to the M1 phenotype

(117). In ABCA1/G1-deficient DCs, accumulated cholesterol

activates the DC inflammasome and promotes the secretion of

inflammatory cytokines, leading to autoimmune diseases (118).

ABCG1 deficiency is associated with the proliferation and

maturation of invariant NK T (iNKT) cells (119). Additionally,

ABCA7, another ABC family transporter in iNKT cells, regulates

cellular functions by mediating the efflux of phospholipid

complexes (120).
3.2 Glucose transporters

As a vital nutrient that supports energy production and biomass

synthesis in cells, glucose is mainly transported into cells through

GLUTs, a family of glucose transporters encoded by the SLC2A

gene family (121). Activated CD4+ T cells support metabolic

reprogramming toward aerobic glycolysis by upregulating GLUT1

expression levels to rapidly proliferate and differentiate into

immune-promoting effector T (Teff) cells and immune-inhibiting

Treg cells (122). Decreased GLUT1 expression levels in T cells from

cancer patients may be closely related to the expression levels of the

inhibitory receptors, PD-1 and TIM3 (73, 74, 123). A study of lung

squamous cell carcinoma identified GLUT3 as the main glucose

transporter in immune cells of the TME (124). Increased glucose

uptake by GLUT3 in T cells inhibits GLUT3-mediated glucose

uptake by cancer cells, indicating that immune cells with high

GLUT3 expression levels promote effective antitumor immunity

(124). Teff cells selectively depend on the glucose transporter

GLUT1 for proliferation and inflammatory responses (122, 125).

In addition, Tregs with increased GLUT1 expression levels and

glycolytic reactions in the TME are functionally unaffected by

GLUT1 deficiency, possibly because the energy supplementation

pathway involves lipid metabolism (122, 126). Compared to normal

neutrophils, neutrophils with pro-tumor functions exhibit higher

GLUT1 expression levels and glucose metabolism (127). Similarly,

TDE-induced macrophages achieve metabolic reprogramming by

increasing the expression levels of GLUT1, HIF1-a, and lactose

dehydrogenase A, which polarizes TAMs toward protumor

phenotypes (79).
3.3 Lactate transporters

Monocarboxylate transporters (MCTs) belong to the SLC solute

carrier family and comprise 14 members. MCT1–4 are proton-

coupled monocarboxylate transporters capable of mediating the

bidirectional transport of lactate, driven by a transmembrane

concentration gradient (128). MCT1 and MCT4 are the most

extensively studied monocarboxylate transporters involved in
Frontiers in Immunology 06
human cancers. MCT1 plays a major role in lactate uptake by

glycolytic cells, whereas MCT4, which has a low affinity for lactate,

is not easily saturated by high intracellular lactate levels and

promotes lactate efflux in glycolysis-dependent cells, such as

tumor cells (128, 129). High expression levels of MCT1 and

MCT4 have been observed in many types of tumor cells (128).

The Na-coupled transporters SMCT1 (SLC5A8) and SMCT2

(SLC5A12) also participate in lactate transport (129, 130).

Excess lactate accumulation in the TME inhibits the antitumor

effects of immune cells. For activated T cells, increased lactate in the

TME leads to an impaired lactate efflux function of MCT1, thus

affecting glycolysis and the immune function of cytotoxic T cells

(80). For NK cells, the downregulation of MCT4 expression levels in

tumor cells can effectively restore their tumor-killing function by

reversing the immunosuppressive TME (131). Conditions of high

lactate concentration affect the antigenic phenotype and functional

activity of monocyte-derived DCs, and induce MCT1 expression in

plasma cell-like dendritic cells (pDCs), thereby facilitating tumor

cells to evade immune surveillance (132, 133). Moreover, lactate

inhibits the TLR stimulation response and IFN-a secretion through

MCT1-mediated intracellular lactate transport and promotes pDCs

to induce Tregs (133). Tregs with high MCT1 expression levels

upregulate PD-1 expression and maintain their immunosuppressive

activity in the glucose-deficient TME (82, 134). Additionally, lactate

facilitates tumor immune escape by upregulating MCT1 expression

levels in macrophages, thereby enabling M2 macrophage

polarization (135, 136). Increased MCT4 expression levels in

macrophages enhances lactate efflux, which is necessary for

macrophage act ivat ion, g lycolys is , and inflammatory

responses (137).

To date, there has been no detailed investigation of the changes

in SMCT expression levels in immune cells. It has been proposed

that lactate accumulation upregulates SMCT2 expression levels in

CD4+ T cells to enhance lactate uptake and the production of the

proinflammatory cytokine IL-17, resulting in decreased glycolysis,

cell activity, and migration (81, 138). DCs and macrophages also

express SLC5A8 and SLC5A12, but they do not appear to exert a

lactate transport function (130, 139).
3.4 Amino acid transporters

Amino acids are involved in a series of complex physiological

processes, such as protein synthesis, metabolism, and signal

transduction. There are three major classes of amino acid

transporters in the SLC superfamily. Based on their properties,

amino acid transporters can be divided into neutral, basic, and

acidic types. Depending on whether the transport process requires

coupling with Na+, they can be further divided into Na+- and non-

Na+-dependent transporters (13). When comprehensively

considering substrate specificity and transport mechanisms, they

can be further divided into multiple systems, such as A, N, ASC, B,

L, T, xc
−, and y+ (140). The relationship between amino acids and

their transporters is not a one-to-one relationship (Figure 2),

making research targeting amino acid transporters more

challenging (13).
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3.4.1 Cysteine and cystine transporters
Typically, cystine is rapidly reduced to cysteine, which is

necessary for the formation of the antioxidant glutathione (GSH)

in cells (141). System xc
−, which is composed of xCT (SLC7A11) and

CD98 (SLC3A2) subunits, is a major plasma membrane antiporter

responsible for the cellular uptake of cystine in exchange for

intracellular glutamate (142). NaïveT cells cannot utilize cystine

and methionine to synthesize cysteine because of a lack of

cystathionase and complete xc
− transporters. In this setting, T cell

activation requires the neutral amino acid transporters ASCT1

(SLC1A4) and ASCT2 (SLC1A5) for the cellular uptake of

cysteine excreted by macrophages and DCs through ASC

transporters (SLC7A10) (143). Activated T cells upregulate the

expression levels of members of the xc
− system and neutral amino

acid transporters to ingest cysteine for proliferation, thus deviating

from a dependency on extracellular cysteine (144, 145). Activated

monocytes and macrophages also ingest cystine mainly through the

xc
− system and upregulate xc

− component expression levels in

response to inflammatory stimulation to exercise immune

functions (146, 147). The highly expressed xc
− system in mature

DCs plays a significant role in mediating the differentiation of

monocytes into DCs (148). MDSCs deplete cysteine in the TME and

block T cell activation by rendering DCs and macrophages unable

to support T cells (143). CD8+ T cells induce lipid peroxidation and

ferroptosis through the downregulation of SLC3A2 and SLC7A11

levels in tumor cells by secreting IFN-g, thereby mediating effective

antitumor responses (149). Elevated expression levels of SLC7A11

in tumor cells contribute to tumor invasion and metastasis, which
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are also correlated with poor cancer prognosis (150). Although

SLC7A11 deletion in tumor cells results in impaired tumor growth,

neither systemic nor T-cell-specific knockout of SLC7A11 affects T

cell proliferation or the antitumor immune response, suggesting

that further investigation of the interplay between SLC7A11 and T

cell function should be conducted (13, 151).

3.4.2 Glutamine transporters
Glutamine is a nonessential amino acid that regulates vital

cellular activities, such as energy metabolism and biosynthesis. As

the deaminated form of glutamine, glutamate is further converted

into ketoglutarate, which enters the TCA cycle, where it serves as a

substrate for fatty acid, amino acid, and nucleotide synthesis (152,

153). The amino acid transporter system L, composed of LAT1

(SLC7A5) and CD98 (SLC3A2), exchanges glutamine for essential

amino acids to regulate cell proliferation and function, indicating

that intracellular glutamine is vital for amino acid transport (154–

157). Glutamine is indispensable for T cell activation; therefore,

most studies on glutamine transporters in immune cells have

focused on T cells. TCR and CD28 activate T cells by stimulating

the downstream MAPK family member, ERK, to induce the

expression of the glutamine transporters SNAT1 (SLC38A1) and

SNAT2 (SLC38A2). SNAT1 displays higher expression levels

because of its faster induction (153). Similarly, ASCT2-mediated

glutamine uptake plays a constructive role in T cell activation

mediated by the mTORC1 signaling pathway. Therefore, ASCT2

deficiency suppresses the inflammatory response by inhibiting

CD4+ T cell differentiation into Th1 and Th17 cells (155). LAT1
FIGURE 2

Expression of amino acid transporters in tumor and immune cells and their substrates. Some amino acids and their transporters are engaged in the
regulation of the immune responses in the tumor microenvironment. Examples we mentioned are depicted in the figure. Arginine (Arg), Cysteine
(Cys), Cystine (Cys-Cys), Glutamate (Glu), Glutamine (Gln), Kynurenine (Kyn), Leucine (Leu), Methionine (Met), Tryptophan (Trp).
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deletion also inhibits CD4+ T cell expansion and decreases the

secretion of inflammatory factors (158). Amino acid transport

mediated by ASCT2 and transporter system L is crucial for

maintaining cellular metabolism and function in NK cells by

regulating cMyc expression (154, 159).

3.4.3 Methionine transporters
Methionine is a sulfur-containing proteinogenic amino acid

required for the synthesis of spermine and the major reducing

agent GSH (160). In addition, methionine serves as the only source

of the intracellular universal methyl donor S-adenosylmethionine

(SAM), which plays an integral role in regulating gene expression and

basic metabolic pathways in cells (161). Activated T cells increase

methionine uptake by upregulating SLC7A5 expression levels and

producing methyl donors for DNA and RNA methylation (162). In a

hypoxic microenvironment, upregulated SLC7A5 expression

contributes to the accumulation of methionine in tumor cells,

which leads to methionine depletion in the TME (163). Therefore,

decreased methylation in T cells may be attributed to an insufficient

level of methionine, which affects cell proliferation and function

(164). Since another methionine transporter encoded by SLC43A2 is

also highly expressed in tumor cells, tumor-infiltrating effector T cells

with low SLC43A2 expression levels do not compete with tumor cells

for methionine. Consequently, low methionine and SAM levels and

weakened H3K79me2 signaling in the promoter region downregulate

STAT5 expression, which in turn affects T cell survival and function

(165). Tumor cells escape immune surveillance by inducing T cell

exhaustion through the cellular methionine metabolites SAM and 5-

methylthioadenosine (166).

3.4.4 Leucine transporters
Transport of the essential branched-chain amino acid, leucine,

and other large neutral amino acids is predominantly mediated by the

amino acid transporter system L (167, 168). The mTORC1 signaling

pathway is crucial for T cell activation and differentiation. Previous

studies have shown that T cells upregulate SLC7A5 expression under

sustained immune activation via TCR or IL-2 to improve leucine

uptake and activate mTOR signaling (168). Notably, leucine uptake

mediated by system Lmust be coupled with glutamine efflux, which is

dependent on ASCT2-mediated glutamine uptake (169). This

conclusion was confirmed in a follow-up study in which Nakaya

et al. effectively activated the mTORC1 signaling pathway in SLC1A5-

deficient T cells by exogenous supplementation with leucine (155).

The inhibition of SLC7A5 expression affects the NK cell effector

function, resulting in lower C-MYC protein expression levels and

mTORC1 signaling in NK cells (167). Overexpression of LAT1 is also

closely related to the proliferation of cancer cells, such as lymphoma,

esophageal cancer, lung cancer, and prostate cancer cells (156), owing

to the critical role of SLC7A5 in activating mTORC1 signaling and

metastasis in tumors (156, 170).

3.4.5 Tryptophan and kynurenine transporters
Tryptophan metabolism through indoleamine 2,3-dioxygenase

(IDO) and tryptophan 2,3-dioxygenase (TDO), which are involved in

the kynurenine pathway, is postulated to be a leading cause of tumor

immune escape (171). Tryptophan is transported via two pathways.
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One is the amino acid transporter system L, which is ubiquitously

expressed in mammalian cells, and is the only conventional transport

system expressed by resting human T cells. The other is a novel

transport system upregulated by IDO in tumor cells and human

monocyte-derived macrophages, with a high affinity for tryptophan

(172, 173). Tumor cells upregulate the expression of multiple

transporters that rely on the transcription factor ATF4 to enhance

tryptophan and glutamine uptake under IDO-induced tryptophan

deficiency (171). Moreover, overexpression of the tryptophan-

transport- and metabolism-related genes SLC1A5, SLC7A5,

SLC7A8, and TDO2 in tumor cells also provides potential strategies

for cancer therapy (174, 175). SLC1A5 expression is also upregulated

in a highly tumorigenic subpopulation of tumor cells known as

tumor-repopulating cells (175). Correspondingly, enhanced

tryptophan uptake and metabolism in tumor cells leads to

kynurenine accumulation in the TME, thereby dampening

antitumor immune responses. Extensive research has shown that

kynurenine transport in activated T cells is mediated by transporters

encoded by SLC7A5, SLC7A8, and SLC36A4 genes (175, 176). As

LAT1 simultaneously mediates the transport of multiple amino acid

substrates, high levels of kynurenine in the TME exhibit competitive

inhibition with other substrates, thus providing a new explanation for

the immunosuppressive mechanism mediated by kynurenine

accumulation in the TME (176).

3.4.6 Arginine transporters
The conditionally essential amino acid arginine is the main

substrate for the biosynthesis of proteins, creatine, nitric oxide, and

polyamines, and is involved in activating the metabolic checkpoint,

mTOR, for cell proliferation (177, 178). Arginine uptake is mainly

mediated by transporter system y (CAT1-3), encoded by the

SLC7A1-3 gene (179). Arginine metabolism is essential for

sustaining tumor metabolism and survival (180, 181). CAT1 is

the only transporter responsible for L-arginine uptake in chronic

lymphocytic leukemia (CLL) cells. Previous studies have shown that

downregulating CAT1 expression in mouse CLL cells has a

significant tumor-inhibition effect (182). Therefore, CAT1 may

serve as a novel therapeutic target for CLL treatment. Similarly,

arginase produced by tumor cells and MDSCs inhibits T cell

proliferation and leads to tumor immune escape (183–185). In

addition to arginine, creatine and polyamines also have

immunomodulatory properties. The upregulation of CAT1 in

activated T cells results in increased L-arginine uptake, which

contributes to T cell proliferation and tumor-suppressive

functions (186, 187). Polyamine metabolism affects transcriptome

and epigenome remodeling from Th17 cells to Tregs (188). The

expression of CAT2 is induced in both M1 and M2 macrophages

(189). Additionally, macrophages ingest creatine, a metabolite of

arginine, in a process mediated by the transporter CRT (SLC6A8),

to polarize them toward the M2 phenotype (190).
3.5 Nucleoside transporters

Equilibrative nucleoside transporters (ENT1–4) encoded by the

SLC29 family and condensed nucleoside transporters (CNT1-3)
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encoded by the SLC28 family are the major nucleotide transporters

in the human body. ENTs have been implicated in the bidirectional

transport of various purines and pyrimidines to maintain

intracellular and extracellular nucleoside homeostasis. CNTs

mediate the unidirectional uptake of nucleosides in an Na+- and

H+-coupled manner (191, 192). Nucleoside transporters play a

central role in transporting nucleosides, nucleobases, and

nucleoside analogs, with effects on cell metabolism and signal

transduction (192–194). Several studies have suggested that

decreased ENT1 and CNT1 expression levels in tumor cells may

be associated with drug resistance (192, 193, 195, 196). In addition,

the RFC1 transporter encoded by SLC19A1 mediates the uptake of

the immune transmitter cGAMP into monocyte-derived U937 cells

to elicit antitumor immune responses via immune cell recruitment.

However, whether other immune cells utilize this mechanism to

achieve cGAMP uptake requires further investigation (197).

Hypoxia is a common feature of the TME, with inhibitory

effects on cellular ENT1 expression (198–200). For example,

nucleotide metabolic enzymes CD73 and CD39, expressed by

immune cells, are upregulated under the regulation of HIF1-a.
This leads to adenosine accumulation in the TME, which negatively

affects the immune activity of Teff cells (198, 199, 201). In mice with

inflammatory diseases, the ENT1-targeted drug decitabine

selectively depletes Teff cells with high ENT1 expression levels

and promotes the proliferation of immunosuppressive Treg cells,

which may be one of the mechanisms responsible for immune

tolerance (202). Macrophages simultaneously express ENTs and

CNTs, and selectively express specific nucleoside transporters

according to the requirements related to their growth,

development, and metabolism, with regulators including

lipopolysaccharide, TNF-a, IFN-g, and M-CSF (203, 204).
4 Tumor therapeutic regimens
targeting transporters

Metabolic reprogramming of tumor and immune cells occurs

owing to the rapid proliferation of tumor cells, ultimately creating an

immunosuppressive TME with complex interactions between

metabolite abundance and transporter expression. Therefore,

targeting transporters expressed in the cells of the TME to regulate

cellular metabolism may provide powerful support for cancer

treatment. Various types of transporter-targeted antitumor drugs

have been developed, including chemical drugs and antibodies

(Figure 3). In addition, the combination of transporter-targeted

drugs with existing chemotherapeutic drugs or immune checkpoint

inhibitors may provide new strategies for clinical cancer treatment.
4.1 Targeting lipid transporters

The irreversible CD36 inhibitor sulfo-n-succiniminooleate

(SSO) inhibits the uptake of oxidized low-density lipoprotein by

macrophages (205). Experimental studies in mice have shown that

the CD36-neutralizing antibodies FA6.152 and JC63.1 hold promise

for inhibiting cancer cell metastasis in various cancer types (206).
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Lipofermata and grassofermata specifically inhibit FATP2-

mediated fatty acid transport and cytotoxic reactions caused by

excessive fatty acid accumulation (106, 207). Moreover, FATP2

inhibitors, in combination with checkpoint inhibitors, alleviate the

suppressive activity of MDSCs against T cells and significantly

enhance antitumor immune responses (105, 106). Lipofermata may

also be exploited to inhibit FATP1 because of the similarity between

FATP1 and FATP2, which contributes to the effective inhibition of

FATP1-mediated fatty acid uptake, thereby reducing melanoma cell

proliferation (208). However, lipofermata shows no obvious

therapeutic effects in tumor-bearing mice owing to its short half-

life (208). Pharmacological inhibitors of FABP4, such as tamoxifen

and BMS309403, effectively inhibit tumor progression (209–211).

The chemical inhibitor SBFI26 restricts tumor proliferation by

targeting FABP5-PPARg-VEGF signaling (212). High FABP5

expression levels confer enhanced antitumor activity to

macrophages. The small-molecule compound EI-05, identified by

Rao et al., significantly increase FABP5 expression levels in

macrophages and inhibits breast tumor growth in mice (213).

The ABCA1 transporter is also a potential target for tumor

treatment. ABCA1 suppresses tumor growth by mediating

cholesterol efflux in tumor cells to promote cell death (214, 215).

Missense mutations in ABCA1 contribute to tumor progression in

patients with chronic myelomonocytic leukemia (216). The tumor

suppressor P53 induces ABCA1 expression, and loss of P53 or

ABCA1 promotes liver tumor cell proliferation in mice (217). As

the target gene of the nuclear receptor LXR, ABCA1 expression can

be increased by LXR activation. Therefore, the LXR agonists

T0901317 and GW3965 play crucial roles in the anti-proliferative

effects on tumor cells (218). LXR agonists combined with first-line

therapeutic drugs for melanoma, such as dacarbazine, vemurafenib,

and anti-CTLA-4 antibodies, improve the clinical efficacy of

monotherapies (219). Similarly, the combination of GW3965 and

gemcitabine exhibits a more significant antitumor effect than two

single-agent treatments on pancreatic cancer cell lines (220).
4.2 Targeting glucose transporters

Treatments targeting glucose transporters mainly include drug

therapies targeting GLUT1 and those providing RNA interference.

Compound STF-31, identified by Chan et al., exhibits synthetic

lethality in cancer cells with high GLUT1 expression levels and

glycolysis dependence (221). WZB117, a small-molecule inhibitor,

exerts anticancer effects by reducing GLUT1 expression levels,

intracellular ATP levels, and glycolytic enzyme levels in tumor

cells (222). BAY-876 is a highly selective inhibitor of GLUT1 with

favorable pharmacokinetic properties both in vitro and in vivo and

it exhibits potent antitumor effects against a variety of solid tumors

(223–226). Polyphenols, such as resveratrol, hesperetin, catechin,

and quercetin, also possess antitumor functions by reducing

GLUT1 mRNA and protein expression levels in tumor cells (227).

The growth of tumor cells treated with an anti-SLC2A1 short

hairpin RNA (shRNA) is markedly suppressed (228).

Furthermore, an shRNA targeting GLUT1 enhances cisplatin

sensitivity in head and neck cancer cells (229). Collectively, RNA
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combined with chemotherapeutic drugs is expected to result in

improved therapeutic effects against cancer. Notably, in addition to

GLUT1, tumor cells upregulate GLUT3 expression levels under

conditions of glucose deprivation. Therefore, drugs specifically

targeting GLUT1 may be insufficient to inhibit tumor growth and

may require high concentrations to elicit therapeutic effects. These

issues can be overcome by a novel pan-GLUT inhibitor, Gluor,

which targets the glucose transporters GLUT-1, GLUT-2, and

GLUT-3, with antitumor effects at nanomolar concentrations.

However, detailed investigations of the effect of Gluor in vivo are

limited (230, 231).
4.3 Targeting lactate transporters

As the predominant lactate transporters in tumor cells, MCT1

and MCT4 prevent intracellular acidification and maintain normal

tumor cell growth. Consequently, MCT inhibitors have great

potential for clinical applications in antitumor treatments. a-
Cyano-4-hydroxycinnamate (CHC) is a selective and reversible

inhibitor of MCT1 that can significantly inhibit tumor growth

and reverse hypoxic conditions in the TME (7). Choi et al.

effectively inhibits tumor growth by reducing MCT4 expression

levels in tumor-bearing nude mice treated with an MCT4-targeting

antisense oligonucleotide (MCT4 ASO) (232). Various potent

MCT1 inhibitors have been reported, including SR13800,
Frontiers in Immunology 10
AZD3965, BAY-8002, and 7ACC2 (233). AZD3965 is an orally

bioavailable MCT1 inhibitor in phase I clinical trials that effectively

increases T cell infiltration, reduces lactate efflux from tumor cells,

and reverses the immunosuppressive microenvironment of solid

tumors (234). Moreover, syrosingopine has dual inhibitory effects

on MCT1 and MCT4. In combination with metformin, which

inhibits oxidative phosphorylation, sylrosiglitazone induces

significant cytotoxic reactions and reduces the effective

concentration of metformin (235)
4.4 Targeting amino acid transporters

Overexpression of CD98, an integral subunit of system xc
−, is

often closely associated with poor prognosis in many cancers. The

humanized monoclonal antibody IGN523, which targets CD98, has

been reported to have significant antitumor activity, and a phase I

clinical trial of this antibody in patients with acute myeloid

leukemia is currently underway (236). xCT, another functional

subunit of the xc
− transport system, affects intracellular redox

homeostasis by regulating GSH metabolism. The transcription

factor Nrf2 controls the antioxidant pathway in eukaryotic cells

by regulating the expression of SLC7A11 (237). Therefore, the Nrf2

inhibitor triptolide disrupts GSH synthesis in tumor cells and is

synthetically lethal in malignant tumors with IDH1 mutations

(237). Many studies of inhibitors targeting system xc
− combined
A

B

FIGURE 3

Transporter-targeted antitumor drugs. Current approaches including chemical drugs and antibodies for transporter-targeted antitumor drugs.
(A) Lipid and glucose transporters-targeted drugs. (B) Lactate, amio acid and nucleoside transporters-targeted drugs.
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with other therapeutic approaches are also currently underway.

Clinical trials of an FDA-approved xCT inhibitor, sulfasalazine

(SAS), have been conducted in patients with recurrent glioblastoma.

However, a recent study on melanoma indicated that xCT

inhibition by SAS allows tumor cells to secrete PD-L1 via

exosomes, inducing the M2 polarization of macrophages and

leading to the development of resistance to anti-PD-1/PD-L1

therapy (238). Therefore, more detailed studies on the effects of

SLC7A11 inhibitors as combination drugs in antitumor

immunotherapy are required.

ASCT2-mediated glutamine uptake is inseparable from tumor

cell growth and metabolism. GPNA was initially recognized as a

commercially available competitive inhibitor of ASCT2, and has

since been used in many cancer model studies. However, GPNA is

not highly selective for ASCT2 and previous studies have shown

that LAT1 and LAT2 are also inhibited by GPNA (239). V-9302 is

considered an efficient ASCT2 competitive antagonist with

significant inhibitory effects on tumor cell growth and

proliferation, both in vivo and in vitro, while also inducing tumor

cell death and oxidative stress (240). Nonetheless, follow-up studies

have found that V-9302 has the same inhibitory function on SNAT2

and LAT1 (241). Therefore, specific ASCT2 inhibitors need to be

further developed. Recently, monoclonal antibody (mAb) therapies

targeting ASCT2 have been preliminarily studied. Suzuki et al.

isolated three specific anti-ASCT2 mAbs, KM4008, KM4012, and

KM4018, from CHO cells expressing ASCT2, and these effectively

inhibited colorectal tumor growth in vitro (242). Another

humanized anti-ASCT2 mAb, KM8094, exerts antitumor effects

in gastric cancer patient-derived xenograft models, indicating its

potential application in gastric cancer treatment (243).

L-type amino acid transporters are responsible for the uptake of

the large neutral amino acids required for cell growth. By evaluating

the antitumor effects of multiple anti-LAT1 mAbs, one study

demonstrated that a novel anti-LAT1 mAb effectively inhibited

tumor development and thus, it holds promise for cancer therapy

(244). The small-molecule LAT1 inhibitor, JPH203, inhibits the

growth of multiple solid tumors. Current phase I clinical trials of

JPH203 suggest promising applications for the treatment of

advanced biliary tract cancer (245).

Immune checkpoint blockade therapy can also be an effective

cancer treatment by affecting transporter functions. For instance,

immune checkpoint factors PD-1 and CTLA4 trigger

immunosuppressive signaling pathways to inhibit the expression

of the glucose transporter, GLUT1, and the glutamine transporters,

SNAT1 and SNAT2, in T cells, thus limiting nutrient uptake and T

cell activation, indicating that mAb drugs targeting immune

checkpoints can restore T cell function (246).
4.5 Targeting nucleoside transporters

Currently, there is limited published information regarding

nucleoside transporter inhibitors. As a selective ENT inhibitor,

NBMPR has been wide ly used in physio logica l and

pharmacological studies of ENT function (247). The FDA-

approved antiplatelet drug, ticagrelor, can inhibit ENT1 activity
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in human erythrocytes and platelets (248, 249). Rapamycin, another

potent ENT1 inhibitor, interacts with FKBP to exert its biological

function. The efficacy of rapamycin therapy at affecting cellular

adenosine uptake and subsequent adenosine signaling suggests a

potential new therapeutic strategy for regulating cellular adenosine

signaling (250). The fused-pyrimidine nucleoside analog,

thienopyrimidine 2′-deoxynucleoside (dMeThPmR) and its

ribonucleoside analog (MeThPmR) are inhibitors with high

affinity for hCNT1 (251). In colorectal cancer, the histone

deacetylase inhibitor trichostatin A (TSA) effectively reverses the

downregulation of CNT2 expression mediated by histone

deacetylation and enhances the sensitivity of colorectal cancer

cells to the chemotherapeutic drug cladribine (196).
5 Summary and prospects

Taken together, changes in the expression levels of transporters

in the TME are important in regulating tumor progression and

immune responses. In the TME, peculiar metabolic pathways and

metabolites are major barriers to antitumor immunotherapy, as

they affect cellular metabolic activity by regulating the expression of

transporters. Tumor proliferation and invasion, as well as immune

cell functions, are inseparable from transporter-mediated substrate

transport. Current studies on transporter-targeted antitumor drugs

have made some progress; however, the evaluation of drug efficacy

has mainly focused on tumor cells rather than on the regulation of

transporter expression in immune cells. Therefore, more detailed

investigations of targeted drugs for selective cytotoxicity, specific

inhibitory activity, and sensitivity to metabolites in the TME

are required.

Furthermore, changes in metabolite abundance and immune

cell activity in the complex and dynamic TME should be considered

when describing the effects of changes in transporter expression

levels on tumor progression. Metabolism-related genes are

currently used to assess immunotherapy efficacy and patient

prognosis (252–254). Whether the expression levels of

transporters on immune cells can also be used as prognostic

indicators for tumor immunotherapy requires further study.

Transporter-targeted drugs combined with chemoradiotherapy

and immunotherapy have been shown to have good clinical

application potential. Future research should be directed toward

the discovery of additional transporters as biomarkers or

therapeutic targets, and existing clinical cancer treatments should

be optimized by exploring different combination regimens. Rational

strategies for tumor therapy may also focus on cellular metabolic

features mediated by changes in transporter expression levels in

immune cells, to reverse the immunosuppressive TME, thereby

enabling more effective antitumor immune responses.
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