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Introduction: Granulomatosis with polyangiitis (GPA) is a small vessel vasculitis

with a complex pathomechanism. Organ damage in GPA is also mediated by

extracellular trap formation (NETosis). We analyzed the functional status of

phosphoproteins modulating NETosis in neutrophils by the mammalian target

of rapamycin (mTOR) pathway in GPA along with NETosis biomarkers.

Methods: Phosphoproteins levels measured in isolated neutrophils from 42

patients with GPA (exacerbation n=21; remission n=21) and 21 healthy controls

were compared to serum biomarkers of the disease.

Results: Neutrophils in active disease manifested lowered levels of

phosphorylated mTOR(Ser2448), PTEN(Ser380) and ULK1(Ser555), whereas

phosphorylated GSK-3a/b(Ser21/Ser9) was elevated. Exacerbation of GPA was

characterized by elevated neutrophil dsDNA in serum, circulating

mitochondrial DNA, and DNA-MPO complexes. A significant negative

correlation between mTOR or PTEN phosphoproteins and biomarkers of GPA

activity was also present, reflecting the clinical activity score of GPA. Positive

correlations between phosphorylated GSK-3 a/b and circulating mtDNA, DNA-

MPO complexes, neutrophil-released dsDNA, or circulating proteins were also

significant. Increased serum levels of IGFBP-2, TFF-3, CD147, and CHI3L1

accompanied GPA exacerbation, whereas DPP-IV levels were the lowest in

active GPA. Using a principal component analysis basigin, PTEN and mTOR

had the highest loadings on the discrimination function, allowing classification

between active, remission, and control subjects with 98% performance.

Conclusions: We present evidence that inhibited mTOR signaling accompanies

NETosis in patients with GPA. The functional status of phosphoproteins suggests

simultaneous activation of NETosis and autophagy. These results give rise to the

study of autophagy as a mechanism underlying granuloma formation in GPA.

KEYWORDS

granulomatosis with polyangiitis, mammalian target of rapamycin, neutrophil
extracellular traps, autophagy, neutrophils, mitochondrial DNA
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1 Introduction

Granulomatosis with polyangiitis (GPA) is small vessel

vasculitis with a complex pathomechanism and neutrophil as the

key effector cell. Most patients with GPA have antineutrophil

cytoplasmatic autoantibodies (ANCA) against proteinase 3 (PR3).

Especially in a generalized GPA, PR3-ANCA are involved in tissue

damage (1). Besides this humoral hallmark, the dysfunction of

regulatory T-lymphocytes characterizes active GPA by higher levels

of CD4+ and concurrent monocytic activation (2). The formation

of neutrophil extracellular traps (NETosis) is an innate mechanism

of pathogen elimination that is activated in some autoimmune

diseases such as lupus or vasculitides (3). Among modulators of

NET formation, the mammalian target of rapamycin (mTOR)

is operating in two intracellular complexes (mTORC1 and

mTORC2). It is a member of the phosphatidylinositol 3-kinase

(PI3K)-like kinase family regulated by phosphorylation

and acting on several intracellular processes, including the

production of pro-inflammatory cytokines and autophagy (4).

In the present study, we analyzed phosphoproteins involved

in mTOR pathways of neutrophils from patients with GPA

and correlated them with biomarkers of NETosis. We also

analyzed serum levels of differentially expressed circulating

proteins potentially participating in mTOR signaling, NETosis,

and autophagy.
2 Methods

2.1 Patients and study design

In this non-randomized observational single-center study, we

enrolled 42 patients with GPA (active stage n=21 or remission

n=21) and a control group of 21 age- and sex-matched healthy

volunteers (HC) (Table 1). GPA was diagnosed according to ACR

1990 (5) but including the 2012 Revised Chappel Hill Consensus

Nomenclature (6). All GPA patients were positive for anti-PR3 IgG

antibodies and negative for anti-MPO IgG antibodies. Disease

activity was evaluated using the Birmingham Vasculitis Activity

Score (BVAS, version 3) and organ damage was ascertained using

the Vasculitis Damage Index (VDI). Remission was defined as lack

of symptoms of active disease (BVAS = 0). Exacerbation of the

disease was identified by the presence of new or reemerging signs

and symptoms of vasculitis (confirmed by the BVAS > 6), requiring

intensification of immunosuppressive therapy according to EULAR

recommendations (7). Patients with cancer, kidney failure requiring

dialysis, or infection were excluded from this study. Blood

samples from all patients during the active stage of GPA were

collected before the onset of intensive treatment with high-dose

corticosteroids or immunosuppressants. In the group of patients

with remission of GPA, 19 patients (90%) were on remission

maintenance treatment, 19 patients (90%) received oral

glucocorticosteroids (up to 8 mg/day), and 7 patients (33%) were

on disease-modifying anti-rheumatic drugs (3 on methotrexate and
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4 on azathioprine). Peripheral blood samples were collected without

anticoagulant or with sodium citrate anticoagulant using a

blood collection system (Venous Blood S-Monovette, Sarstedt,

Germany) between October 2016 and August 2019. Serum and

plasma were separated using standard laboratory procedures,

aliquoted, and frozen at -80° C for further analyses. Laboratory

tests (CBC, CRP, anti-PR3/anti-MPO IgG level) were performed on

all study participants at the time of blood sampling. Written

informed consent was obtained from all study participants and

the study protocol was accepted by the ethics committee of

Jagiellonian University.
TABLE 1 Selected characteristics of the study participants.

Active
GPA

Remission of
GPA

Healthy
control

N
Newly diagnosed
Exacerbation

21
11
10

21
0
0

21

Age (mean ± SD) 57.4 ± 12.9 56.2 ± 13.1 54.1 ± 12.7

Sex (F/M) 12/9 11/10 12/9

BVAS
(min-max)

4-35 0 –

VDI (min-max) 2-8 5-10 –

Organs involved –

Ear, nose, throat
Lungs
Kidneys
Joints
Skin/mucous
membr.
Nervous system

18
17
18
16
15

11

14
3
0
0
0

2

GC treatment
(YES/NO)

13/7 19/2 –

GC dose [mg/day]
(min-max)

4-24 4-8 –

CYC cumulative
dose#

0 - 37 5-40 –

cANCA [IU/mL]
(min-max)

12-197 <2-123 –

CRP [mg/L] 5-270 <5-7 0

Procalcitonin [ng/
mL]

<0.05 <0.05 <0.05

PBMC [103/µL] 11.5 ± 3.6* 8.3 ± 2.6 6.5 ± 4.5

PMN [103/µL] 8.2 ± 4.1* 6.8 ± 2.7 4.4 ± 2.9

PLT [103/µL]
265 ±
241.9*

232.1 ± 75.5* 211.3 ± 35.6

LDH [U/L] 580 ± 190 520 ± 178 340 ± 66
BVAS, Birmingham Vasculitis Activity Score; VDI, Vasculitis Damage Index; *P < 0.05 in
comparison with controls; GC, glucocorticosteroids; CYC, cyclophosphamide; GPA,
granulomatosis with polyangiitis; PBMC, peripheral blood mononuclear cells; CRP, C-
reactive protein; PMN, polymorphonuclear cells; PLT, platelet; Ig, immunoglobulin; SD,
standard deviation; membr., membranes. Platelet count presented as median and interquartile
range. #Five patients in the active-GPA group were treated with cyclophosphamide
(cumulative dose [5–37]); all patients at remission of GPA previously received
cyclophosphamide.
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2.2 Neutrophil isolation

Neutrophils were isolated from anticoagulated blood using a

negative magnetic separation kit. (EasySep Human Neutrophil

Enrichment Kit, STEMCELL Technologies Inc., Canada). Isolated

cells were suspended in Hanks’ balanced salts solution (HBSS) with

calcium and magnesium-containing 2% fetal bovine serum (FBS,

Sigma-Aldrich Chemical Co., USA) for the spontaneous DNA

release assay or suspended in lysis buffer for targeted

phosphoproteomics measurement.
2.3 Neutrophil DNA-release assay

Quantification of spontaneously released dsDNA by isolated

neutrophils was performed in 10x105cells cultured for 3 h in HBSS

(250 µL, with calcium and magnesium and 2% FBS) at 37°C, 5%

CO2. Next, DNase I (2.5 U/ml, EURx, Gdańsk, Poland) was added

and the reaction was stopped after 10 minutes by the addition of

EDTA (pH 8.0, Sigma-Aldrich Chemical Co, USA) to the final 2.5

mM concentration. After sedimentation of cells (190 g, 5 min, 4°C),

the concentration of oligonucleotides in the supernatant was

measured by fluorometry (Quant-iT Pico Green dsDNA Assay,

Thermo Fisher Scientific, USA) in Qubit 3 fluorimeter and

expressed as relative fluorescence units (RFU).
2.4 Targeted phosphoproteomics of
mTOR-related proteins

Levels of selected phosphoproteins: Akt(Ser473), BAD(Ser136),

GSK-3a/b(Ser21/Ser9), IRS-1(Ser636/Ser639), mTOR(Ser2448), p70 S6

kinase(Thr389), PTEN(Ser380), S6 ribosomal protein (Ser235/Ser236)),

and ULK1 (Ser555) were measured using a commercially available

Bio-Plex Pro™ Cell Signaling Akt Panel (8-plex, Bio-Rad, USA) in

Luminex instrument or ELISA (PathScan® Phospho-ULK1, Cell

Signaling Technology, USA). Briefly, the total cellular protein was

isolated from neutrophils (5x106 cells) with the lysis buffer

according to the manufacturer’s protocol, and 10 µg of the

protein lysate per well was used for the Luminex assay or ELISA.
2.5 Isolation and measurements of
circulating cell-free DNA in blood

Total circulating cell-free DNA was isolated from serum using

the phenol/chloroform method (8). In brief, 500 µL of serum was

spiked with 0.34 ng of an internal standard of DNA (plasmid

pGEM-3Zf(+), Promega, Madison, USA) to compensate for errors

in sample processing, diluted with 1 mL of ultrapure water, and

extracted four times with the same volume of phenol/chloroform

mixture. DNA was recovered by precipitation with 1:10 v/v 3M

sodium acetate and 2:1 v/v cold 96% ethanol. After rinsing with 70%

ethanol and drying DNA, the pellet was resuspended in 20 µL of

water. Circulating cell-free mitochondrial (mtDNA) and nuclear
Frontiers in Immunology 03
DNA (nDNA) were measured separately by quantitative PCR

(qPCR, 7900HT real-time PCR system, Applied Biosystems,

Foster City, USA). Details of qPCR reactions and primer

sequences for genomic DNA (Alu repeats target) and

mitochondrial 16s RNA gene (mtDNA79) were as previously

described (5). Quantification of the internal standard was

performed using M13 primers (Promega). The quantification

cycles of mtDNA and nDNA were corrected for the internal

standard and calculated as relative expression (RE) with the use

of the 2-DCt formula.
2.6 Quantification of circulating
DNA-MPO complexes

Circulating complexes of neutrophil myeloperoxidase with

DNA were measured using ELISA as previously described (9).

Briefly, 96-well ELISA plates were coated with anti-MPO

antibody (5µg/mL, AbD Serotec, USA), and a Death plus EIA kit

(DNA-Death plus, Roche Switzerland) was used as a source of all

buffers and of a secondary, HRP-conjugated antibody. Raw results

were presented as mean optical densities (OD).
2.7 Screening for differentially expressed
circulating proteins in patients with GPA
and controls

Profiles of circulating cytokines were compared between active

GPA and HC using Proteome Profiler Human XL Cytokine Array

Kit (Bio-Techne, Minneapolis, USA). Aliquots of 100 µL of serum

from five participants randomly selected from each group were

pooled, and then diluted to the final volume of 1.5 mL and used for

overnight incubation of membranes spotted with capture

antibodies. After washing, the membranes were incubated with

detection antibodies and developed with a chemiluminescent

reagent. Images were collected using C-DiGit Blot Scanner (Li-

Cor Bioscience, Lincoln USA). Optical densities of the detection

spots (Supplementary Figure 1) were used to select proteins

subsequently measured in the serum of all study participants by a

custom Luminex multiplex assay (Bio-Techne). Quantified plasma

levels of IGFBP-2, IGFBP-3, TFF-3, DPP-IV, basigin (CD147), and

CHI3L1 were interpreted from the calibration curves and presented

in pg/mL or ng/mL.
2.8 Statistical analysis

Statistical calculus was done using GraphPad Prism 9.0 software

(GraphPad Software Inc., San Diego, USA). Descriptive statistics

was presented as a mean and standard deviation. Differences

between the groups were tested by one-way analysis of variance

(ANOVA) with Tukey’s post hoc test. The goodness of fit for the

canonical discriminant function was evaluated by Wilks’s Lambda.

Type I statistical error P < 0.05 was considered significant.
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3 Results

3.1 Neutrophils dsDNA release and levels
of circulating mtDNA, nDNA, and DNA-
MPO complexes

We observed elevated dsDNA release from non-stimulated

neutrophils isolated from patients with active GPA (active: 11070

± 1233, remission: 7941 ± 1177, HC: 7996 ± 771.7 RFU, p<0.05)

(Figure 1A). A similar finding was notable for circulating mtDNA

(active: 0.01860 ± 0.003, remission: 0.004 ± 0.002 and HC: 0.0006 ±

0.0005 RE, p<0.05) (Figure 1B) and DNA-MPO complexes (active:

1.058 ± 0.35, remission: 0.5 ± 0.2, HC: 0.3 ± 0.11 OD, p<0.05)

(Figure 1C). However, no differences between studied groups were

observed in nuclear DNA (nDNA) release (not shown).
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3.2 Phosphoproteins levels in isolated
neutrophils from the study participants

Levels of phosphorylated mTOR(Ser2448), PTEN(Ser380), and

ULK1(Ser555) were significantly lower in neutrophils from patients

with GPA. This was more apparent for mTOR(Ser2448) levels (active

4 ± 0.5, remission: 15.2 ± 0.6, HC: 35 ± 2.9 MFI, p<0.05) (Figure 1D)

but also significant for PTEN(Ser380) (active: 3.11 ± 0.7, remission:

6.6 ± 1.4, HC: 7.2 ± 1.5 MFI, p<0.05) (Figure 1D) and ULK1(Ser555)

(active: 0.28 ± 0.1, remission:0.44 ± 0.15, HC: 0.99 ± 0.55, p<0.05)

(Figure 1D). In patients with active disease, a significant elevation of

phosphorylated GSK-3a/b(Ser21/Ser9) was detected (active: 181 ±

47.4, remission: 102.5 ± 19.12, HC: 116.1 ± 20.83 MFI, p<0.05)

(Figure 1D). No differences between the study groups were

observed in five phosphoproteins measured: Akt(Ser473),
B C

D

A

FIGURE 1

(A) Release of dsDNA by resting neutrophils isolated from the study participants. Neutrophils were cultured for 3 hours in HBSS (with calcium and
magnesium and 2% fetal bovine serum, at 37°C, and 5% CO2) and the dsDNA content in the supernatant was measured using the fluorimeter.
(B) Serum level of circulating mitochondrial DNA in study participants - Results are presented as relative expression (RE) calculated using 2-DCt

formula (DCt = CtmtDNA-CtpGEM) from the DNA plasmid spike-in standard (pGEM). (C) Circulating DNA-MPO complexes in patients with active GPA,
remission, and healthy controls, (D) Levels of phosphoproteins: PTEN, mTOR, GSK-3 s/b, and ULK1 in neutrophils isolated from patients with active
stage of GPA, remission of GPA, and healthy controls. All data are presented as the mean and standard deviation (SD).
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BAD(Ser136), IRS-1(Ser636/Ser639), p70 S6 kinase(Thr389), and S6

ribosomal protein(Ser235/Ser236)) (not shown).
3.3 Levels of differentially expressed serum
proteins in GPA

Using a semiquantitative protein array, we performed a screening

for differentially expressed serum proteins in patients with active

GPA vs. healthy controls. The results suggested altered circulating

levels of IGFBP-2, IGFBP-3, TFF-3, DPP-IV, CD147, and CHI3L1
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(Supplementary Figure 1). Measurements of the selected proteins in

all the participants of the study revealed that in the active stage of

GPA, levels of IGFBP-2 were the highest (active: 210 ± 30, remission:

140 ± 15 and HC: 85 ± 8 ng/mL, p<0.05) (Figure 2A). Significant

elevations also characterized TFF-3 (active: 1.6 ± 0.7, remission: 1.9 ±

0.3 and HC: 0.7 ± 0.2 ng/mL, p<0.05), CD147 (active: 5.2 ± 1.3,

remission: 2.0 ± 0.7 and HC: 1.7 ± 0.4 ng/mL, p<0.05), and CHI3L1

(active: 42.5 ± 6, remission: 17 ± 4.5 and HC: 11 ± 5 ng/mL, p<0.05)

(Figure 2A). However, DPP-IV levels were the lowest in the serum of

patients with the active stage of GPA (active: 4 ± 0.5, remission: 6.8 ±

0.7 ng/mL and HC: 6.3 ± 1.5 ng/mL, p<0.05).
B

C

D

A

FIGURE 2

(A) Serum levels of selected proteins in the study participants. Results are presented as the mean and standard deviation (SD). (B) Canonical
discriminant function plot of analyzed parameters in patients with active GPA (n=21, red), remission of GPA (n=21, black), and healthy control (n=21,
blue). Wilks’s Lambda V=0.067, p<0.0015. (C) Correlations between analyzed parameters in all study participants (correlation was evaluated using
Pearson correlation, p<0.05). (D) Correlation between BVAS score and analyzed parameters in the group of patients with active stage of
granulomatosis with polyangiitis (correlation was evaluated using Pearson correlation, p<0.05). Non-significant P values >0.05 are marked in italics.
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3.4 Correlations of analyzed
phosphoproteins and serum proteins
with biomarkers of NET formation

Principal component analysis of differentially expressed

phosphoproteins and serum proteins allowed for an efficient (98%

correct) classification of all participants of the study into active or

remission GPA or HC. Only a single participant from the healthy

control group was incorrectly classified as GPA at remission

(Wilks ’s Lambda V = 0.067, P < 0.001, Figure 2B). A

discrimination matrix was tested using a jackknife subsampling

and was correct for 92% of participants. PCA vectors explained 66%

of the variance and had canonical correlations of 0.92 and 0.75.

Positive correlations were observed between biomarkers of NETosis

(circulating mtDNA, DNA-MPO complexes levels, and dsDNA

level) and the circulating proteins (IGFBP-2, TFF-3, CD147, and

CHI3L1) or phosphorylated GSK-3 a/b. Phosphorylated mTOR

and PTEN correlated negatively (Figure 2C) with NETosis

biomarkers or circulating proteins. A very similar pattern of

correlation matrix characterized BVAS, which correlated

positively with dsDNA, mtDNA, DNA-MPO complexes, IGFBP-

2, CD147, CHI3L1, and phosphorylated GSK-3 a/b, and negatively

with phosphorylated mTOR and PTEN (Figure 2D).
4 Discussion

This study focused on the levels of mTOR phosphoproteins

signaling pathway involved in neutrophil NETosis. Itakura et al.

postulated a pivotal role of mTOR-regulated autophagy in the

control of NETosis (10). Autophagy was activated by inhibition

of mTOR and accompanied by increased NETosis. Copp et al. (11)

found mTOR activity controlled by phosphorylation status rather

than variable intracellular protein level. Protein kinase B (PKB)

phosphorylates mTOR at serine 2448 (Ser2448), activating this

pathway. In our study, a lower level of mTOR phosphorylated at

Ser2448 was detected in neutrophils isolated from patients with

active GPA. Moreover, mTOR suppression negatively correlated

with BVAS, measuring the disease activity. Elevated biomarkers of

GPA activity, such as circulating mtDNA, DNA-MPO complexes,

or resting dsDNA released by neutrophils, were in line with this

finding. Lowered mTOR(Ser2248) was accompanied by high levels of

phosphorylated glycogen synthase kinase-3 - GSK-3 a/b. This
enzyme is active in resting cells, suppressing the signaling of

multiple pathways, including Wnt/b-catenin, JUN, and glycogen

synthase. GSK-3 a/b activity is inhibited by its phosphorylation at

serine 21 and 9 (Ser21/9). Giambelluca et al. reported in neutrophils

that stimulation of the cells with an agonist inducing NETosis led to

phosphorylation of GSK-3a Ser21 (12). In agreement with this

report, we documented higher phospho-GSK-3 levels in both

subunits of the kinase complex. At physiological conditions, GSK-

3 can indirectly inhibit the mTOR pathway by phosphorylation of a

common substrate tuberin (TSC2). Therefore, the positive

correlation of phospho-GSK-3 with BVAS or NETosis biomarkers
Frontiers in Immunology 06
suggests a profound alteration of intracellular signaling of

neutrophils in GPA. Whether this mechanism relies on a lack of

response to metabolic or hormonal cues or activated autophagy

requires further studies. By the targeted phosphoproteomics

approach, we also found decreased levels of phosphorylated

phosphatase and tensin homolog deleted on chromosome 10

(PTEN) and Unc-51-like kinase 1 (ULK1). Phosphorylation of

PTEN at serine 380 (Ser380) increases the stability of the protein

but inhibits its phosphatase activity. PTEN can increase NETosis in

a mechanism linked to the autophagy process (13). Lower PTENSer

(380) found in GPA negatively correlated with markers of NETosis.

ULK1 is a well-known autophagy regulator that can be controlled

by AMP-activated protein kinase (AMPK) and mTOR. Several

s tud ies descr ibed AMPK act iva t ion-media ted ULK1

phosphorylation as an autophagy-stimulating process (14, 15).

However, AMPK activation can also lead to autophagy inhibition

(16). Moreover, low activity of mTOR can be linked to low activity

of ULK1 (17). In the case of our study, in neutrophils from patients

with GPA, we reported lower phosphorylation of mTOR and lower

phosphorylation of ULK1, which seems to confirm previous

observations. Interestingly, we could not distinguish which

intracellular mTOR complex was inhibited in neutrophils.

Ribosomal proteinS6 kinase- b1 phosphorylated at threonine 389

(p70 S6 kinaseThr389), a downstream signal of mTORC1, and

protein kinase B member Akt1 phosphorylated at serine473

(AktSer473) downstream to mTORC2 did not differ between the

study groups. A further link to increased autophagy in neutrophils

from GPA patients resulted from differentially expressed serum

proteins. Four out of five proteins selected during a preliminary

screening, namely, insulin-like growth factor binding protein 2

(IGFBP-2), basigin (CD147), chitinase-3-like protein 1 (CHI3L1),

and trefoil factor 3 (TFF-3), were elevated in the serum of patients

with active GPA, whereas dipeptidyl peptidase-IV (DPP-IV) was

significantly decreased. IGFBP-2 is a member of insulin-like growth

factor binding proteins (IGFBPs) accompanying insulin-like growth

factors. Increased serum IGFBP-2 levels were detected in patients

with systemic lupus erythematosus, rheumatoid arthritis, or

inflammatory bowel disease (18). Its role in neutrophil activation

and NETosis is unclear but can be related to enhanced autophagy

(19). It is a limitation of our study that we did not analyze

autophagy in neutrophils, but serum levels of IGFBP-2 correlated

with biomarkers of NETosis and phosphoproteins of mTOR, GSK-

3a/b, PTEN, and ULK1. The other three proteins elevated in the

serum of patients with GPA can regulate autophagy. TFF-3 and

TFF-1 are members of the trefoil factor (TFF). Down-regulation of

TFF-3 prevented autophagy in colon cancer adenocarcinoma (20).

Basigin (CD147) is a transmembrane glycoprotein expressed in

numerous cell types. It is mandatory for intracellular recognition

and the proper placement of membrane proteins. Increased surface

expression of CD147 was observed in neutrophils from patients

with rheumatoid arthritis (21). In prostate cancer, CD147 regulates

autophagy via the PI3K/Akt/mTOR pathway (22). CHI3L1 belongs

to the glycoside hydrolase family-18 and is secreted by various cells,

including activated neutrophils. Recently a high level of circulating
frontiersin.or
g

https://doi.org/10.3389/fimmu.2023.1227369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Surmiak et al. 10.3389/fimmu.2023.1227369
CHI3L1 was reported in GPA (23). In the present study, the highest

level of CHI3L1 was detected in patients with GPA exacerbation

and correlated with BVAS. DPP-IV is a serine exopeptidase

modulating immune and metabolic responses. Interestingly,

inhibition of this enzyme by gliptins is not only beneficial in

diabetes but is also considered to have anti-inflammatory effects.

Therefore, this finding requires further studies. In conclusion, the

results of this study evidenced inhibition of the mTOR signaling

pathway accompanied by enhanced NETosis in patients with GPA.

It is an important finding for clinicians because mTOR inhibitors

are being tested for autoimmune diseases. The elevated level of

circulating proteins that we described provides a suggestive link

between clinical activity of the disease or NETosis biomarkers and

autophagy, which warrants further studies on GPA. As reported by

us, differential expression of phosphoproteins and circulating

proteins has also some diagnostic potential, as shown by PCA.

Unfortunately, we could not present any direct evidence of

autophagy involvement in NETosis in GPA. Another limitation of

this study is the descriptive interpretation of findings based on the

correlation of clinical and laboratory parameters. However, to the

best of our knowledge, this is the first report describing targeted

phosphoproteomics of the mTOR pathway in neutrophils from

patients with GPA.
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