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Stimulator of Interferon Gene (STING) is a critical signaling linker protein that

plays a crucial role in the intrinsic immune response, particularly in the

cytoplasmic DNA-mediated immune response in both pathogens and hosts. It

is also involved in various signaling processes in vivo. Themusculoskeletal system

provides humans with morphology, support, stability, and movement. However,

its aging can result in various diseases and negatively impact people’s lives. While

many studies have reported that cellular aging is a leading cause of

musculoskeletal disorders, it also offers insight into potential treatments. Under

pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and

muscle fibers exhibit persistent senescence-associated secretory phenotype

(SASP), metabolic disturbances, and cell cycle arrest, which are closely linked

to abnormal STING activation. The accumulation of cytoplasmic DNA due to

chromatin escape from the nucleus following DNA damage or telomere

shortening activates the cGAS-STING signaling pathway. Moreover, STING

activation is also linked to mitochondrial dysfunction, epigenetic modifications,

and impaired cytoplasmic DNA degradation. STING activation upregulates SASP

and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING

may be involved in the onset and development of various age-related

musculoskeletal disorders and represents a potential therapeutic target. In

recent years, many STING modulators have been developed and used in the

study of musculoskeletal disorders. Therefore, this paper summarizes the effects

of STING signaling on the musculoskeletal system at the molecular level and

current understanding of the mechanisms of endogenous active ligand

production and accumulation. We also discuss the relationship between some

age-related musculoskeletal disorders and STING, as well as the current status of

STING modulator development.
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1 Introduction

The musculoskeletal system serves as the physical foundation

for human morphology, stability, movement, and organ protection.

With aging, the musculoskeletal system experiences a decline in

muscle strength and size, decreased bone volume and quality,

reduced cartilage thickness, and impaired intervertebral disc

structural integrity. These alterations can lead to numerous

physiological changes and disorders, including osteoporosis,

muscle loss, increased fracture risk, osteoarthritis (OA), and

intervertebral disc degeneration.

At the tissue level, aging of the musculoskeletal system is

characterized by the development of chronic inflammation,

known as inflammaging, which is linked to numerous age-related

diseases. At the cellular level, the aging process involves the aging of

related cells, the accumulation of senescent cells, the buildup of

inflammatory factors, and metabolic imbalances. Cellular aging,

represented by irreversible cell cycle arrest, can be classified into

replicative senescence triggered by telomere shortening after a

certain number of cell divisions (Hayflick limit) and premature

senescence caused by various stressors (e.g., radiation, oxidative

stress, activation of oncogenes) before reaching the Hayflick limit,

also known as accelerated aging (1, 2). Telomere shortening and

stress-related DNA damage not only trigger cellular aging but also

lead to cytoplasmic DNA accumulation and activation of cGAS-

STING signaling. The two direct functions of STING signaling,

namely interferon-inducing and autophagy activities, are related to

the inflammatory response and metabolic stability of aging cells.

Activation of STING plays a crucial role in defending against

pathogen invasion and promoting anti-tumor immunity. For

instance, STING activation can induce cellular senescence,

promote dendritic cell maturation, and other mechanisms to

exhibit anti-tumor effects (3, 4). Studies using STING agonists

alone or in combination with other drugs have shown promising

results, such as the use of STING agonist DMXAA in combination

with chemotherapy drug SN38, which demonstrated strong anti-

tumor effects in melanoma and colon cancer (5–7). However,

prolonged or chronic inflammatory signals are key factors in the

development of autoimmune diseases. Improper activation of

STING, whether directly or indirectly, may lead to excessive

inflammation and autoimmune diseases such as systemic lupus

erythematosus and Acardi-Goutières Syndrome (8–11). Research

has also found that the cGAS-STING pathway in innate immunity

contributes to Alzheimer’s disease (12, 13). In recent years, blocking

the STING signal has emerged as a potential therapeutic target for

various musculoskeletal diseases. Achieving this goal necessitates

comprehending the sources and mechanisms of early signals, such

as cytoplasmic DNA, and advancing the development of STING-

targeting drugs. This article reviews the impact of cGAS-STING

signaling on the musculoskeletal system, the generation and

accumulation mechanisms of endogenous ligands, the

relationship between certain age-related musculoskeletal diseases

and STING, and the current status of STING-targeting

drug development.
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2 Molecular mechanisms of cGAS-
STING-mediated inflammation,
metabolic disorder, and aging in the
musculoskeletal system

STING is a transmembrane protein located in the endoplasmic

reticulum (ER) that mediates the cytoplasmic DNA-induced cGAS-

STING signaling pathway. This pathway involves the DNA sensor

cGAS, the second messenger cGAMP, the adaptor protein STING, the

kinases TANK Binding Kinase 1 (TBK-1) and IkB kinase (IKK), and

downstreammembers. STING plays a central role in this pathway, and

when it binds with cGAMP produced by cGAS, it drives two biological

processes: Firstly, STING translocates to the Golgi apparatus for further

processing and activation. During this process, the ER-Golgi

intermediate compartment (ERGIC) carrying STING serves as the

membrane source of autophagosomes, which may represent the more

primitive function of STING in evolution (14). Secondly, activated

STING binds and activates downstream kinases, initiating a cascade

reaction that leads to the activation and nuclear translocation of

transcription factors, such as NF-kB and IRF3. This upregulates the

expression of genes such as type I interferons (IFNs) and inflammatory

factors, which are directly upregulated by the cGAS-STING pathway.

These factors upregulated by the cGAS-STING pathway can further

cause multi-omics changes through autocrine and paracrine

mechanisms, particularly the induction of the SASP related to aging.

Furthermore, downstream members of STING can promote cyclin-

dependent kinases (CDKs) inhibitor expression by regulating the

expression or activity of certain transcription factors, thereby

promoting cell cycle arrest (15–18). This section focuses on the

molecular mechanisms of cGAS-STING-mediated inflammation,

metabolic disorder, and aging in the musculoskeletal system (Figure 1).
2.1 STING and SASP in the musculoskeletal
system

SASP has distinct effects depending on its duration. Under

normal physiological conditions, short-term SASP recruits immune

cells to clear senescent cells, leading to local immune responses that

promote tissue repair and embryonic development (such as apical

ectodermal ridge and neuronal development) (19, 20). However,

during the aging process, a decline in immune function impairs the

clearance of senescent cells that produce SASP, leading to the

accumulation of senescent cells in tissues and sustained SASP

factor production. This results in chronic inflammation and age-

related diseases (21, 22), which are common in musculoskeletal

aging and exist in almost all musculoskeletal diseases discussed in

this article. Targeting the removal of senescent cells in the

musculoskeletal system to block the production of SASP can

alleviate the progression of these diseases.

The composition of SASP is complex and dynamic, including

hundreds of protein and non-protein signaling molecules such as

pro-inflammatory and immune-regulatory factors, chemokines,
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proteases, extracellular matrix (ECM), neurotrophins, DAMPs, etc.

The specific composition varies spatiotemporally, depending on cell

types and the triggering mode of aging (23), and also changes over

time (24, 25). Some components are commonly present in different

aging inducers and cell types (23), such as growth differentiation

factor 15, stanniocalcin 1, and serine protease inhibitors, which are

also aging biomarkers in human plasma and core SASP factors.

There are also unique SASP factors in different tissues that play a

key role in driving the progression of corresponding diseases, such

as matrix metalloproteinases (MMPs) causing cartilage damage

in OA.

Although the current understanding of SASP is incomplete, we

know that SASP is associated with the DNA damage response

(DDR) and involves various known or unknown biological

processes. The cGAS-STING pathway is considered a key

regulatory factor that induces SASP (26–28). For example,

promoting the ubiquitination and degradation of STING can

prevent the expression of SASP factors in aging joint cartilage

(29). In the population, carriers of the STING R293Q allele may be

less susceptible to aging-related diseases due to reduced

inflammation (30).

The two main transcription factors activated through the

STING pathway are IRF3 and NF-kB. As mentioned above,

activation of STING leads to the activation of several kinases,

such as TBK-1 and IKK. In the STING pathway that does not

rely on cGAS-mediated activation of nuclear DNA damage, TRAF6

accumulates on STING, catalyzes the K63 polyubiquitination, and

recruits TAB2/3 and TAK1, leading to the activation of the IKK

complex (31, 32). Subsequently, the human NF-kB inhibitory

protein a, phosphorylated by IKK, dissociates from the NF-kB
dimer, allowing for NF-kB activation and translocation to the cell
Frontiers in Immunology 03
nucleus, which activates the transcription of pro-inflammatory

cytokine genes, such as IL-6 and tumor necrosis factor (TNF).

Moreover, STING-related epigenetic regulation can act

independently on the SASP, separate from its role in cell

senescence. For example, in oncogene-induced senescence (OIS)

cells, the H3K79 methyltransferase DOT1L is upregulated. DOT1L

is downstream of STING and can cause H3K79me2/3 modification

of the IL1A locus, which is an active histone mark that promotes

IL1A expression. IL1A is a key upstream regulatory factor for other

SASP-related genes (33).

This epigenetic regulation leads to the upregulation of SASP

factors but does not induce cell senescence. Likewise, dual

inhibition of H3K9me2 and H3K27me3 promotes tumor cell

senescence. However, it is noteworthy that inhibiting these two

methylations also reduces the production of cytoplasmic chromatin

fragments (CCF), preventing the activation of cGAS-STING

signaling and, therefore, avoiding SASP production (34).
2.2 STING and autophagy in the
musculoskeletal system

In animals, autophagy is the process of delivering cellular

material to lysosomes via autophagic pathways for further

degradation. There are three main types: macroautophagy,

microautophagy, and chaperone-mediated autophagy. In

macroautophagy, a vesicle called an autophagosome first forms in

the cytoplasm, sequestering a small portion of the cytoplasm

containing soluble materials and organelles. The autophagosome

then fuses with a lysosome to form an autolysosome, where the

contents are degraded. In microautophagy, the lysosomal
FIGURE 1

Molecular Mechanisms of cGAS-STING in Inflammaging. After binding with cytoplasmic dsDNA, cGAS catalyzes the synthesis of cGAMP, which is an
active ligand of STING. Activation of STING results in the upregulation of autophagy and the expression of inflammatory factors, which in turn leads
to SASP. Furthermore, the cGAS-STING pathway indirectly promotes cell cycle arrest.
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membrane directly invaginates to engulf small cytoplasmic

components. In chaperone-mediated autophagy, substrate

proteins are translocated across the lysosomal membrane with the

help of chaperone proteins. Unless otherwise specified, in this

article, autophagy refers to macroautophagy. Autophagy is a

critical component of cellular metabolism, degrading foreign

substances (xenophagy) and aged or damaged components into

“building blocks” that can be reused in two ways: material turnover,

such as protein synthesis, and stable energy production, such as

providing metabolites for the TCA cycle and assisting in

mitochondrial quality control (35, 36).

Basic-level autophagy is crucial for maintaining muscle and

bone homeostasis, helping osteoblasts, osteoclasts, and

chondrocytes respond to stress and nutrient deprivation (37). The

intensity of autophagy needs to be within an appropriate range to

maintain individual health, as both impaired and excessive

autophagy can lead to diseases, aging, and shortened lifespan (38,

39). For example, impaired autophagy leads to typical aging

phenotypes in muscles (40–42), while impaired or excessive

autophagy both result in muscle atrophy and degeneration (43, 44).

The molecular coordination of the autophagy process involves

five key stages (45) (1): the formation of a phagophore, also known

as nucleation, is inhibited by mTOR. Factors such as hypoxia, low

energy, and DNA damage can lead to a reduction in mTOR activity,

inducing autophagy (2). Formation of the Atg5-Atg12-Atg16L

complex, located on the outside of the phagophore membrane,

recruits light chain 3 (LC3) for processing and maturation in the

next stage (3). Microtubule-associated protein LC3 is processed into

a lipidated form (LC3 lipidation) and inserted into the extending

phagophore membrane, leading to the maturation of the

autophagosome (4). The autophagosome captures the material to

be degraded, which can be either random or selective (5). The

autophagosome fuses with the lysosome membrane, forming an

autolysosome, where a series of hydrolytic enzymes within the

lumen degrade the contents.

STING plays a key role in regulating autophagy at various levels.

Firstly, it facilitates autophagosome formation via non-canonical

autophagy, whereby the LC3 protein is lipidated with

phosphatidylethanolamine (PE) through a ubiquitin-like

modification system involving Atg7 and Atg3. This results in the

conversion of soluble LC3-I to the membrane-bound LC3-II form,

which mediates phagophore elongation, autophagosome sealing,

and selective uptake of substrates via p62 (46, 47). During this

process, STING is activated and buds from the ER to the Golgi,

where it serves as the membrane source for LC3 lipidation. The LIR

motif of STING interacts directly with LC3 to mediate autophagy,

bypassing upstream regulatory factors such as Atg9a and Beclin-1,

but depending on downstream factors Atg5 and Atg16L (48, 49).

Secondly, STING induces autophagy through ER-Stress and the

unfolded protein response (UPR) via its UPR motif. This triggers

negative regulation of the AKT-mTOR pathway, leading to

autophagosome formation. Additionally, STING interacts with

the ER calcium sensor STIM1 to maintain calcium homeostasis

(50, 51).

Finally, STING regulates autophagosome maturation via TBK1,

which is responsible for autophagosome degradation. TBK-1
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phosphorylates and modifies p62, increasing its affinity for

ubiquitin chains (52). It also forms the NDP52-ULK-TBK1

complex, which drives xenophagy and is essential for

autophagosome growth. Furthermore, TBK1 regulates

microtubule dynamics and the cytoplasmic level of motor

proteins, facilitating the transport of autophagosomes to the

lysosomal-rich area (53). Autophagy also helps clear cytoplasmic

DNA and mediates the signal attenuation of STING by degrading it.

In the absence of TBK-1, autophagosome maturation is inhibited,

and STING is not degraded by autophagy (52).
2.3 STING and cell cycle arrest in the
musculoskeletal system

The progression of the cell cycle is dependent on Cyclins and

Cyclin-dependent kinases (CDKs). Cyclins fluctuate periodically

within the cell and combine with CDKs to form a complex. This

complex binds to the promoter of the transcription factor SBF gene

and promotes SBF transcription through RNA polymerase II

phosphorylation. This, in turn, promotes the transcription of

genes necessary for entering the next phase of the cell cycle (54).

Irreversible and permanent cell cycle arrest is a critical feature of

cellular senescence in cells with proliferative potential. This

phenomenon damages the stemness of stem cells, such as muscle

stem cells (MuSCs) and mesenchymal stem cells, resulting in

impaired regenerative capacity of tissues such as muscle and

cartilage (55–58). DNA damage is the core factor responsible for

cell cycle arrest, which, under the regulation of the genome quality

control system in long-lived mammals, is effectively repaired and

has lower levels of inflammation (59). Specifically, DNA damage or

telomere shortening to a certain extent exposes telomere DNA,

which triggers the DDR pathway (60). In the DDR pathway, the

expression of the CDK inhibitors p16 and p21 is upregulated,

leading to cell cycle arrest (61, 62).

This mechanism can prevent aging cells from passing on

damaged genomes. However, unrestricted DNA homologous

recombination can cause chromosomal rearrangements and

chromosomal end-to-end fusion, allowing cells to bypass

replicative senescence caused by telomere shortening and

potentially develop into cancer cells. The cGAS-STING pathway

functions more like a safeguard, promoting cells to follow the

correct fate.

cGAS is distributed in both the cell nucleus and cytoplasm. The

amount and activity of nuclear cGAS are restricted, and it does not

function as a DNA sensor upstream of the STING pathway. Instead,

it occupies unprotected telomeres and subtelomeres through

protein-protein interactions and recruits CDK1 to DNA damage

sites, inhibiting chromosomal end-to-end fusion by suppressing

DDR signals in mitosis, thus promoting replicative senescence

(63–65).

Once nuclear cGAS fails to prevent chromosomal end-to-end

fusion, abnormal chromosomes will activate cytoplasmic cGAS-

STING, promoting cellular senescence. DNA damage induces cell

cycle arrest and also activates the cGAS-STING signaling pathway.

STING can indirectly promote cell cycle arrest. STAT6 and p53 are
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transcription factors for the p21 gene (15). On one hand, STING-

TBK1 induces STAT6 phosphorylation, leading to STAT6 nuclear

translocation and activation of p21 transcription. On the other

hand, IFN-a/b induces upregulation of p53 (16, 17), and the NF-kB
subunit p65 also cooperates with p53 to mediate cell cycle

arrest (18).

3 Production and accumulation
of ligands that activate the
cGAS-STING pathway

In the cGAS-STING pathway, the initial signal is received by

cytoplasmic cGAS. It recognizes cytoplasmic double-stranded (ds)

or single-stranded (ss) DNA with a double-stranded secondary

structure and catalyzes the synthesis of the second messenger

cGAMP, which triggers cGAS-STING pathway activation.

Additionally, cGAS is also a potential RNA sensor that catalyzes

cGAMP synthesis (66).

Ligand nucleic acids can be either exogenous or endogenous

(67). In terms of viral infections, DNA viruses can directly activate
Frontiers in Immunology 05
cGAS, whereas RNA viruses can indirectly activate cGAS through

mitochondria (68), which is beyond the scope of this article.

Endogenous dsDNA can be further categorized into three types

(1): nuclear DNA (2), mitochondrial DNA (mtDNA), and (3)

retrotransposons. There are various mechanisms that lead to the

accumulation of cytoplasmic DNA, such as telomere shortening,

chromosomal damage, decreased nuclear membrane stability,

mitochondrial dysfunction, and cytoplasmic DNA degradation

obstacles. Although this article discusses them separately, it

should be noted that these mechanisms are not single biological

events during the aging process. They usually coexist and reinforce

each other. For instance, in a cellular aging model with telomere

shortening, the accumulation of dysfunctional mitochondria can

cause mtDNA release and activate cGAS-STING (69). Aging cells

with loss of nuclear membrane stability will undergo extensive

DNA damage due to the nuclear entry of TREX1 (70). Oxidative

stress can cause mitochondrial damage and nuclear DNA release,

and oxidative modification of DNA makes it difficult to be

effectively cleared by nucleases (71, 72). Furthermore, the STING

and downstream signals can also be activated independently of

cGAS (Figure 2).
FIGURE 2

Production of Ligands for the cGAS-STING Pathway. Damage to DNA or mitochondria, as well as disruptions in nuclear membrane stability, can
cause nuclear genes to escape into the cytoplasm. Changes in epigenetic modifications can un-suppress certain retrotransposons, leading to the
presence of cytoplasmic dsDNA. After mitochondrial damage, mtDNA may enter into the cytoplasm. The formation of phase-separated droplets can
hinder the ability of DNA enzymes to effectively hydrolyze dsDNA.
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3.1 Chromosomal DNA escaping from
the nucleus

Genotoxic stress resulting from chromosomal damage can lead

to the formation of micronuclei (MN). During the late stage of

mitosis, damaged chromosomes may fail to properly attach to the

spindle apparatus and separate correctly, resulting in their exclusion

from the daughter nuclei during cell division. Instead, these

chromosomes or chromosomal fragments exist in the cytoplasm

within the nuclear envelope (NE) as micronuclei. The NE of

micronuclei is very fragile, and after mitosis, more than half of

the micronuclei rupture and release cytosolic chromatin fragments

(CCF), which can activate the cytoplasmic cGAS.

This process is mainly driven by telomeric DNA damage.

Shortened telomeres and telomeric double-strand breaks can

cause end-to-end fusion of chromosomes, resulting in the

inability of sister chromatids to separate during mitosis (39, 69,

73). This leads to fragmentation of nuclear DNA, which is released

into the cytoplasm in the form of micronuclei that spontaneously

rupture and further activate cGAS-STING (74). Repair of telomeric

damage is unique compared to other parts of the genome since

TRF2 and POT1 inhibit telomeric non-homologous end joining

(NHEJ) to maintain genome stability and prevent end-to-end

fusion of chromosomes (75).

DNA damage in other parts of the genome can also potentially

induce micronuclei formation. Genotoxic stress can cause

widespread DNA damage, which is generally repaired in vascular

smooth muscle cells (VSMCs). However, telomeric DNA damage is

prioritized in mediating the production of micronuclei and

subsequent activation of cGAS-STING (75). This suggests that

telomeric damage may be the primary driver of micronuclei

formation in certain disease models where DNA repair capacity is

normal. However, when DNA repair capacity is compromised,

significant chromosomal DNA breaks and release into the

cytoplasm can occur even without external stress. For example, in

cells deficient in the androgen receptor (AR), DNA repair proteins

Ku70 and Ku80 are not anchored to RNA Pol II, leading to dsDNA

breaks, CCF leakage into the cytoplasm, and activation of STING

(76). This study did not examine the contribution of telomeres and

other parts of the genome to CCF release. Still, it is speculated that

CCF here primarily arises from general genomic DNA breaks since

RNA Pol II does not catalyze transcription of telomeres.

Besides micronuclei generated from chromosomal damage,

CCF is also directly related to the reduced stability of the nuclear

membrane in aging cells. Degradation of nuclear lamina protein B1

(Lamin B1) is recognized as a critical step in aging development.

During aging, Lamin B1 is continuously degraded, causing uneven

changes in the mechanical properties of the nuclear membrane,

leading to the formation of nuclear blebs and even transient rupture

under the influence of mechanical force and other factors (77). In

aging cells processed by radiation and autophagy-lysosome

pathways, CCF buds from the cell nucleus and is associated with

the downregulation of Lamin B1 and loss of nuclear membrane

integrity. Nuclear membrane damage can induce DNA damage and

promote premature aging. Studies have found that nuclear

membrane rupture can induce the relocation of the nucleotidyl
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transferase TREX1 to the cell nucleus, resulting in TREX1-

dependent DNA damage (70, 78).

Both nuclear membrane stability and chromatin stability are

essential for the proper functioning of a cell. For instance, in

ionizing radiation-induced premature aging of human fibroblasts,

not only a gradual loss of nuclear membrane stability was observed

but also extensive recombination of chromatin occurred. Radiation

stimulation affected various aging-related pathways, such as DNA

damage or telomere stress-induced aging, chromatin organization,

and senescence-associated heterochromatin foci (SAHF)

aggregation (78). Conversely, mitigating DNA damage and

preventing the degradation of nuclear lamina protein laminB1

downregulates cGAS-STING and downstream pathways

activation (79). B1 downregulation is a common characteristic

observed in aging, and it is considered one of the typical aging

markers. Moreover, overexpression of B1 has been reported to

induce cellular aging (80). In summary, the loss of nuclear

membrane stability and the consequent damage to its integrity

create a favorable environment for chromatin DNA release into the

cytoplasm, which can lead to nuclear DNA damage.

The nuclear export pathway, which depends on the nuclear pore

complex, may also contribute to the origin of cytoplasmic DNA.

CRM1 is a critical protein that mediates nuclear export, and studies

have reported that in aging cells treated with the CRM1 inhibitor

leptomycin B (LMB), there is a significant reduction in CCF.

Researchers suggest that the nuclear export pathway blocked by

LMB partially overlaps with the expulsion of nuclear DNA (81).
3.2 Retrotransposons and epigenetics

Changes in epigenetic modifications of DNA and histones can

activate the cGAS-STING pathway through retrotransposons. In

keratinocytes with low DNA methylation, LTR retrotransposons,

MLV retroviruses, and LV30 transposons are activated, leading to

mitotic defects, micronuclei formation, cGAS-STING activation,

and inflammation (82).

Proteins that maintain heterochromatin can also regulate

cGAS-STING by controlling the activation of long interspersed

nuclear element-1 (LINE-1), a retrotransposon that is often silenced

in young cells. Once LINE-1 is derepressed, the resulting DNA can

appear in the cytoplasm and activate cGAS-STING, thereby

promoting cellular aging (83). For example, the transcription-

translation feedback loop (TTFL) drives the oscillation of

circadian genes, where BMAL1 acts as a transcription factor to

initiate TTFL and interacts with heterochromatin-associated

proteins and NE components. In the absence of BMAL1, the

circadian rhythm is disrupted, and LINE-1 is no longer

suppressed, leading to accelerated cellular aging through cGAS-

STING activation (84).

Similarly, the histone deacetylase SIRT7 forms a complex with

nuclear lamina proteins and components of heterochromatin to

maintain heterochromatin structure. Its expression is

downregulated during the aging process in various cell types,

leading to transcription and retrotransposition of LINE-1. This

mechanism has been observed to mediate cGAS-STING pathway
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activation and the aging phenotype in human mesenchymal stem

cell (MSCs) (85, 86). SIRT6 also inhibits LINE-1, and its deficiency

can lead to cGAS-STING activation, increased ROS, susceptibility

to oxidative damage, accelerated cellular aging, and impaired

function (87, 88).

Clearance of LINE-1 RNA is also critical. RNase H2 is necessary

for effective LINE-1 retrotransposition, and its absence leads to

upregulation of interferon-stimulated genes (ISGs) dependent on

cGAS-STING and increased DNA damage. Researchers have

proposed a model in which RNase H2 degrades LINE-1 RNA

after retrotranscription to allow retrotransposition to complete

(89). If RNase H2 is missing, and retrotransposition cannot be

completed, the remaining DNA may activate cGAS-STING and

trigger an inflammatory response.
3.3 Mitochondrial dysfunction

Mitochondrial dysfunction can lead to the direct or indirect

activation of cGAS-STING. Damaged mitochondria release

mtDNA into the cytoplasm, which acts as one of the cGAS

ligands. The escape of mtDNA associated with cGAS-STING is

influenced by various factors.

Viral infections can exacerbate mitochondrial damage,

particularly in aged mice with shortened telomeres. These mice

are more susceptible to respiratory viruses such as Influenza A virus

(IAV) and SARS-CoV-2, which can cause excessive inflammation

and higher mortality rates. This is mainly due to the leakage of

mtDNA and the abnormal activation of cGAS-STING induced by

viral infection (69). Similarly, infection with the vaccine strain

PDK53 of dengue virus serotype 2 (DENV-2) drives cGAS

synthesis of cGAMP by releasing mtDNA (90). Mechanistically,

mtDNA is typically packaged into nucleoid structures, and the loss

of the mtDNA binding protein TFAM, which regulates nucleoid

structure, leads to moderate mitochondrial stress. Abnormal

mtDNA packaging promotes mtDNA escape into the cytoplasm,

thereby activating cGAS-STING.

Metabolic imbalances can also trigger mtDNA release and

activation of cGAS-STING-dependent type I IFN signaling

transduction. For instance, functional inhibition of FABP5, a

member of the fatty acid binding protein (FABP) family, in

regulatory T cells (Tregs) leads to impaired lipid metabolism,

which can trigger mtDNA release and cGAS-STING activation

(91). Furthermore, the loss of NAD+ in neurons with AMT (ataxia

telangiectasia-mutated) gene defects induces mtDNA release into

the cytoplasm, STING activation, inflammation, and aging.

Conversely, increasing NAD+ levels can prevent aging and

SASP (92).

Cytokine induction can also increase cytoplasmic mtDNA

levels. For instance, TNF can induce mitochondrial damage in

human myeloid THP-1 cells and increase cytoplasmic mtDNA

levels. After TNF treatment, cytoplasmic mtDNA binds to cGAS,

and the absence of cGAS reduces interferon response, inflammatory

cell infiltration, and joint swelling in the absence of an arthritis

model mouse (93).
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Changes in mitochondrial membrane permeability may be a

key factor in allowing mtDNA escape. For example, bacterial

endotoxin lipopolysaccharide (LPS) can activate the pore-forming

protein Gasdermin D in endothelial cells, leading to the formation

of mitochondrial pores and mtDNA escape (94). Similarly, an

increase in mitochondrial ROS can cause Gasdermin D to bind to

the mitochondrial membrane and form mitochondrial pores,

thereby releasing mtROS (95). In healthy U2OS cells, mtDNA is

located in the mitochondrial matrix. During apoptosis, BAX/BAK-

mediated mitochondrial outer membrane pores enlarge, allowing

the inner membrane to be squeezed out through the outer

membrane pore. Once the inner membrane enters the cytoplasm,

it can penetrate and release mtDNA (96).

Mitochondrial damage can also indirectly activate cGAS-

STING through CCF, an intermediate step in the collapse of

cellular homeostasis during the response to exogenous stress. The

pathway involves stress stimulation ! nuclear gene imbalance !
mitochondrial dysfunction ! nuclear gene damage ! CCF

formation. Specifically, under ionizing radiation or oxidative

stress, nuclear-encoded oxidative phosphorylation genes are

down-regulated, leading to mitochondrial dysfunction.

Dysfunctioning mitochondria induce the production of ROS and

further trigger the ROS-JNK signaling pathway, which drives CCF

formation, inflammation, and tissue damage. The specific

mechanism by which JNK induces CCF formation is currently

unclear, but researchers have suggested that it may be related to

53BP1, which is a regulator of DNA double-strand break repair and

inhibits CCF formation while directly binding to JNK (71).
3.4 Impaired cytoplasmic DNA degradation

Impaired degradation of cytoplasmic DNA is also a

contributing factor in cGAS-STING activation. As previously

mentioned, the accumulation of cytoplasmic DNA can be

observed in various models of inflammation, aging, or tumor cells

activated by cGAS-STING. Cytoplasmic dsDNA is currently

recognized as a signal that activates the cGAS-STING signaling

pathway. However, in normal physiological states, two DNA

enzymes, DNase2 and TREX1, can target and remove nuclear

DNA in the cytoplasm to avoid abnormal activation of cGAS-

STING (97, 98).

TREX1 is a nuclear-exonuclease anchored to the ER and

distributed near the nuclear border. It is induced by genotoxic

stress to ensure rapid degradation and release of nuclear DNA

before cGAS activation, protecting cells from inappropriate

autoimmune reactions (99, 100). Although TREX1 alone is not

sufficient to clear all cytoplasmic DNA, it may preferentially bind

and degrade nucleosome-free DNA that is most likely to activate

cGAS (101, 102). Following micronuclei formation, the ER invades

and ruptures the micronucleus, and TREX1 subsequently localizes

to the micronucleus and degrades it (98). Some studies have shown

that nucleosome-bound DNA is not a suitable substrate for TREX1,

and other enzymes may be required for TREX1 to degrade

micronucleus DNA (72, 100, 101, 103).
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TREX1 can play a protective role in the genomic stress response

by preventing the activation of cGAS. However, there is still

controversy over whether it is a DNA repair gene or not (104,

105). As mentioned in section 2.1, DNA damage caused by nuclear

membrane integrity damage even depends on the nuclear

translocation of TREX1 (70). Under normal physiological

conditions, a series of aging-related molecules, including TREX1,

are intricately regulated and responsible for protecting against

inflammatory damage. However, in a pathological state and in an

unstable intracellular environment, these molecules may exacerbate

the situation.

DNase2 is a nuclear endonuclease located in the lumen of the

lysosome. MN DNA or nuclear export-mediated nuclear DNA

escape will be engulfed and cleared by the lysosome, and then

hydrolyzed by DNase2 (101, 106). In cell models of stress induction

and replicative senescence, decreased activation levels and

downregulation of DNase2 expression, weakened ability of

autophagic lysosomes to engulf CCF, and cGAS-STING activation

have been observed (81, 107).

Overall, the functions of these two DNA enzymes complement

each other, and there may be other enzymes or protein factors that

help them degrade cytoplasmic DNA. Once the imbalance of

nucleases occurs, accumulation of cytoplasmic DNA and

activation of cGAS-STING can be observed.

How do nucleases stop working and cause improper activation

of cGAS-STING? There are a few ways this can happen. First,

substrate insensitivity can occur; for example, DNA may be

modified by oxidation to resist degradation by TREX1 (72).

Second, decreased amount and/or activity of enzymes can occur

due to mutations that impair the activity of DNase2 or TREX1

(108–111), downregulation of DNase2 and TREX1 expression in

aging cells (97), downregulation of TREX1 expression mediated by

microRNAs (112), or epigenetic silencing of TREX1 mediated by

DNA methylation (113). Third, enzymes cannot reach their

substrates: non-specific cGAS-DNA, cGAS-cGAS interaction that

drives the formation of cGAS-DNA phase-separated droplets,

which can prevent TREX1 from degrading DNA in these droplets

(114, 115).
3.5 STING activation independent of cGAS

The cGAS-STING signaling pathway has been extensively

studied, with STING acting as the adaptor protein activated by

binding to cGAMP from cGAS, which is the most typical scenario.

However, there is also evidence that in certain situations, STING

can be activated independently of cGAS. This is mainly because

STING can directly bind to exogenous ligands, and cGAS is not the

only upstream factor for STING. Furthermore, many of these

mechanisms are not yet fully understood.

Other cell-derived cGAMP and microbial-derived CDS can

serve as direct ligands for STING, as observed in various studies

(116–118). Enveloped RNA viruses can activate STING and

downstream signaling during membrane fusion, independent of

cGAS (119). In response to BV infection, the production of IFN-l1
has been observed to be dependent on STING but independent of
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cGAS (120). Ku70, a DNA sensor, translocates from the nucleus to

the cytoplasm and forms a complex with STING to stimulate the

production of IFN-l1 after DNA transfection or DNA virus

infection (121, 122). While IFN-l1 belongs to the type III IFN,

and there is no report demonstrating that Ku70 can induce the

production of type I IFN (123), the induction of IFN-ab by DNA

vaccines is also dependent on STING but independent of cGAS

(124). This suggests that there may be other DNA sensors that can

activate STING in the absence of cGAS in the STING-dependent

type I IFN response. Furthermore, after genomic DNA damage,

DNA binding protein IFI16, DDR factor ATM, and PARP-1

mediate STING activation independent of cGAS (125). Therefore,

we can infer that STING acts as a hub in the signal network for

DNA sensing.
4 STING and age-related diseases in
the musculoskeletal system

The STING pathway can be activated by cytoplasmic dsDNA

resulting from DNA damage, leading to metabolic imbalance,

inflammation, and ultimately promoting cell cycle arrest and

inflammatory senescence. In the context of specific musculoskeletal

diseases, STING is involved in maintaining the metabolic

homeostasis of various cell types, with its activity exhibiting both

commonalities and heterogeneities across different diseases at both

the cellular and molecular levels. Briefly, the STING pathway has a

complex impact on the generation and function of osteoclasts and

osteoblasts, thus playing a role in the progression of osteoporosis and

OA. STING activation also accelerates the degradation of ECM inOA

and intervertebral disc degeneration by promoting the catabolism

and senescence of chondrocytes and nucleus pulposus cells.While the

mechanism of STING in muscle wasting syndrome is yet to be

elucidated, it is closely related to the maintenance of muscle

homeostasis. Overall, the precise role of STING in the

musculoskeletal system warrants further investigation, and fine-

tuning of regulatory pathways may represent a promising strategy

for managing these diseases (Figure 3).
4.1 Osteoporosis

Osteoporosis is a condition characterized by a decrease in bone

mass and an increase in bone fragility, which significantly increases the

risk of fractures. Bones are composed of approximately 30% inorganic

ions, 70% collagen and non-collagenous proteins, and minerals such as

calcium, phosphorus, magnesium, sodium, and bicarbonate are

maintained in balance by various cells. The formation of

osteoporosis is related to osteoblasts (OBs), which form bone, and

osteoclasts (OCs), which absorb bone. An imbalance between bone

formation by OBs and bone resorption by OCs and changes in the

quantity and function of bone marrow stromal cells (BMSCs), which

are the precursor cells of OBs, can lead to osteoporosis.

The conditioned medium of senescent cells not only increases

the formation of OCs but also impairs OB mineralization (126).

BMSCs aging leads to a decrease in the number of OBs and reduces
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their potential for osteogenic differentiation relative to adipocytes,

which results in a decrease in bone formation (127–131). Other cells

in the bone environment also indirectly regulate bone mass through

OBs and/or OCs activity. For example, megakaryocytes (MKs) can

stimulate OBs proliferation, but their ability to regulate OBs

function decreases with age, which may be one of the reasons for

age-related bone loss (32).

STING regulates bone homeostasis in a bidirectional manner.

Downstream factors of STING, such as IL1, IL6, and TNF-a (NF-

kB pathway), induce the differentiation of OC progenitors, while

other factors such as IFN-b (IRF3 pathway) downregulate the

differentiation of OC progenitors (132). STING activation in

humans and mice leads to significant IRF3/IFN-b signal

transduction and relatively weak NF-kB activation (133, 134). At

the same time, the activation of the NF-kB pathway, which is

activated simultaneously, has a negative impact on the treatment of

osteoporosis. The drug RTA-408 can inhibit STING-dependent

NF-kB signaling and suppress mouse OC generation without

affecting STING/IFN-b (135).

OBs are similar and regulated by cytokine networks such as IL-

10 and IFN-g, which promote osteoblastogenesis, while TNF-a,
IFN-a, and IFN-b inhibit osteoblastogenesis (136). Although there

is no research explaining the role of STING in OBs, it can be

speculated that STING may be a potential target for regulating OBs

differentiation. Downstream factors of STING, such as TNF-a,
IFN-a, and IFN-b , are osteoinhibitory factors, but the
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relationship between STING and osteopromotive factors is much

more ambiguous (137–139).

Autophagy plays a crucial role in regulating bone homeostasis. In

OBs, autophagy suppresses oxidative stress-induced cell death and

activates protective autophagy under low pH conditions (140, 141).

Additionally, autophagy is involved in OBs mineralization and bone

homeostasis regulation (142). In OCs, autophagy regulates

differentiation and migration (143). However, the role of STING-

mediated autophagy activity in these processes remains unclear.

In conclusion, the role of STING in osteoporosis is complex, as

it is involved in maintaining a state of equilibrium among various

factors. Precise regulation of signaling pathways may be key to

treating such diseases.
4.2 Intervertebral disc degeneration

Intervertebral Disc Degeneration (IVDD) is a condition that

affects the intervertebral discs (IVD) located between two adjacent

vertebral bodies. These discs consist of nucleus pulposus (NP),

annulus fibrosus (AF), and vertebral endplate (144). NP is a gel-like

tissue that is highly hydrated and mainly consists of collagen,

proteoglycans, and hyaluronic acid. The AF surrounds the NP

and is connected to the upper and lower endplates to prevent NP

overflow. When the spine moves, the nucleus pulposus deforms,

which can absorb shock and buffer pressure.
FIGURE 3

Diseases related to musculoskeletal aging and STING. Created with BioRender.com.
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IVDD can cause lower back pain, lumbar disease, and cervical

disease. During the development of the disease, the ECM is

degraded, the structure of the annulus fibrosus is damaged, and

the cartilage endplate ossifies. Ultimately, IVDD can lead to

protrusion of the intervertebral disc and a significant loss of

height (145). The molecular mechanisms of IVDD are mainly

related to NP cell aging, inflammation, and ECM degradation,

which are induced by DNA damage (146–149).

STING may play an important role in IVDD and exhibits a dual

role similar to regulating OCs. There is evidence supporting that

STING activation promotes the progression of IVDD, while

inhibiting STING can alleviate IVDD changes. For example, in

degenerated NP tissue, ROS induces upregulation of STING

expression in NP cells (144). Overexpression of TNF-a and STING

both induce NP aging, apoptosis, and ECM degradation, while

inhibiting NP cell aging and STING-TBK1/NF-kB and IRF3

signaling activation can suppress ECM degradation and improve the

progression of IVDD (150, 151). There is crosstalk between the NF-kB
pathway and autophagy, and inhibition of NF-kB not only has anti-

inflammatory effects but also upregulates autophagy (152).

Upregulation of autophagy also inhibits NF-kB, thereby suppressing

IL-1b-induced NP cell apoptosis (153).

Of the two direct functions of STING, it is clear that the

inflammatory activity of STING needs to be suppressed in the

treatment of IVDD, while the upregulation of autophagy can

improve IVDD. Exercise, certain endogenous hormones, or drugs

can activate autophagy to protect NP cells from aging and apoptosis,

and inhibit ECM degradation (154, 155). As described in the first

section of this article, autophagy mediates STING signal attenuation.

Studies have found that metformin can deactivate cGAS-STING

signaling through autophagy and also inhibit NP cell aging (156).

However, excessive autophagy is also a detrimental factor in IVDD and

needs to be suppressed to provide protective effects (157, 158).

Currently, research on IVDD rarely considers the effect of STING’s

autophagy activity, but the two do not conflict in treatment because

their interferon-inducing activity and autophagy activity can be

partially uncoupled, and autophagosomes are not influenced by

downstream factors. Therefore, in STING-targeted therapy,

autophagy factors also need to be considered. This suggests that even

for drugs and methods targeting the same disease and the same target,

individual differences in patients need to be considered in precision

medicine, otherwise it is highly likely that drugs and methods that have

significant therapeutic effects in certain populations will worsen the

condition in other similar populations.

It is important to note that the role of STING in IVDD is not well-

established and continues to be a topic of debate. A study has suggested

that the cGAS-STING signal does not contribute to the aging and

degeneration of intervertebral disc cells during systemic inflammation,

and no significant alterations were observed in IVD of mice with

functional mutations or deletions of STING (159). This study implies

that systemic inflammation may not be a critical factor in the

development of IVDD.
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4.3 Osteoarthritis

Articular cartilage comprises chondrocytes and ECM, which

play a crucial role in reducing friction between bones, aided by

synovial fluid. The collagen fiber network and proteoglycans can

absorb pressure and vibration. OA is a degenerative joint disease

characterized by joint pain and limited joint movement.

In a steady state, articular chondrocytes usually remain in a

quiescent state (reversible cell cycle arrest) with low levels of

proliferation (160). However, in the early stages of OA,

chondrocytes proliferate in “clusters” to repair damaged cartilage

matrix. Nevertheless, such chondrocytes are more prone to cellular

senescence (161, 162). As the sole cells that generate and maintain

the cartilage matrix, chondrocyte and MSC cell cycle arrest directly

impede cartilage repair (55, 56). Moreover, the production of SASP

leads to OA-related pathological changes (163), such as

inflammation, cartilage matrix degradation, subchondral bone

remodeling, synovitis, and OA pain (164, 165). The senescence of

chondrocytes is the cause of OA, whether it is age-related OA or

post-traumatic OA, hindering the repair of damaged cartilage and

promoting various pathological changes (166–168).

There are multiple types of cells present in the synovium,

including synovial fibroblasts that secrete synovial fluid to

lubricate joints, while synovial macrophages secrete pro-

inflammatory and anti-inflammatory factors to regulate the

microenvironment stability. Aging synovial fibroblasts exhibit

impaired autophagy and upregulated SASP, whereas enhancing

their autophagic flux and inhibiting the generation of SASP

factors can improve surgical-induced OA model in mice with

damaged cartilage (169). It is currently unclear whether the SASP

of the synovium comes from synovial fibroblasts or macrophages.

Subchondral bone is the bone layer beneath the cartilage,

maintained by OBs and OCs to maintain bone remodeling

homeostasis in response to mechanical load. Pathological changes

in subchondral bone are one of the key factors in OA, even

occurring earlier than cartilage damage and osteophyte formation

(170). In this process, OCs generation increases, bone resorption is

enhanced, causing chondrocyte hypertrophy, differentiation, and

MMP synthesis, and bone and marrow-like cells undergo

senescence and secrete SASP, which is associated with bone

loss (171).

Similarly to osteoporosis, OCs and OBs contribute to the

progression of OA by participating in the bone remodeling

process and osteophyte formation beneath the cartilage.

Currently, it is unclear how STING affects OC and OB in the

joint microenvironment of OA patients and the resulting effects.

However, the effects of STING on the metabolism and cell cycle of

other joint cells are relatively clear.

The leading cause of OA is DNA damage, which triggers the

overexpression and activation of STING in chondrocytes. This, in

turn, stimulates the expression of enzymes that degrade cartilage

matrix, such as MMP13 and ASAMTS4, through the NF-kB
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pathway. Additionally, STING activation inhibits the production of

components that make up the cartilage matrix, including aggrecan

and type II collagen, and induces cell aging and apoptosis (172).

Conversely, blocking the STING-dependent NF-kB pathway can

decrease inflammation, synovitis, cell aging, and cartilage

degradation in chondrocytes (173). Our research also supports

this finding, demonstrating that targeting the proteasome to

promote STING ubiquitination and degradation can improve age-

related and trauma-induced OA (29). A recent study demonstrated

that STING not only influences the pathological changes of cartilage

and subchondral bone in osteoarthritis (OA), but also functions as a

critical regulator of OA mechanical sensitivity. Inhibition of STING

can effectively alleviate OA-associated mechanical allodynia (174).

Despite ongoing efforts, identifying optimal strategies for

reversing joint disease progression remains challenging.

Nevertheless, inhibiting STING has demonstrated promise in

reducing inflammatory factors and preserving and repairing the

cartilage matrix in animal models of arthritis.
4.4 Sarcopenia

Skeletal muscle is composed of bundles of muscle fibers that

contract and relax to facilitate bodily movements in humans and

other vertebrates (175, 176). Sarcopenia, a common condition

among older adults, is characterized by a decline in muscle mass

and function, increasing the risk of falls, fractures, disability, and

death (177, 178). While senescent cells have not been identified in

adult skeletal muscle, tissue damage can activate MuSCs for

regeneration and generate senescent muscle cells (178–181).

Although research on the relationship between STING and

skeletal muscle is scarce, we hypothesize that STINGmay play a role

in maintaining muscle homeostasis. Firstly, according to the

Human Protein Atlas (www.proteinatlas.org), STING is present in

various muscle tissues. Secondly, factors that activate STING, such

as telomere shortening, mitochondrial damage, oxidative stress, and

DNA damage, also cause muscle wasting (182–184). Thirdly,

excessive autophagy or damage can reduce muscle mass and

function, and the correct turnover of substances is necessary to

maintain muscle homeostasis (179, 185). Additionally, muscle

energy homeostasis is maintained through the TCA cycle and

oxidative phosphorylation (186, 187). And the SASP, particularly

pro-inflammatory and pro-fibrotic factors, appears to play a crucial

role in muscle wasting (188, 189). Mechanistically, in aging muscle

cells, the upregulation of NF-kB, IRF3, and interferon pathways

creates an inflammatory microenvironment that induces senescent

cell accumulation and impairs MuSC proliferation. The pro-

inflammatory and pro-fibrotic SASP factors appear to have a

direct causal relationship with NF-kB (180).

However, it is not clear whether STING has an impact on

muscle strength and quality changes, and what kind of effects it has.

Further research is needed to confirm these questions.
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5 Agonists and Inhibitors of STING

STING plays a crucial role in the cGAS-STING immune signaling

pathway, which mediates the signaling of multiple DNA receptors and

is expressed on the surface of several cell types, including dendritic cells,

macrophages, and fibroblasts. STING is widely expressed in multiple

cell types of the tumor microenvironment, where it triggers the

balanced secretion of type I interferon and pro-inflammatory

cytokines. Its activation not only stimulates T cell proliferation to kill

tumor cells, but also enhances the release of tumor-associated antigens

(190). Additionally, STING-mediated signaling pathways are closely

associated with autoimmune diseases (8, 191), inflammatory diseases

(192), neurological diseases (193–195), and metabolic diseases

(196–198).

Therefore, targeting STING has emerged as a promising

approach for the development of novel therapies for various

diseases, including cancer and inflammatory diseases.

Biopharmaceutical companies such as Merck Sharp & Dohme

(MSD), Bristol-Myers Squibb (BMS), GlaxoSmithKline (GSK),

Bayer, Novartis, and many others are involved in drug

development targeting STING.
5.1 Agonists of STING

Several human STING agonists are being developed, including

cyclic nucleotides (CDN) and non-nucleotides. CDNs (199) are

natural agonists of STING, but their large molecular mass and high

polarity make it challenging for them to pass through cell

membranes. Moreover, their phosphodiester bond is easily

hydrolyzed by enzymes and is metabolically unstable, limiting

their biological activity and medical applications. To overcome

these limitations, chemical modification based on the natural

structure is an effective means of improving the medicinal

properties of CDNs, and CDN analogs are synthesized by

modifying the phosphate, ribose, and base sites of CDN. Non-

nucleotide agonists can avoid the deficiencies of CDNs and are

suitable for industrial production with low preservation costs.

However, some agonists have failed clinical trials because they

only bind and activate murine-derived STING (mouse STING,

mSTING) and do not bind human STING (hSTING) (200–202).

Additionally, over-activation of STING can lead to sustained cytokine

production, causing uncontrollable inflammation, cytokine storm,

tissue toxicity, autoimmunity, and an inflammatory tumor

microenvironment that promotes tumor growth (203). Therefore,

the dose of STING agonists needs to be accurately controlled to

maximize efficacy while minimizing immunotoxicity. The current

development of STING activator products in the clinical stage is

focused on five directions: CDNs small molecules, non-cyclic

dinucleotide small molecules, Antibody drug conjugate (ADC),

small molecules + vectors, and engineered bacteria. Table 1

displays the STING agonists currently in clinical development.
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5.2 Inhibitors of STING

While the STING signaling pathway is crucial for defending

against DNA pathogens, excessive activation can result in an

imbalance, leading to autoimmune and neurological diseases (191,

204–208). To address this, researchers have developed selective

small molecule inhibitors that target STING, such as C-176, C-178,

C-170, C-171, and H-151. These inhibitors covalently bind to Cys91

in STING proteins, preventing palmitoylation induced by STING

activation, blocking its assembly into multimeric complexes in the
Frontiers in Immunology 12
Golgi apparatus, and inhibiting downstream signaling pathway

transduction (209).

Additionally, the small molecule SN-011 and its derivatives

have also been found to inhibit the STING signaling pathway by

binding specifically to the pocket where STING proteins bind to

their endogenous ligand molecule 2’3’-cGAMP (210). More

recently, researchers have developed protein hydrolysis-targeted

chimeras (PROTACs) as a novel drug discovery strategy. Chen

et al. (211) reported the first STING-targeting PROTAC, which

degraded STING activity and had a good anti-inflammatory effect

in a cisplatin-induced acute kidney injury model in mice.

The development of STING inhibitors offers potential

therapeutic options for autoimmune and neurological diseases.

The commonly used STING inhibitors are listed in Table 2.
5.3 Inhibitors of STING in bone-related
degenerative diseases

In addition to their role in inflammatory and autoimmune

diseases, STING proteins have been implicated in the pathogenesis

of senescence-associated degenerative diseases (194). Aging is a

complex process characterized by chronic low-grade inflammation,

which drives aging-associated diseases. Bone degenerative diseases

often coexist with these aging-associated diseases. As aging

progresses, there is an increase in senescent cells in the bone

microenvironment, leading to increased production of

senescence-associated pro-inflammatory secretory proteins,

resulting in increased bone resorption and decreased bone

formation. Inhibition of the STING signaling pathway has

become a new target in the fight against musculoskeletal

disorders, as elimination of senescent cells or inhibition of the

production of pro-inflammatory secretory proteins delays the onset

or inhibits the severity of many chronic diseases. Recent studies

have found that a variety of inhibitors that directly or indirectly

target STING show promising results in the treatment of bone-

related degenerative diseases.

5.3.1 STING inhibitors promote angiogenesis and
accelerate bone healing

H-151 (209) is a highly selective small molecule inhibitor that

covalently binds to Cys91 in STING proteins, blocking

palmitoylation induced by STING activation, which in turn

blocks its assembly into multimeric complexes in the Golgi
TABLE 1 STING agonists in the development process.

Drug
Name Category Therapy

Area Status

ADU-S100 CDN Cancer
Phase II

(Termination)

MK-1454 CDN Cancer
Phase II

(Termination)

GB492 CDN Cancer Phase I/II

BMS-986301 CDN Cancer Phase I

E7766 CDN Cancer Phase I

SB11285 CDN
Cancer;
Infection

Phase I

GSK3745417 Non-CDN
Cancer;
Infection

Phase I

TAK-676 Non-CDN Cancer Phase I

SNX281 Non-CDN Cancer Phase I

HG381 Non-CDN Cancer IND

CRD-100 Non-CDN Cancer Pre-clinical

CRD5500 Non-CDN Cancer Pre-clinical

TTI-10001 Non-CDN Cancer Pre-clinical

AN3005 Non-CDN Cancer Pre-clinical

HH18202 Non-CDN Cancer Pre-clinical

XMT-2056 ADC Cancer Phase I

TAK-500 ADC Cancer Phase I

exoSTING CDN+exosome Cancer Phase I/II

SYNB1891
Engineered
Bacteria

Cancer Phase I
TABLE 2 STING inhibitors in the development process.

Drug Name Category Mechanism of action REF

C-178 C-176
C170, C-171

Nitrofurans Binds to Cys91 of STING and prevents palmitoylation (184)

H-151 Indole derivatives Binds to Cys91 of STING and prevents palmitoylation (184)

SN-011 Multisubstituted benzamides Specific binding within the 2'3'-cGAMP conjugation pocket of STING protein (185)

Astin C Cyclopeptides Directly regulates STING signaling vesicles and binds to the C-terminal structural domain of STING (186)

degrader 55 PROTACs connecting the sting inhibitor C-170 to a ligand for E3 ligase CRBN through an alkyl linker (187)
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apparatus and inhibits downstream signaling pathways. Chen et al.

(212) demonstrated in a fracture or bone defect mouse model that

H-151 promotes angiogenesis and osteogenesis at low doses. This

suggests that inhibition of STING enhances H-type angiogenesis

and accelerates the process of bone healing.

5.3.2 STING inhibitors inhibit the production
of OCs

RTA-408 is a synthetic triterpene compound currently under

clinical investigation for various diseases. Sun et al. (213) used an

ovariectomy (OVX)-induced bone loss model in C57BL/6 mice to

show that RTA-408 inhibits osteoclastogenesis and attenuates

OVX-induced bone loss by inhibiting the STING-dependent NF-

kB signaling pathway, suggesting that it may be a promising

candidate for the future treatment of osteoporosis. CDNs, such as

cyclic diadenosine monophosphate and cyclic digluconate

monophosphate, are symbiotic bacterial-derived second

messengers in the intestine. In recent years, CDNs have been

found to regulate immune activity in macrophages by inducing

type I interferon expression through the STING signaling pathway.

Kwon et al. (214) found that CDNs inhibited the differentiation of

bone marrow-derived macrophages into OCs by inducing

phosphorylation of TBK1 and IRF3 in a dose-dependent manner.

Experiments in a mouse cranial implant model showed that CDNs

inhibited Rankl-induced bone resorption. These results suggest that

CDNs inhibit OCs differentiation and bone resorption by inducing

IFN through the STING signaling pathway.

5.3.3 Inhibitors of STING prevent the
development of an inflammatory
microenvironment in the nucleus pulposus
tissue and slow disc degeneration

Intervertebral disc (IVD) degeneration is a prevalent

musculoskeletal degenerative disease characterized by progressive

nucleus pulposus (NP) cell death and the development of an

inflammatory microenvironment in NP tissue. Excessive

accumulation of cell membrane DNA, a damage-associated

molecular pattern (DAMP), triggers immune responses in many

degenerative diseases through the cGAS-STING axis (215). Zhang

et al. (216) demonstrated that oxidative stress activates the cGAS-

STING axis and NLRP3 inflammasome-mediated thermal

degeneration in a STING-dependent manner. Using a rat disc

pinning model, they found that the STING-specific inhibitor H-

151 effectively reduces NLRP3 inflammasome-mediated NP cell

death and microenvironmental inflammation in vitro, slows

degenerative skeletal progression, and provides a promising

therapeutic approach for disc-derived degenerative diseases.

5.3.4 STING is implicated in articular
cartilage degeneration

Cartilage is an important component of the joint and loss of

articular cartilage remains a major factor in joint dysfunction. It has

been shown that Gelsemium elegans-derived Gelvirine treatment

inhibits IL1-b-induced chondrocyte expression of pro-

inflammatory factors as well as STING and p-TBK1, and

increases the expression of anti-inflammatory factors. In animal
Frontiers in Immunology 13
models, Gellelsevirine treatment attenuates age-related medial

meniscus induced OA destruction. However, Gellelsevirine

treatment did not have a protective effect on chondrocytes in a

STING-deficient model. Further exploration of the mechanism

suggests that gellelsevirine degrades STING via the K48

polyubiquitination (Lys48) pathway, thereby ameliorating age-

related and surgery-induced OA in mice (29).
6 Conclusion

The STING pathway is an important mechanism regulating the

immune response and has been implicated in the development and

progression of a number of autoimmune diseases and viral

infections. The cGAS-STING signaling pathway is activated by

cytoplasmic dsDNA, which originates from various sources such

as chromosomal DNA released from the nucleus, retrotransposons,

and mtDNA. Genotoxic stress, retrotransposon activity, and

mitochondrial dysfunction are some of the factors that contribute

to cytoplasmic dsDNA accumulation. In skeletal muscle-related

diseases, which include a variety of pathophysiological processes

such as muscle atrophy, muscle weakness and fibrosis. Excessive

activation of the STING pathway may lead to inflammatory

responses and cell death, thereby affecting muscle cell health and

function. Therefore, reducing the inflammatory response and cell

death by targeting the STING pathway may help to treat skeletal

muscle-related diseases. Drug development targeting STING would

have a significant impact on the treatment of skeletal muscle-related

disorders. In recent studies, several STING inhibitors have shown

potential therapeutic effects in skeletal muscle-related disorders on

osteoporosis, IVDD, OA, and other musculoskeletal diseases by

improving bone and muscle homeostasis regulation, inhibiting

ECM degradation, and reducing inflammation.

STING is a promising target for cancer, autoimmune diseases, and

degenerative disorders. While agonists have been extensively developed

and are entering clinical stages, the development of STING inhibitors is

still in its early stage. The development of inhibitors faces many

challenges. First, STING is a protein that is widely expressed in cells

and plays different roles in different tissues and cell types, so the

development of STING inhibitors needs to consider the issue of tissue

specificity to avoid unwanted side effects and damage to healthy cells.

Second, most STING inhibitors currently require effective delivery to

target cells or tissues, such as by injection, and therefore better delivery

systems need to be developed to improve the stability and

bioavailability of the inhibitors in vivo (217). Third, STING, as a key

factor in the immune system, is closely related to immunomodulation,

infection and cancer, and therefore targeted inhibitors of STING need

to undergo complex biological evaluation and validation of their effects

in different models to ensure the impact and safety on the whole

immune system. Finally, the therapeutic efficacy and safety of STING

inhibitors are the focus of development and require intensive clinical

trials and evaluations to determine the optimal dose and treatment

regimen to ensure therapeutic efficacy and safety.

In summary, STING is a complex player in various diseases, and

the fine regulation of its signaling intensity is crucial in treating

these diseases. The development of STING inhibitors shows great
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potential in treating autoimmune diseases and degenerative

disorders associated with aging, and the use of novel techniques

such as PROTACs, AUTOTACs, and artificial intelligence may lead

to the development of more effective drugs in the future.
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