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Introduction: Sarcomas are comprised of diverse bone and connective tissue

tumors with few effective therapeutic options for locally advanced unresectable

and/or metastatic disease. Recent advances in immunotherapy, in particular

immune checkpoint inhibition (ICI), have shown promising outcomes in several

cancer indications. Unfortunately, ICI therapy has provided only modest clinical

responses and seems moderately effective in a subset of the diverse subtypes.

Methods: To explore the immune parameters governing ICI therapy resistance or

immune escape, we performed whole exome sequencing (WES) on tumors and

their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma

patients treated with pembrolizumab. We used advanced computational methods

to investigate key immune properties, such as neoantigens and immune cell

composition in the tumor microenvironment (TME).

Results: A multifactorial analysis suggested that expression of high quality

neoantigens in the context of specific immune cells in the TME are key prognostic

markers of progression-free survival (PFS). The presence of several types of immune

cells, including T cells, B cells and macrophages, in the TME were associated with

improved PFS. Importantly, we also found the presence of both CD8+ T cells and

neoantigens together was associated with improved survival compared to the

presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not

identified with the combined presence of CD8+ T cells and TMB; suggesting that a

combined CD8+ T cell and neoantigen effect on PFS was important.

Discussion: The outcome of this study may inform future trials that may lead to

improved outcomes for sarcoma patients treated with ICI.

KEYWORDS

neoantigens, checkpoint inhibition therapy, next generation sequencing, biomarker
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Introduction

Sarcomas are a rare and heterogenous group of tumors that

account for 1% of all cancers and 10-15% of solid tumors in children

and young adults (1, 2). They are generally divided into soft tissue

sarcomas (STS) and bone sarcomas (BS); however, sarcomas are

effectively comprised of more than 150 distinct subtypes (1, 3). The

majority of sarcomas are STS, while BS accounts for 15% of cases

(2). In addition to the rarity of sarcomas in adults, each distinct

subtype is associated with diverse genetic, molecular, anatomical,

clinical and/or age related factors; making their study, diagnosis or

treatment enormously challenging (4). Sarcomas are broadly

considered to be “cold” tumors, with low immune cell infiltration,

making them potentially challenging targets of ICI therapy (5).

Although sarcomas have had poor performance in ICI therapy

clinical trials (5), the tremendous success of ICI in other cancer

indications offers prospects that a path toward curative

immunotherapy success may be possible for sarcoma patients.

Several clinical trials evaluating ICI in sarcomas (including the

SARC028/NCT02301039 trial pertaining to this study) have reported

at best only modest responses, with an overall response rate (ORR) of

approximately 15% (6–10). However, a small number of patients in

these clinical studies had a notable positive clinical outcome. This

observation, coupled with the complete remissions reported in

individual case reports, warrants further research to decipher the

precise mechanisms of the positive ICI therapy responses in

sarcomas (11, 12), and potentially to develop predictive biomarkers

for ICI and other cancer immunotherapies (6, 9, 13, 14). The tumor

mutational burden (TMB), conventionally used as a predictive

biomarker to ICI therapy in several cancer types (15), is an obvious

immunogenomic property to investigate and potentially help elucidate

the mechanisms associated to a positive clinical response. However, as

we will report here and as reported in previously published studies,

TMB remains inconclusive as a biomarker for ICI therapy response in

sarcomas (11, 16). Therefore, in this study we were motivated to study

the interplay between multiple immunogenomic properties in addition

to TMB, such as neoantigen load and infiltration of several immune-

cell types into the TME (11, 12).

To achieve this, we investigated 31 available samples from ICI

treated sarcoma patients in the SARC028 clinical trial (6). We

performed whole-exome sequencing (WES) of tumor and matched

normal blood from patients and RNA-sequencing (RNA-seq) of

their tumors and identified neoantigens corresponding to multiple

sources of genomic variants including single nucleotide variants

(SNVs), small insertion and deletions, and gene fusion events. The

RNA-seq data from their tumors was used to characterize immune

cell infiltration into the TME and the expression patterns of

immune-related genes to improve our understanding of the

immunobiology of ICI-treated sarcomas. The subsequent

exploratory multivariate survival analyses revealed that the

specific context of the immune cell composition of the TME and

its interplay with neoantigens may be important for improved PFS.

The insights gained from this analysis may guide the identification

of prognostic biomarkers underlying sarcoma immunotherapy

response and may be informative in future clinical trial designs

and studies of ICI therapy in sarcomas.
Frontiers in Immunology 02
Results

Immune cell infiltration patterns in
sarcoma patients treated with ICI therapy

We first analyzed tumor expression profiles by RNA-seq of bulk

tumor samples (see Methods). A principal component analysis

(PCA) suggested a clustering of patients that corresponded to the

sarcoma subtypes (Supplementary Figure S1A). Certain subtypes,

such as LMS, had a notable within-subtype heterogeneity, while

other subtypes such as SS, were more similar. A subsequent PCA

focused exclusively on the selected collection of immune-related

genes (Supplementary Figure S1B) suggested that a distinctive

difference in immunogenomic expression profile may exist

between the different sarcoma subtypes treated with ICI

(Supplementary Figure S1B). Interestingly, two out of the three

patients responding to ICI clustered together in both PCA plots.

A trend towards elevated expression of genes related to the

immune response in UPS and OS relative to the other sarcoma

subtypes was observed when using hierarchical clustering of

immune-related genes as illustrated in Figure 1A (with an average

transcript per million (TPM) of 94 and 84, for UPS and OS

respectively, compared to the other sarcoma subtypes where the

average TPM was consistently less than 60). The samples made up

two main clusters: A, with almost all OS, and B, with all SS,

suggesting some relation to the karyotypic subclasses. Further, a

hierarchical clustering of the predicted TME composition is

depicted in Figure 1B, and in Figure 1C a bar chart of the specific

immune cell fractions of each cluster from Figure 1B is portrayed.

Cluster 3 in Figures 1B, C consisted mostly of OS and seemed to be

dominated by an elevated level of macrophages (both M1 and M2

types were detected). Interestingly, Cluster 4 was enriched in

monocytes, and most of the patients in that cluster had a stable

disease (SD) response to ICI therapy. Cluster 5 seemed to be the

“coldest” immunological group relative to the other clusters, not

surprisingly harboring most of ES samples driven by specific gene

fusions. Interestingly, B cell infiltration into the TME was predicted

to be a common sarcoma feature at relatively consistent levels

across all sarcoma subtypes (Figure 1C). The limited availability of

matched week-8 data from only seven patients, coupled with the

absence of any observed therapeutic responses to ICI among them,

hindered our capacity to infer TME composition changes following

treatment (Supplementary Figure S2).

As observed in Figures 1B, C, CD8+ T cell infiltration was also

predicted at varied levels among the sarcomas. The T cell infiltration

predicted by quanTIseq was validated by TcellExTRECT tool. As can

be observed in Figure 1B, TcellExTRECT results were concordant

with quanTIseq, with a positive significant correlation of 0.41 and p-

value = 0.022. The generic infiltration levels of non-cancer cells (i.e.,

stroma and immune cells) across the different sarcoma samples were

also evaluated using ESTIMATE toolkit. The stromal scores from

ESTIMATE ranged from 1977 to 7910, while the ESTIMATE

immune cell infiltration scores ranged from 574 to 9821, and

finally the ESTIMATE tumor purity scores ranged from 2959 to

11086. Regarding the sarcoma subtypes, the mean and standard

deviation of immune scores sorted from highest to lowest were as
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follows: OS, 6870 (1626); DDLPS, 6295 (2652); UPS, 60797 (2920);

LMS, 5977 (2268); ES, 5832 (1884); CS, 4139 (1201); and SS, 2358

(2838). These ESTIMATE predictions corroborated the observations

in Figures 1A, B, in that OS had a higher immune activation

compared to the other sarcoma subtypes. In Figure 1B, the

“ImmuneScore” annotation bar represents the results of

ESTIMATE tool, where it can be clearly observed that Cluster 3,

consisting mostly of OS, was the cluster with the highest

immune scores.

Additionally, we performed a differential expression (DE)

analysis comparing the patients with a clinical response to ICI

(responders) to the other patients. We identified a total of 727

differentially expressed genes (DEGs), of which 209 were up- and

518 down-regulated, with an absolute fold change larger than 1 and

a p-value less than 0.05 (Supplementary Figure S3A). Due to the

small number of responders (three), multiple test correction was

not applied. Enrichment analysis of the up-regulated genes revealed

a significant enrichment of several immune-related Gene Ontology

(GO) terms [Supplementary Figure S3B, corroborating the notion

that an immunologically active or “hot” TME leads to improved

clinical outcome to ICI therapy (17)]. A detailed table with all DEGs

and the complete list of up-regulated GO terms is provided in

Supplementary Tables 1, 2, for DEGs and GO terms respectively.

The study focuses on the immunogenomic properties of ICI-treated

sarcoma patients; hence cancer hallmarks were not examined.
Frontiers in Immunology 03
Sarcoma tumors exhibit a highly
heterogeneous neoantigen landscape

Using a state-of-the-art somatic mutation calling framework

(18), we inferred a comprehensive mutational landscape of the 31

baseline sarcoma tumor samples (see Supplementary Figure S4 for a

detailed overview). Each 9mer and 10mer peptide that had a

somatic mutation was matched to the personalized HLA genotype

of each individual patient to identify immunogenic neoantigens

likely to be presented by the patient’s HLA alleles on their tumor

cells’ surface. Such high-quality neoantigens were predicted using

the NEC Immune Profiler (NIP) software (see Methods) (19),

which uses an integrated artificial intelligence (AI) approach

trained on proprietary data to predict antigen presentation (AP)

scores, which can range from 0 to 1, for each candidate neoantigen.

The distribution of neoantigen load (NAL) (see Methods) with

respect to each sarcoma histological subtype was then assessed

(Figure 2A) and revealed a highly heterogeneous NAL both between

and within subtypes, ranging from 0 to 206 for intra-subtypes and a

median range of 15.0 to 112.0 for inter-subtypes. DDLPS, UPS and

LMS subtypes exhibited the highest NAL overall; the striking score

for DDLPS is due to one case, p4, who had an extremely high

number of gene fusions (Figure 2B). 461 (28.9%) of the mutated

peptides had an AP score (see Methods) greater than 0.5 and were

also predicted to bind more than one HLA allele in the same patient.
frontiersin.o
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FIGURE 1

(A) Heat map representing the hierarchical clustering analysis of all baseline samples in two main clusters considering the expression profiles of the
immune-related genes. (Progression free survival (PFS) is capped at 1000 days). (B) Tumor microenvironment (TME) clustering using the fraction of
each immune cell type per sarcoma sample predicted by quanTIseq. ImmuneScore values are based on ESTIMATE analysis. (C) TME bar chart with
immune cell fractions. Patient IDs are colored by sarcoma subtype as in (A, B). The clusters from (B) are indicated.
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Figure 2B shows the number of neoantigens generated in each

patient, stratified by the type of somatic mutation, outlining a broad

diversity of potential neoantigens detected within each subtype.

In this study, no correlation between a conventional TMB and

NAL was found (Spearman Rank correlation coefficient of -0.08,

and p-value of 0.66). The conventional TMB calculation typically

does not take gene fusions into account, and as can be observed in

Figure 2B, gene fusions were one of the dominant contributors to

NAL for several patients. However, a clear positive correlation

between the number of gene fusions and NAL was observed, with

a correlation coefficient of 0.92 and p-value of 2.65e-13. We also

measured the contribution of each gene to the overall NAL across

all the patients. Figure 2C shows the top 50 most frequently mutated

genes that gave rise to candidate neoantigens. For instance, MTAP

gene, a methylthioadenosine phosphorylase, known to be deficient

in some tumors (20), contributed with 21 neoantigens (Figure 2C)

across two patients (Supplementary Figure S5). PRKDC gene,

encoding for a DNA-dependent protein kinase catalytic subunit,

is involved in DNA repair, the establishment of immune tolerance,
Frontiers in Immunology 04
and genome stability, and thus, has the potential predictive

biomarker for ICI therapy (21). We detected 13 neoantigens

across two patients for PRKDC gene (Figure 2C and

Supplementary Figure S5). No shared neoantigens were found

between the different patients, which aligns with other studies

(22) and was expected here due to the highly heterogeneous

mutational landscape across the sarcoma subtypes.

We next analyzed the distribution of the ranked AP scores of the

top ten neoantigen candidates for each of the baseline samples. The

patients were pooled according to their clinical response, consisting of

three responders, 18 patients with progressive disease (PD), and 9

patients with stable disease (SD). The distribution of AP scores, and

the means of the populations of each group, were then compared

using Welch’s test (Figure 3A). A marginally significant difference in

the neoantigen scores between the responders and PD groups was

observed (p-value = 0.078). There was no significant difference

between the responders and SD groups (p-value = 0.63), but the

comparison between the SD vs PD groups emerged with a significant

difference (p-value = 0.001). Additionally, also using Welch’s test, we
A

B

C

FIGURE 2

(A) Neoantigen load (NAL) distribution across the different sarcoma histological subtypes. The lines inside each box represents the median NAL value
for each subtype while the dots are outliers. (B) NAL profiling of sarcoma samples and the contribution of each somatic variant type to NAL. Patient
IDs are colored by sarcoma subtype as in (A). (C) Top 50 genes with predicted neoantigens across sarcoma patients. The colors represent the
number of patients with neoantigen candidates arising from the given gene.
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compared the PD group against the remaining non-PD groups (i.e.,

SD and responders pooled together), whereby a significant difference

emerged from the analysis (p-value = 0.001) (Figure 3B). Interestingly,

this analysis revealed, on average, a higher neoantigen quality for

patients without PD.

The limited number of patient samples available for analysis

post ICI therapy hindered our capacity to derive significant

conclusions. For the few samples that were available post therapy;

none responded to ICI. In addition, removal by immunoediting of

somatic mutations or immunogenic neoantigens caused by ICI

therapy was not detectable among the few available ICI-treated

samples (Supplementary Figure S6).

Survival and clinical response of TMB,
NAL and immune cell TME in ICI
treated sarcomas

We next evaluated the effect of various immunogenomic

features on PFS of the patients using Kaplan-Meier (KM) survival

analysis. Conventional thresholds such as mean/median or

Maximally Selected Rank Statistics failed to yield significant

results in most cases probably due to the considerable diversity of

the dataset consisting of seven sarcoma subtypes and only 31

samples. Hence, we used a supervised optimal binning approach

(see Methods) to group patients into two (low and high) groups for

univariate analyses (i.e., each immunogenomic feature was analyzed

individually); for bivariate analysis, the univariate thresholds were

used to stratify patients into four groups (i.e., the immunogenomic

features were analyzed in pairs of low/low, low/high, high/low,

high/high). We note that the small sample size available in this

study may limit the robustness of the log-rank test associated with

the KM analysis. We also did not account for multiple hypothesis

testing in this analysis. Consequently, we do not make strong claims

of statistical significance in this preliminary study. Nevertheless,

this exploratory analysis does reveal features associated with
Frontiers in Immunology 05
differences in PFS among patient groups and which could guide

further avenues for future studies.

We first performed a statistical interrogation of the immune cell

infiltration into the TME in a univariate analysis (where a supervised

optimal binning approach was utilized to independently assess the

effect of the considered immunogenomic features in the survival and

determine the optimal threshold cutoffs, see Methods). We identified

a signal that an elevated fraction of infiltrated T cells into the TME as

measured by TcellExTRECT tool (see Methods), led to improved PFS

with a log-rank p-value in the KM analysis of 0.00096 (Figure 4A).

The group of patients presenting a higher proportion of infiltrated T

cells had a median PFS of 173 days while the lower group had a

median of 48 days. Figure 4B demonstrates the suitability of the

supervised optimal binning approach to find the best threshold to

generate the different groups evaluated in KM survival analysis. A

window of low p-values across different thresholds indicates a more

robust separation of low and high groups which is not sensitive to the

exact chosen threshold. An improved PFS was also observed to be

associated with increased levels of macrophage M1 and M2 cell

infiltration (log-rank p-values 0.047 and 0.019 for M1 and M2 cells

respectively, Supplementary Figures S7A, S7B) and associated with B

cells with a log-rank p-value of 0.074 (Supplementary Figures S7C).

To determine the predictive potential of the effect of combining

certain immunogenomic properties for the prediction of PFS, we

performed multivariate analyses. We observed that a higher

neoantigen quality (see Methods) combined with a high

infiltrated T cell fraction was associated with an improved PFS

(median of 282 days) with a log-rank p-value of 0.006 (Figure 4C).

High T cell infiltration with low neoantigen quality was still

associated with good PFS (median PFS = 139 days). However,

this PFS was lower than the median PFS among all patients with a

high T cell fraction (173 days); this highlights that incorporating

neoantigen quality with T cell fraction improves prognostic patient

groupings compared to using T cell infiltration alone. Low T cell

fraction was associated with poor PFS, regardless of the neoantigen
A B

FIGURE 3

(A) Distribution of the AP scores for the top 10 (ranked by AP score) neoantigen candidates for progressive disease (PD), stable disease (SD) and
responder (R) group. The vertical lines represent the mean AP score for each group. (B) Distribution of the AP scores for the top ten (ranked by AP
score! neoantigen candidates for non-progressive (SD+R) and progressive (PD) groups.
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quality being high (median PFS = 49 days) or low (median PFS = 48

days; Figure 4C). The same association with improved PFS was not

observed with TMB and T cell fraction (Figure 4D).
Investigation of immune escape
parameters: antigen presentation
machinery, personalized HLA-typing, and
the tumor-specific HLA status

The polymorphic nature of HLA alleles and its association to

tumor-immune escape called for accurately typing and evaluating the

mutation and expression status of each HLA allele in the patients

(23). The status of the HLA locus in the different sarcoma subtypes

was evaluated using NeoOncoHLA (24) (see Methods). Using this

personalized HLA-typing approach, the somatic mutations and

tumor-specific expression of each patient-specific HLA allele were

described. A total of 18 somatic variants affecting HLA class I alleles

were detected among 14 patients (45% of the patients presented at

least one somatic mutation affecting one HLA allele). Seven of those

18 were non-synonymous variants, and six of those seven affected the

peptide binding regions of the alleles. Figure 5 depicts the expression

of each HLA allele estimated as TPM and the NAL associated with

each sample’s HLA-A and HLA-B alleles. The number of good

neoantigen candidates for the HLA-A*02:01 allele in p9 increased

from nine at baseline to 24 in week-8, while its expression (measured

as TPM) decreased from 861 to 350. This could indicate a possible
Frontiers in Immunology 06
immune escape mechanism in this patient, through the

downregulation of this HLA allele’s expression (see Figure 5).

Although p31 showed numerous good neoantigen candidates, the

expression of the HLA alleles seemed to be slightly downregulated,

particularly for HLA-A*11:01. We did not consistently observe this

putative immune escape pattern through HLA downregulation as a

global trend across all the patients, and we had too few treated

samples to draw conclusions. HLA expression did not demonstrate

statistical significance in the survival study. Nonetheless, in the

multivariate KM survival analysis, we found a significant separation

for HLA-C (log-rank p-value = 0.001) expression in conjunction with

the predicted NK cell fraction. Patients with a high NK cell

infiltration combined with low HLA-C expression had the best PFS

(median PFS = 157 days), while a high NK and HLA-C values

resulted in short survival (median PFS = 50 days) (Figure 6A). This

trend was not observed when combining HLA expression with T cell

infiltration into the TME, where the high HLA expression and high T

cell infiltration group resulted in similar PFS times as low HLA

expression and high T cell infiltration group (see Figures 6B-D).This

pattern could theoretically be owed to the combined benefit of

enhanced NK cell activity due to the decreased HLA-C expression

and the increased presence of T cells in the TME modulating tumor

cell killing through HLA-A and/or -B antigen presentation to T cells;

in the backdrop of improved PFS with high neoantigen quality with

high T cell fraction reported above (see Figure 4C).

Importantly, the expression profile of genes linked with the

antigen presentation machinery (APM), in addition to HLA
D

A B

C

FIGURE 4

(A) Kaplan-Meier (KM) plot for T cell fraction univariate analysis. A higher fraction of tumor infiltrated T cell leads to better progression-free survival
(PFS). PFS capped to 500 days for visualization purpose. (B) Distribution of log-rank p-values for the different thresholds evaluated during the
exploratory supervised optimal binning approach. In bold, all the thresholds resulting in groups of at least ten patients each, among those, the one
with lowest p-value (highlighted in yellow) is selected and used in (A). (C) KM plot for the multivariate analysis with the combinatorial effect in PFS of
neoantigen quality and T cell fraction; and (D) TMB and T cell fraction.
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expression, revealed probable patterns of immune evasion in

sarcoma. Among the APM genes we profiled (see Methods), we

found that a decreased expression of beta-2-microglobulin (B2M),

MHC class II transactivator CIITA, endoplasmic reticulum

aminopeptidase 2 (ERAP2), transporter 2 (TAP2) and TAP

binding protein like (TAPBPL) were significantly associated with

a shorter PFS (Figure 7). Consistent with previous research, these

findings underline the utility of APM profiling as a potential

biomarker of tumor cell antigen presentation status and immune

escape (25–27).
Frontiers in Immunology 07
Discussion

The efficacy of pembrolizumab in patients with advanced bone

and soft-tissue sarcoma (STS) was assessed in the SARC028 trial

(NCT02301039) and demonstrated that only some of the many

different histological subclasses of sarcomas had a positive clinical

response to ICI (28). In general, the results were modest, with

promising results within some of the STS subtypes (6). Many

studies have reported the importance of immune cell infiltration

into the TME and their complex interplay with tumor cells in the
D

A B

C

FIGURE 6

Kaplan-Meier (KM) plots for the multivariate analysis with the combinatorial effect in PFS of HLA expression and immune cell fractions in the TME.
(A) NK cell fraction and expression of HLA-C. (B) T cell fraction and expression of HLA-C. (C) T cell fraction and expression of HLA-A (D) T cell
fraction and expression of HLA-B.
FIGURE 5

HLA-A and B allele-specific expression calculated as TPM across the different ICI-treated sarcoma samples (bottom histogram) and the
correspondent NAL for each allele (top histogram).
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clinical outcome of cancer patients (29–31). Furthermore, in recent

years, neoantigens have emerged as important immunotherapy

targets that play a central role in the HLA-restricted T-cell

response and have been linked to the clinical efficiency of ICI

therapy in several cancer indications (32, 33). Moderate responses

have been found in clinical trials of ICI in sarcomas, and only a

subset of patients has benefited with durable clinical outcomes (28).

Due to this modest response to ICI therapy, a comprehensive

immunogenomic analysis of sarcomas guided by state-of-the-art

AI tools to predict neoantigens and their interplay with respect to

immune cells in the TME was warranted in this study to help

elucidate some of the mechanisms of possible immune escape and

resistance of sarcomas to ICI therapy and to enable prior

identification of patients most likely to respond.

We used a series of computational and AI methods to

investigate several tumor immunogenomic properties, including

the somatic mutational landscape, neoantigens, expression of key

immune-related genes (e.g., APM genes), and the TME immune cell

composition from the available SARC028 trial samples. The

analysis was conducted on NGS data from 31 sarcoma patients,

comprising WES from matched tumor and blood samples and

tumor RNA-seq data. In terms of ICI response, three patients had a

clinical benefit from pembrolizumab (one complete responder and

two partial responders), nine had stable disease (SD), 19 had

progressive disease (PD), and one did not have response

information available.

Using the RNA-seq data from the tumor samples, a DE analysis

revealed that several immune-related GO terms were significantly

enriched in the responders, suggesting that an immunologically

active TME may lead to an improved clinical response to ICI

therapy. A further interrogation revealed three distinct TME

immune profiles based on a hierarchical clustering of the tumor

transcriptome data; (1) an immune active cluster (cluster 3), formed

mostly by OS, and enriched in macrophages and CD8+ expression,
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(2) a cluster enriched in monocytes and with patients with SD

response (cluster 4), and (3) a slightly immune desert cluster

consisting of all ES patients except one (cluster 5). Importantly,

two of the three ICI responders, including the patient experiencing

a complete clinical response, were included in the TME immune

active group (cluster 3). This was consistent with the DE analysis

which showed that responders were associated with a pre-existing

immune activity in the TME. The RNA-seq data was also used to

deconvolute the immune cell composition in the TME, and then

applied to a univariate KM survival analysis to identify immune cell

infiltration patterns associated with improved PFS. We observed

that higher fractions of T cells and macrophages were associated

with longer PFS. These observations were consistent with previous

studies that examined the importance of the immune cell

composition of the TME for ICI response in sarcomas (34),

although contradictory results have been reported in the

literature. For example, B cell signatures correlate with longer

survival times (17), whereas the converse has been reported for

CD8+ T cells (35–38). Additionally, our observation of elevated

macrophages in OS was consistent with previous studies (39).

Similarly, using RNA-seq data, we found that a lower expression

of APM-related genes, including B2M, CIITA, ERAP2, TAP2 and

TAPBPL, was also associated with a shorter PFS, reflecting the

increasing interest in APM biomarkers for clinical outcome and

immune escape in cancer (40). Finally, RNA-seq data revealed a

pattern whereby a decreased allele-specific HLA-C expression,

combined with high NK cell infiltration, was linked with

improved PFS. This is consistent with the well-established trend

of downregulation of class I HLA allele expression correlating with

NK cell activity (41).

The somatic mutation profile of the sarcomas was highly

variable both within and between histological sarcoma subtypes.

OS samples had the highest TMB score, followed closely by UPS,

with CS having the lowest and least variable TMB. While many
D
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FIGURE 7

KM plots for several APM components analyzed in a univariate analysis. The downregulation of these components in the tumor cells might impair antigen
presentation and subsequent escape from immune system. (A) Beta-2-microglobulin (B2M). (B) MHC class II transactivator CIITA. (C) Endoplasmic reticulum
aminopeptidase 2 (ERAP2) (D) Transporter 2 (TAP2) (E) TAP binding protein like (TAPBPL).
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genes harbored mutations across the different patients, the top four

most commonly mutated genes were all members of the mucin

(MUC) gene family, known to play a role for epithelial tissues and

reported in some neoplastic lesions (42). However, this trend may

be explainable by the high degree of exon repeats in the MUC family

of genes among individuals (43). In addition to small variants, copy-

number variations and chromosomal rearrangements were found in

many patients, including the known ES driver gene fusions of

EWSR1 and SS18 genes. An interesting observation here was the

high number of fusion-generated neoantigens in DDLPS compared

to the other subtypes. Due to the complex karyotypes of DDLPS, it

would be expected to contain many genome rearrangements, but so

would OS and UPS, which did not show this pattern. This observed

difference is challenging to explain but could contribute to the better

response seen in patients with DDLPS compared to OS but does not

explain the better response of UPS cases (30).

Increased neoantigen load (NAL) has previously been positively

correlated with TMB (44, 45), and therefore described to correlate

with ICI therapy response (46–48) in certain cancer indications. In

this study, however, we did not find a correlation between TMB and

NAL. This finding reinforces the argument that higher TMB does

not necessarily always equate to higher NAL. It is important to note

that the conventional TMB calculation does not consider gene

fusions and therefore bypasses powerful sources of neoantigens.

Additionally, the conventional TMB calculation does not consider

some key determinants of antigen presentation or immunogenicity,

such as antigen processing, HLA binding and the expression of the

somatically mutated peptides, in addition to their distance from self

(that is, the “wild type” protein).

In our univariate analysis, neither NAL nor neoantigen quality

was associated with improved PFS. However, when combining

neoantigen quality with the presence of T cells, we observed a

striking joint behavior associated with longer PFS compared to the

presence of T cells alone. When the T cell fraction was low, PFS was

always low (median PFS = 48 days) regardless of neoantigen quality.

This was consistent with the finding that immune T cell desert

TMEs are not associated with good outcomes for ICI therapy (49).

Additionally, it is reasonable that high-quality neoantigens are not

effective if there are no T cells in the surrounding environment to

recognize them. In the case of a high T cell count but low quality

neoantigens, PFS was modestly improved (median PFS = 139 days)

compared to the low T cell count patients. Remarkably, patients

with both high CD8+ T cell count and high-quality neoantigens had

improved PFS (median PFS=282 days). The observed improved PFS

when combining the tumor infiltrated CD8+ T cell fraction and

neoantigen quality was not replicated when combining T cell

fraction and TMB. In this case, a good PFS was observed only for

low TMB with high T cell fraction, suggesting that the quality and

not quantity of neoantigens might be more relevant in certain

settings for clinical benefit (50). Overall, the comparison of NAL vs

TMB in the context of T cell infiltration indicated that the AI

neoantigen prediction platform used to identify neoantigens is

reliably predicting mutated peptides presented on the tumor cell

surface that are potentially immunogenic. For B cells, a similar

picture emerged, except it was required for both the neoantigen AP

scores and the B cell fraction in the TME to be elevated for longer
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PFS. This finding is reflective of the new landscape emerging on the

importance of B cell tumor infiltration, prognosis, and response to

immunotherapy (17). Overall, the findings of the KM survival

analysis of this study were consistent with the TME clustering

which found that responders were associated with a pre-treatment,

immune-inflamed TME.

The KM survival analysis based on the supervised optimal

binning approach we used to arrive at the insights described in

this study has several limitations and caveats. First, each set of

thresholds could be considered as a hypothesis in the sense of

statistical testing; appropriate multiple test corrections, such as

Benjamini-Hochberg would ideally be applied if the p-value was

to be interpreted for true statistical significance. In this exploratory

work on a limited number of samples, though, we simply aimed to

identify the best bins for the data and did not intend to make broad

robust statistical claims. Thus, we believe the approach is still

justified as it provides informative insights from a small patient

cohort, but we acknowledge the need to validate the results in a

larger patient cohort. Secondly, some choices of thresholds would

have resulted in very small groups; the assumptions of many

statistical tests do not hold in such cases. In this work, we limited

this problem by only considering univariate thresholds which result

in at least ten individuals in all groups.

In addition, it is important to note that there are several

properties not considered in this study, due to the experimental

data not being available for the SARC028 samples, which may also

be important to help our understanding and prediction of the

response to cancer immunotherapy. For example, there is

increasing evidence that the gut microbiota (and related

metabolites such as butyrate and cholic acid), can influence the

modulation of CD8+ T cell activity and immune cell infiltration

into the TME (51, 52).

In conclusion, to the best of our knowledge, this is the first study

to exhaustively profile the immune cell TME of sarcomas with its

interplay with immunogenic neoantigens under the context of ICI

therapy, in a manner that uses advanced computational AI tools to

comprehensively capture this important interplay. While the

sample size for this study was small, the insights gained were

suggestive that the interplay between neoantigens and immune

cell infiltration patterns into the TME is a key prognostic marker of

clinical response to ICI and PFS. This therefore warrants further

clinical and biomarker studies with larger sarcoma cohorts.
Material and methods

SARC028 trial cohort data description

The SARC028 trial (NCT02301039) recruited 86 patients. Of those,

80 patients (40 with advanced STS and 40 with bone sarcomas) were

eligible for the ICI therapy (pembrolizumab, an anti-PD-1 antibody)

(6). The eligibility criteria for the patients included: (a) underwent at

least one previous systemic therapy; (b) metastatic STS or bone

sarcoma diagnosis histologically confirmed by pathological expert in

accordance with the WHO Classification of Tumors and Soft Tissue

and Bone; (c) had at least one measurable lesion by RECIST 1.1 and
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one biopsy accessible lesion; (d) 12 years or older; (d) at least 12 weeks

of life expectancy (6). STS group included the following subtypes:

undifferentiated pleomorphic sarcoma (UPS), dedifferentiated

liposarcoma (DDLPS), synovial sarcoma (SS) and leiomyosarcoma

(LMS). The bone sarcoma group included: osteosarcoma (OS), Ewing

sarcoma (ES) and dedifferentiated chondrosarcoma (CS). All the

patients received intravenously a dose of 200 mg of pembrolizumab

every three weeks. According to the protocol blood and tumor samples

were to be collected before pembrolizumab treatment (receiving the

name of “baseline” samples) and 8 weeks after the start of treatment

(receiving the name of “week-8” samples). For this specific study, there

were unfortunately only seven patient samples available for analysis

post ICI therapy. All the research and ethical approvals and permits

together with the written informed consents from all the patients were

obtained prior to sample collection. The 31-sarcoma patient cohort

consisted of 13 patients with STS, including four synovial sarcomas

(SS), four leiomyosarcomas (LMS), two dedifferentiated liposarcomas

(DDLPS), three undifferentiated pleomorphic sarcomas (UPS); and 18

patients with bone sarcomas, including six Ewing sarcomas (ES), nine

osteosarcomas (OS) and three dedifferentiated chondrosarcomas.

The import and analysis of the available samples, 31 baseline and

seven week-8 (Supplementary Table 3), to Norway was approved by

the Committee for Medical Ethics in Southeastern Norway #17866.

All available samples from participating centers were collected and

DNA and/or RNAwere purified by the trial organization and shipped

to Oslo University Hospital for sequencing analysis. The data were

stored and analyzed by NEC OncoImmunity in the computing

infrastructure specially designed for high-level protection of

sensitive personal data at the University of Oslo (53).
Whole exome sequencing on sarcoma
tumor tissue and matched PBMCs and
whole transcriptome sequencing on
sarcoma tumor tissue

Whole exome libraries were prepared at the Oslo University

Hospital Genomics Core Facility from 100 ng of genomic DNA

using the Twist Core Exome enrichment system (Twist Bioscience)

following the manufacturer’s protocol. RNA sequencing libraries

were constructed using the KAPA RNAHyper kit to generate a total

RNA library, which was further captured using the Twist Core

Exome probe set. Variable input amounts of RNA were used

depending on the availability of material (from 20-100 ng).

Exomes and RNA libraries were sequenced paired-end 2x75bp

using the Illumina HiSeq 4000 instrument, and FASTQ files were

generated using Illumina’s bcl2fastq conversion software.
Screening of mutational landscape of
sarcoma through a comprehensive variant
calling approach

The screening and characterization of single nucleotide variants

(SNVs) and small insertions and deletion (indels) sculpturing the
Frontiers in Immunology 10
tumor genome was conducted using NeoMutate (18), a tool

previously published by our group yielding very high validation

rates (18). After an initial thorough inspection of the raw

sequencing data, including quality control and adapter trimming,

the high quality paired-end reads were mapped to the human

genome (GRCh38) using BWA-MEM (54)(v0.7.17-r1188). The

output BAM files were treated according to the genome analysis

toolkit (GATK, v4.0.6.0) best practices (55) (including PCR

duplicate marking and realignment optimization). NeoMutate

incorporates an ensemble of six independent state-of-the-art

somatic variant calling tools enabling the capture of the full

mutational profile from tumor-normal matched WES data. Only

those variant candidates detected with high confidence at least by

two out of the six tools were kept avoiding false positive mutation

calls. The variants were additionally filtered according to different

quality thresholds (including minimum read depth (DP) of 10 reads

for both tumor and normal data, more than three reads supporting

the mutation in the tumor sample at the variant position). Ensembl

Variant Effect Predictor (VEP) (56) toolkit was used to annotate the

functional effect of the detected variants on the resulting gene

product. VEP was also exploited to identify the non-synonymous

variants, in other words, those mutations altering the amino acid

sequence of the tumor proteome, underpinning the neoantigen

landscape of tumors (see Methods section “Characterization of

sarcomas immunogenicity through neoantigen prediction”).

Importantly, the expression of the somatic variations was

evaluated using RNA-seq data, and only the expressed somatic

variants were retained for the neoantigen prediction step. This is

because the altered peptides need to be expressed by the tumor to

result in the production of a neoantigen.

In addition to somatic variant identification, GATK-

HaplotypeCaller (v4.0.6) (57) was used for germline variant

identification, and VEP (56) for the variant annotation. Importantly,

the combined effect of proximal (nearby) variants (either germline or

somatic) altering the same protein, and therefore, the same

neoantigenic peptide, was evaluated. Haplotype phasing is the

bioinformatics process of statistical estimation of haplotypes from

genotype data. WhatsHap (58) (v0.17) was used giving as input both

tumor WES and RNA-seq data to assess the phase relationship

between proximal variants, in other words, to evaluate whether

nearby variants were affecting the same allele in the same tumor

subclone. After the phasing, Haplosaurus (59) (included in VEP

package), was called to assess the joined functional impact of the

phased variants and fully reconstruct the mutated protein sequence.

Phasing step ensures that the selected neoantigen repertoire arising

from the mutated proteins correctly represents the patient’s genome,

increasing the chances of anti-tumor response to immunotherapy.
Characterization of sarcoma gene fusions

It is widely recognized that large chromosomal rearrangements

and fusion genes play a critical role in underpinning and driving the

sarcomagenesis course in specific morphological subtypes, making

them a valuable diagnostic marker (60, 61). The accurate

identification of sarcoma fusion genes helps to understand its
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pathogenesis and the development of specific treatment strategies

against the targetable fusions. In addition, gene fusions represent an

incredibly valuable source of potentially immunogenic neoantigens

that can mediate the anticancer immune response to ICI, even in

those tumors with low TMB (62).We predicted the gene fusions from

RNA-seq data using Arriba (63), the winner method for gene fusion

detection in the ICGC-TCGA DREAM Somatic Mutation Calling–

RNA Challenge. Arriba (63), developed for clinical research setting, is

based in the ultrafast STAR aligner, and it computes a confidence

score (low, medium or high) reflecting the likelihood of the fusion

being generated due to an underlying genomic rearrangement

specific to the tumor and not due to a sequencing artifact. Low

confidence gene fusions were discarded from downstream analysis.
Tumor mutational burden calculation

TMB was defined as the number of non-synonymous somatic

SNV and indels with a VAF of at least %5 per megabase in the

coding area of the cancer genome, as recommended by the

guide l ines of the Fr iends of Cancer Research TMB

Harmonization Project (64). Fusions, CNVs, non-coding and

synonymous mutations were discarded for TMB calculation.
Human leukocyte antigen typing

HLA alleles of each patient were inferred in silico using

OncoHLA (65) providing peripheral blood mononuclear cell

(PBMC) WES data as input. OncoHLA uses an integer linear

programming algorithm together with prior probabilities of the

allelic ethnic frequencies to determine the closest-matched HLA

allele from the IPD-IMGT/HLA Database (66) (v.3.41.2). The

output includes the HLA types for both class I and class II up to

four field of resolution and the associated HLA gene, transcripts,

and protein sequences.
HLA expression quantification and
HLA somatic variant screening in
sarcoma samples

It is well established that cancer cells can exploit several HLA-

associated immune evasion mechanisms to hijack the immune

system (67, 68). A comprehensive scrutiny of the HLA status in

the tumor was conducted using a previously developed method by

our group (24). Using the typed HLA alleles, an exhaustive profiling

of the somatic mutations affecting each individual HLA allele was

carried out, and their functional impact in the corresponding HLA

protein sequences was annotated. In addition, the expression

(abundance), reported as transcripts per million mapped reads

(TPM), of each allele was quantified by mapping the RNA-seq

reads to the inferred HLA sequences, to evaluate whether any allele

was downregulated – a well-known immune escape mechanism in

tumor development.
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Isoform and gene-level expression
quantification using RNA-seq data from
sarcoma samples

Gene isoform expression profiling from the RNA-seq data of

both STS and bone sarcoma was carried out utilizing Kallisto (69)

(v0.43.1), based on pseudoalignments of the reads and expectation-

maximization (EM) algorithm to conduct isoform-level expression

quantification. The reference transcriptome for GRCh38 genome,

required as input, was obtained from Ensembl database version 95.

Kallisto reports the abundance transcript level measured TPM.

The expression values of each transcript were used for several

analyses that will be further detailed in the following sections,

including: (1) Calculation of the abundance of the potential

neoantigens generated from the proteins affected by non-

synonymous variants in the tumor; (2) Differential expression and

enrichment analysis; (3) TME profiling; (4) Manual inspection of

immune-related genes expression.
Characterization of sarcomas
immunogenicity through neoantigen
prediction analysis

The immunogenicity of the mutated peptides derived from

tumor-specific alterations was assessed using NEC Immune

Profiler (NIP) modular neoantigen pipeline developed by NEC

OncoImmunity, comprising several proprietary T cell epitope

machine-learning (ML) prediction algorithms. Neoantigen

predictions for HLA-A and -B were conducted for each patient

with peptides of lengths 9 and 10. Due to the lack of HLA-C

validated data influencing the accuracy of the ML models, HLA-C

was not evaluated. The pipeline considers several features

determining the immunogenicity of a neoantigen, including:
1. The binding affinity of the peptide for the MHC/HLA

molecule. NIP exploits three distinct binding affinity ML

predictors that compute IC50 (nM) scores for each mutated

peptide. The lower the IC50 score, the stronger the binding

of the peptide to the specific HLA molecule.

2. The peptide’s ability to be efficiently digested by the antigen

processing machinery (APM). An ensemble of 13 Support

Vector Machines (SVM) included in NIP and trained on

validated mass spectrometry immunopeptidome datasets

determine which peptides have the optimal features to be

efficiently processed by the APM, which include cleavage

probability by the proteasome and antigen processing

transport (TAP) efficiency.

3. The expression level of the mutated peptide. The expression

of each neoantigen candidate was computed by summing

the expression values (TPMs) of all the isoforms coding for

the specific peptides under consideration, which is critical

for the accurate prediction of immunogenic neoantigens.

To determine the specific abundance of the mutated

peptide, the sum of the expression levels of all the
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isoforms containing the peptide was adjusted according to

the variant allele frequency (VAF) computed at RNA level.

4. The relative uniqueness of the candidate neoantigens

compared to the normal peptides of healthy tissue was

evaluated to avoid cross-reaction with self-antigen sequences.
The result is summarized in a single score ranging from 0 to 1,

known as the antigen presentation score (AP), which indicates the T

cell recognition probability, ranging from 0 to 1, with 1 signifying

the highest likelihood that the given neoantigen is immunogenic.

Neoantigen load (NAL) was computed by calculating the number of

neoantigens with an AP higher than 0.5. Neoantigen quality in this

study was defined as the mean AP score for the top ten neoantigen

candidates ranked by AP score.
Tumor microenvironment profiling

QuanTIseq (70) deconvolution algorithm was utilized to

analyze the immune cell composition of each sarcoma sample.

QuanTIseq has demonstrated a robust overall performance (71)

and is one of the very few methods generating an absolute score that

can be interpreted as a cell fraction, which allows both inter- and

intra-sample comparisons. It takes as input RNA-seq reads and

quantifies via deconvolution of cell fractions based on constrained

least squares regression the proportion of ten different immune cell

phenotypes, including B cells, M1 and M2 macrophages, CD8+,

CD4+ and regulatory T cells, natural killer cells (NK),

among others.

In addition to QuanTIseq, TcellExTRECT (72) R package was

applied to estimate infiltrated T cell fraction. The tool employs WES

data and makes use of a signal based on somatic copy number from

V(D)J recombination to directly quantify the proportion of T cells.

Further, the ESTIMATE algorithm was applied to calculate the

stromal and immune scores for each sarcoma sample using the

normalized gene expression values as input (73).
Selection of immune-related genes

We conducted an exhaustive literature research and compiled a

list of 282 genes known to be related with immune system

interaction and response (74–76). The full immune-related gene

list is provided in Supplementary Table 4.
Differential expression analysis and
enrichment analysis

In order to characterize the differentially expressed genes (DEG)

between week-8 and baseline samples, the DESeq2 (77) (v1.30.1) R

package was selected. “Tximport” (78) (1.18.0) R package was

utilized to import the transcript-level expression estimates
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generated by Kallisto and produce gene-level count matrices and

normalizing offsets, as required by DeSeq2 (77). DeSeq2 (77)

models the counts using normalization factors to account for

differences in the library depth, estimates the gene-wise

dispersions and uses shrinkage of effect size to remove the low

count genes. Then, it fits a negative binomial model and performs

Wald test hypothesis testing. DEGs were obtained by applying a

filter of p-value<0.05.

The results of the DE analysis were expanded by conducting an

enrichment analysis using an overrepresentation analysis (ORA) to

associate the expression data with specific biological processes (BP).

The R package called “goseq” (79) (1.42.0) conducted ORA of Gene

Ontology (GO) terms, which corrects the results based on gene

length bias of DEGs. DEGs were first separated into up and down-

regulated genes attending to their fold change (FC) (greater than 1

or smaller than -1, for up and down-regulated genes, respectively),

and then goseq (79) was used to detect overrepresented up and

down-regulated BPs.
Statistical analysis

The statistical analyses in this study were conducted using R

(4.0.3) and python (3.8) programming languages. The criteria for

the annotation of the different determinants of each patient to ICI

therapy, such as progression-free survival (PFS) and overall survival

(OS), has been previously described in (6). Survival curves were

plotted using the Kaplan–Meier (KM) functionality within

“lifelines” python library to compare PFS for a different set of

individual covariates (univariate analysis) and in conjunction

(multivariate analysis). Differences in median PFS were assessed

using the log-rank test and multivariate long-rank test.
Supervised optimal binning

Kaplan-Meier (KM) survival analysis entails splitting

individuals into two or more groups and comparing survival

times between individuals in the groups. For a numeric covariate,

a threshold is required to perform such a split; that is, we must select

a threshold to bin individuals into groups. Prior work (80) has

shown that for such binning problems, the only thresholds which

change group composition are the values that actually occur in the

dataset. For example, when splitting individuals into groups based

on TMB, the only TMB thresholds which change to which group

individuals are assigned are the actual TMB values of the

individuals. Thus, we determined an “optimal” threshold with

respect to KM analysis by evaluating the log-rank test p-value for

all possible binning of individuals in the dataset; we implemented

this by simply trying each observed value for the numeric covariate

of interest in the patient dataset. Only threshold cutoffs generating

bins with at least 10 individuals each were evaluated.
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