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Cancer immunotherapy has exhibited promising antitumor effects in various

tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment

(TME) restrict protective immune surveillance, impede effective antitumor

immune responses, and contribute to the formation of an immunosuppressive

microenvironment. Selective depletion or functional attenuation of tumor-

infiltrating Tregs, while eliciting effective T-cell responses, represents a

potential approach for anti-tumor immunity. Furthermore, it does not disrupt

the Treg-dependent immune homeostasis in healthy organs and does not

induce autoimmunity. Yet, the shared cell surface molecules and signaling

pathways between Tregs and multiple immune cell types pose challenges in

this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and

long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and

thus can potentially improve antitumor responses. Here, we review recent

advances in research of tumor-infiltrating Tregs, with a focus on the functional

roles of immune checkpoint and inhibitory Tregs receptors and the regulatory

mechanisms of ncRNAs in Treg plasticity and functionality.
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1 Introduction

Immunotherapy for cancer has become the most promising approach in recent years

(1). Therapeutic drugs and cellular therapies derived from immunotherapy have extended

the lives of patients with advanced cancer. Among them, immune checkpoint inhibitors

(ICIs), also known as co-inhibitory receptors (CIRs), are the most well-known treatment

strategy. The expression of ICIs in T cells increases upon activation, forcing the anti-tumor
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T cells to retreat into a dormant or exhausted non-active state.

Antibodies antagonizing ICIs are used to revive T cells and

maintain their anti-tumor response (2). So far, immune

checkpoint blockade (ICB) antibodies have shown success in

some cancers. However, only partial responses or no response

have been observed in 60%–70% of patients undergoing this

therapy. Additionally, some patients experience immune-related

adverse events (irAEs), including autoimmune diseases or

immunopathological disorders (3). Therefore, the critical focus of

immunotherapy is to identify the reasons behind the shortcomings

of ICB treatment and explore more effective anti-tumor immune

therapeutic approaches. It will help patients avoid excessive

exposure to irAEs and achieve more positive treatment outcomes.

Regulatory T cells (Tregs) are an integral part of the immune

system because they contribute primarily to maintaining collective

immune system homeostasis and tolerance (4). Tregs inhibit the

activation and differentiation of CD4+ helper T andCD8+ cytotoxic T

cells, thereby inducing responses to autologous and tumor-expressed

antigens (5, 6). The discovery of suppressor T cells was aided by

identifying high and low expression of IL-2 receptor a subunit

(CD25) and IL-7 receptor a subunit (CD127) respectively in both

humans and mice. The further discovery of forkhead/winged helix

transcription factor (Foxp3) expression in Tregs established the

CD4+CD25+Foxp3+ classical combination marker (7–9). Adjusted

expression of Foxp3 – via either a genetic or epigenetic route –

significantly affect the immunosuppression of Tregs (10, 11). In the

tumor microenvironment (TME), Tregs are major ly

immunosuppressive, antagonize anti-tumor immunity and inhibit

functions of other immune effector cells, and this aids tumor immune

escape (12, 13). Interactions among Tregs, the TME and adjacent

cells are critical for maintaining Tregs stability and plasticity. These

interactions synergistically influenced the function and number of

Tregs through inflammation, cytokine secretion, metabolic changes

and transcriptional regulation (14–16). Notably, the infiltration of

Tregs into the TME is closely related to tumor progression and poor

prognoses (17, 18). However, animal studies have indicated that

systemic depletion of Tregs can enhance anti-tumor immunity but

can also lead to various autoimmune diseases (19, 20). Therefore,

selectively depleting tumor-infiltrating Tregs within the TME

without affecting Tregs in healthy tissues can elicit anti-tumor

immunity without inducing detrimental autoimmunity. The

effective identification of tumor-infiltrating Tregs and a clear

understanding of the transition from healthy Tregs to tumor-

infiltrating Tregs based on Tregs plasticity represent a promising

direction for cancer immunotherapy.

Noncoding RNA (ncRNAs) do not translate proteins (21, 22)

but instead act as “regulators” of cellular functions, including

molecular signaling pathways in malignant tumors (23, 24).

Among them, microRNA (miRNA), long non-coding RNA

(lncRNA) and circular RNA (circRNA) are most important to

current cancer research (23, 25, 26). They are widely involved in

various malignant phenotypes of cancer. LncRNAs exhibit specific

expression patterns across various immune cell types, ranging from

hematopoietic stem cells (HSCs) to innate and adaptive immune

cells in humans and mice. The expression of specific lncRNAs in

human and murine immune cell types suggests their evolutionary
Frontiers in Immunology 02
conservation (27). Immune-specific ncRNAs exert their effects on

hematopoietic differentiation through various mechanisms,

including acting as ncRNA/protein decoys and functioning as

protein scaffolds, transporters, and recruiters in the nucleus and

cytoplasm (28). Notably, most immune-specific ncRNAs appear to

recruit protein complexes to specific genomic loci, thereby

regulating target gene expression at the epigenetic and

transcriptional levels and consequently modulating immune cell

activity and differentiation in the nucleus.

In this review, we summarize advancements in research of

tumor-associated Tregs and highlight relevant interactions

between ncRNA and Tregs. On the other hand, we discuss the

potential effects of ICB antibodies on Treg-mediated immune

suppression in the context of anti-tumor immunity and

summarize the role of ncRNAs in this process. A better

understanding of ncRNA-mediated tumor immune regulation,

especially their role in the regulation of Tregs function, engenders

possible insights into cancer immunotherapy.
2 The classifications and
plasticity of Tregs

Tregs are sub-classified using four criteria, which are governed

by plasticity and functional complexity. First, based on their origin,

Tregs are divided into thymus Tregs (tTregs) and peripheral Tregs

(pTregs) (29). In relation to ncRNA regulation, CD69/miR-155/

SOCS-1 axis is a non-redundant key regulator involved in Tregs

development and homeostasis (30). Intrathymic miR-181a/b-1

controlled Tregs cell formation by expressing an adequate

signaling threshold. The miR-181a/b-1-deficient Treg showed

elevated suppressive capacity and was inversely correlated with

CTLA-4 protein levels in thymus and peripheral Tregs (31).

Second, based on their degree of activation, Tregs are divided

into central Tregs (cTregs) and effector Tregs (eTregs) (32). CTregs,

also known as resting or naive Tregs, are the major constituents of

peripheral and secondary lymphoid Tregs. CTregs that express

CD62L, CCR7 and are phenotypically similar to traditional naive

T cells, are important for circulation in lymphoid organs (33). On

the other hand, eTregs are mainly found in tissues and organs, with

only a small fraction found in secondary lymphoid organs (34).

eTregs are antigen-activated Tregs that highly express CD44, ICOS,

and KLRG1 and other molecular and tissue-localization-related

chemokine receptors, lack CD62L and CCR7 expressions, and can

directly contribute to immunosuppression (35). miR-155 targets

and reduces CD62L expression in Tregs (36). It is a critical

regulatory factor in pregnancy immune adaptation, promoting

Treg expansion to achieve pregnancy tolerance and prevent fetal

loss (37). miR-744/CD134 mitigates immune rejection by regulating

the expression of CD62L and Ki67 (38).

Third, based on their biological characteristics, Tregs are

divided into natural Tregs (nTregs) and inducible Tregs (iTregs)

(39). nTregs mature in the thymus, maintain immune tolerance,

and control inflammatory responses by exerting inhibitory

functions through cell-to-cell communication (39, 40). nTregs are

generated from CD25+ Tregs and Foxp3lo Tregs progenitors
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through the acquisition of negative and positive selection programs,

respectively, with distinct TCR (T-cell receptor) repertoires and

transcriptomes (41). In contrast, iTregs are closely related to

cancers, such as intratumoral iTregs that act in a tumor antigen-

selective manner. They are activated and expanded in the TME

when their TCRs specifically respond to autologous tumors and

mutated neoantigens (42). Furthermore, the TCR repertoire of

intratumoral iTregs significantly overlapped with circulating

Tregs and was also able to exhibit specific responses to

autologous tumors and mutated neoantigens. This suggests that

TCRs derived from tumor antigen-specific Tregs are present in

circulation and the TME, as both were sources of tumor-specific

TCRs (42).

Fourth, Tregs have been classified based on cell surface markers.

These include Th1-like Tregs (T-bet+ IFNg+- Foxp3+), Th2-like Tregs
(Gata3+ IRF4+ IL4+ Foxp3+) and Th17-like Tregs (IL-17+ RORgt+

Foxp3+). Th1-like Tregs are characterized by the expression of T-bet

and CXCR3 (43) and inducing the transformation of each other

subtype to Th1 is a potential therapeutic approach. Th2-like Tregs

mainly express Gata3 and IRF4 and tend to secrete IL-4 and IL-13

(44), are potent immunosuppressors and promote activation through

autocrine IL-2. They are foundmore in tissues than in circulation and

ably migrate in response to chemokines in the TME (45). Th17-like

Tregs expressed RORgt and shared some phenotypic and functional

characteristics with conventional Th17 cells, such as expressing high

levels of CCR4 and CCR6 and low levels of CXCR3. However, Th17-

like Tregs expressed only low levels of CD161 and were mostly

unable to secrete IL-22 and TNF-a but produced IL-17, thereby

retaining their inhibitory function (46, 47). miR-17 modulates Tregs

function by targeting co-regulators of the Foxp3 transcription factor

(48). Furthermore, Foxp3 plays a dual role in controlling the

dependency on IL-2 in Tregs. On the one hand, it inhibits IL-2

transcription; on the other hand, it promotes the expression of CD25

(IL-2Ra) (49, 50). Reprogramming T cell-derived extracellular

vesicles through IL-2 surface engineering can induce effective anti-

cancer effects through miRNA delivery (51).

In summary, Tregs differentiated into subclasses under various

stimuli, and there was mutual transformation among the subclasses.

Although this demonstrated the plasticity of Tregs, much of this

plasticity remains unanswered. Does plasticity depend on the initial

heterogeneity of Treg? Is there an inevitability of specific subsets of

Treg with specific effects? Tumor-infiltrating Tregs may arise from

circulation and tissue residency and be induced by the TME.

Distinguishing their phenotypic and functional characteristics

from Tregs in healthy tissues based on plasticity and stability is

crucial for the development of immunotherapies that target Tregs.
3 The ncRNA associated regulatory
mechanisms of Tregs in cancer

In most cancers, Tregs are in higher proportions in tumor than

normal tissues and infiltrate tumor tissues earlier than effector T cells.

Indeed, a high ratio of Treg to CD8+ T cells indicated a poor prognosis

(52). Furthermore, the abnormal differentiation and distribution of

Tregs in cancer patients are affected by altered genetic information,
Frontiers in Immunology 03
abnormal molecular expression and reprogramming of cellular

metabolism (53). These factors either drive Tregs enrichment in the

TME, resulting in an immunosuppressive microenvironment, or aid

peripheral Tregs in their roles in the formation of pre-metastatic

niches (54).

Helios gene promoted the preferential differentiation of CD4+

naive T cells into Tregs (55). Intratumoral Helios- deficient Tregs

acquired effector T cell function and induced immune responses by

expressing effector cytokines (56). In malignant pleural effusion

(MPE) of Non-Small Cell Lung Cancer (NSCLC) patients,

decreased miR-4772-3p levels relieved the repression of Helios,

thereby enhancing the activity of Tregs (57). Widespread miR-

146a in Tregs regulated IFNg-dependent immune responses by

targeting STAT1 (58). Similarly, the loss of miR-17-92 in CD4+ T

led to tumor immune evasion (59). Expression profiling of miRNAs

revealed that miRNAs modulated the biological characteristics of

Tregs by acting on target genes such as FOXP3, CTLA-4 and GARP

(59, 60). The expression of miR-21 affects the balance of Th17/Tregs

in GC patients (61). Among them, the Foxp3+ Tregs subset has been

a focal point of research in recent years. Peripheral Tregs can be

further classified into three subtypes based on the expression of

CD25 and Foxp3: Fr. I, naive or resting Tregs with the

CD45RA+CD25loFoxp3lo phenotype; Fr. II, Fr. I differentiates into

CD45RA+ CD25hiFoxp3hi effector Tregs following antigen

stimulation; Fr. III, a subset of CD45RA+CD25loFoxp3loCD4+ T

cells that produce pro-inflammatory cytokines but exhibit minimal

suppressive activity (62, 63). The enrichment of Fr. III subtype in

cancer tissues is associated with a more favorable prognosis

compared to the Fr. II subtype (63). NF-kB-mediated miR-34a

disrupts the equilibrium Treg/Th17 balance by directly targeting

Foxp3 (64). ADAR1 enhanced Treg cell function via modulation of

the miR-21b/Foxp3 axis (65).

The immunosuppressive function of Tregs is dependent upon

high intracellular cAMP concentrations. One of the major

metabolic pathways supporting Tregs survival and function was

an altered lipid metabolism (66). In relation to ncRNA regulation,

miR-142-5p inhibited the expression of cAMP-hydrolyzing enzyme

phosphodiesterase-3b (Pde3b) at the post-transcriptional level to

modulate immune metabolism, thereby controlling the function of

Tregs (67). Furthermore, given the predominance of intratumoral

Tregs in glucose uptake, both glycolysis and oxidative

phosphorylation contributed to fatty acid synthesis and thus

promoted Tregs expansion (68). Glycolytically produced lactate

increased Foxp3+ Tregs expression by activating the NF-kB
pathway and promoted prostate cancer (PC) invasion through

miR-21/TLR8 (69). Under starvation conditions, Foxp3

expression in human Peripheral Blood Mononuclear Cells

(PBMCs) was inversely correlated with the expression of miR-31

and miR-155, which may also be potential metabolic-related

immunomodulatory tools (67).

Relatedly, lncRNAs were involved in the regulation of Tregs

function at the molecular level in breast cancer, the lncRNA SNHG1

competitively bound to miR-448 and reduced expression of IDO, thus

inhibited Tregs differentiation, and this hindered immune escape (70).

Generally, highly expressed IDO in the TME led to a decrease in

tryptophan and accumulation of kynurenine, inhibiting T cell
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activation and inducing the production of Tregs (71). In vitro and in

vivo assays confirmed that lncRNA Flatr in T cells directly participated

in the transcription of Foxp3 as lncRNA Flatr-deficient mice showed

delayed induction of Tregs (72). Besides, high expression of ZC3H12D

in Tregs and NSCLC influenced patient prognosis through the

ZC3H12D-hsa-miR-4443-ENST00000630242 axis (73). The highly-

expressed membrane and cytoplasmic-localized lnc-INSR aided Tregs

formation of an immunosuppressive microenvironment by inducing

aberrant activation of the PI3K/AKT pathway in childhood acute T

lymphoblastic leukemia (74). Overexpressed LINC00301 in NSCLC

tissue targeted TGF-b and this increased Tregs therein (75).

Similarly, miRNAs were important regulators as overexpressed

miR-216a was associated with decreased overall survival in CRC, as

shown viamultiomics analysis, and Tregs that had infiltrated the TME

were involved in the regulation of miR-216a functions (76). MiR-520b

that was overexpressed in breast cancer (BC) tissues augmented

activation of Tregs in TME and induced M2-type polarization of

macrophages (77). PersistentHBV in hepatocellular carcinoma (HCC)

tissue maintained TGF-b activity, which repressed miR-34a

expression, which in turn increased both CCL22 and recruitment of

Tregs (78). MiR-26a inhibited the HCC-induced effect of

diethylnitrosamine (DEN) by reducing the abundance of Tregs (79).

MiR-28 was involved in PD1+Foxp3+expression and influenced the

exhaustion of TIM3+Foxp3+Tregs in vitro (80). The GATA3/miR-

125a-5p/IL-6R axis explicated how Treg cells responded to

inflammatory IL-6-rich conditions (81). Relatedly, MiR-124/STAT3

played a similar role in Tregs of glioma as exposure of T cells of

glioblastoma patients to miR-124 reactivated the immune response

(82). Mesenchymal stem cells modulated the CRC-TME

immunocompetence via miR-150 and miR-7 (83). MiR-34 was

downregulated in Tp53-mutated secondary adult acute myeloid

leukemia (sAML), resulting in increased PD-1 expression and Treg

enrichment (84) (Figure 1).
4 The ncRNA and Tregs cell-based
communication in TME

4.1 Tregs and cancer cells in TME

Signals such as tumor-derived cytokines, exosomes in the TME

and tumor antigens work to additionally induce the transformation

of T cells into Tregs (85–88). For example, tumor-derived cytokines

such as IL-2 and TGF-b are representative molecules that induced

Foxp3+ Tregs (89, 90) andmore on this was summarized by Tuzlak S

et al. (91). Furthermore, tumor-derived exosomes, because of their

diverse contents, induce Tregs via a more complex mechanism (92).

First, there exist exosome-lncRNAs that induce Tregs at various

levels. For example, CD73+gdT1 cells are the predominant Treg

subset in breast cancer (BC). Their induction is triggered when

lncRNA SNHG16 carried by BC cell-derived exosomes acts as a

competing endogenous RNA (ceRNA) by sponging miR-16-5p,

leading to the liberation of the target SMAD5 gene, thereby

promoting the expression of CD73 and inducing T cell

differentiation into Tregs (93). Another example is lncRNA RP11-

323N12.5 that was overexpressed in gastric cancer (GC) and thus
Frontiers in Immunology 04
activated the Hippo signaling pathway in T cells and induced the

differentiation of Tregs through exosome-carrier (94). Likewise,

RP11-357H14.17, which was overexpressed in GC, is possibly

involved in the differentiation of Tregs (95). One can hypothesize

that exosomal miRNAs possibly play a similar role, and this is

supported by the uniqueness of miRNAs in Tregs exosomes due to

the enrichment of miR-146a-5p, miR-150-5p and miR-21-5p, and

depletion of miR-106a-5p, miR-155- 5p and miR-19a-3p (84).

Further, colorectal cancers (CRC) secreted miR-208b-containing

exosomes by targeting PDCD4 to promote Tregs proliferation and

reduce CRC sensitivity to oxaliplatin-based chemotherapy (96). The

miR-124-3p-enriched exosomes significantly inhibited CRC growth,

reduced Tregs infiltration into the TME, and prolonged the median

survival time of tumor-bearing mice (97). Non-Small Cell Lung

Cancer (NSCLC) and CRC-derived miR-214 were delivered into T

cells via microvesicles (MVs), which subsequently downregulated

phosphatases and PTEN and promoted Tregs expansion. The miR-

214-induced Tregs promoted tumor growth through IL-10.

Pertinently, the anti-miR-214 antisense oligonucleotides (ASOs)

effectively blocked Tregs expansion and limited tumor growth in

tumor-bearing mice (98). Relatedly, nasopharyngeal carcinoma

(NPC) exosomal miR-243 targeted FGF11 to inhibit T cell

proliferation and induce Tregs to not only differentiate, but also

impair T cell function (99). Lastly, miR-10a-loaded exosomes

resulted in increased expression levels of RORgt and Foxp3 in T

cells that promoted Tregs differentiation (100).
4.2 Tregs and other immune cells in TME

Differentiated Tregs suppressed the antitumor immunity of

effector T cells, NK cells, macrophages and DCs through multiple

mechanisms, and functioned synergistically with MDSCs through

crosstalk (101). Generally, Tregs inhibit antitumor immune

functions of DCs cells by secreting inhibitory cytokines (IL-10, TGF-

b and IL-35) (102, 103). In addition, CTLA-4 and LAG3 on the surface
of Tregs combined with CD80/CD86 andMHC II, respectively, on the

surface of DCs to induce immune tolerance of DCs (104, 105)

suggesting that cell-to-cell transfer of ncRNAs via exosomes might

be a novel mechanism by which Tregs regulated DCs function. Indeed

miR-150-5p and miR-142-3p, upon entry into DCs, promoted an

increase of IL-10 and a decrease of IL-6, which suppressed immune

response in tissues (106). DCs cells influence the differentiation of

Tregs as TGF-b selectively increased the expression ofmiR-27a in DCs

through transcription factor SP1, and this hindered DC-mediated Th1

and Th17 cell differentiation but promoted Tregs differentiation (107).

Akin to this was that overexpressed CTLA-4 in RORgt-deficient
Treg that were isolated from tumors, increased Foxp3 expression

in DCs cells (108). Exosomal miR-29a-3p and miR-21-5p

released by macrophages in the epithelial ovarian cancer

(EOC) microenvironment synergistically inhibited STAT3,

resulting in an imbalanced Treg/Th17 ratio, which created an

immunosuppressive microenvironment (109). Conversely, miR-15a/

16-1 alleviated immunosuppression in HCC by disrupting CCL22-

mediated communication between Kupffer cells and Tregs (110). The

positive feedback loop formed between MDSCs and Tregs contributes
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to the formation of the immunosuppressive microenvironment.

Tumor-induced MDSCs promoted the proliferation of Tregs in both

a TGF-b-dependent and highly expressed CD73 manner, enhancing

immunosuppressive effects (111, 112). Then, Tregs enhanced the

expansion and suppressive functions of MDSCs by promoting the

secretion of TGF-b and IL-35 (113, 114). MDSCs- and Tregs-

associated miRNAs have been identified in acute lymphoblastic

leukemia (115). Of note is that BMSCs-derived exosomal miR-23b-

3pmaintained Th17/Treg balance, by suppressing the PI3K/AKT/NF-

kB signaling pathway (116) (Figure 2).
4.3 Tregs in circulation

NcRNAs in circulation are involved in the regulation of Tregs.

MiR-21 expression was significantly elevated in the serum of diffuse

large B-cell lymphoma (DLBCL) patients, and it promoted

inducible co-stimulator (ICOS) expression on Tregs, thereby

assisting the COS ligand (ICOSL) on endothelial cells to crosstalk
Frontiers in Immunology 05
with Tregs (117). The upregulated miR-21 was also associated with

the different subsets of Th cells in esophageal squamous cell

carcinoma (ESCC) (118). Overexpressed miR-182 in peripheral

blood mononuclear cells (PBMCs) and serum from BC patients

increased the expression of FOXP3, TGF-b and IL-17 in T cells and

induced T cell differentiation into Tregs (119). Similarly, the

upregulated linc-POU3F3 in PBMCs recruited TGF-b, increased
the phosphorylation level of SMAD2/3, and ultimately promoted

the distribution of Tregs among peripheral blood T cells of GC

patients (120). MiR-27b-3p, miR-340-5p and miR-330-3p

negatively regulated TGF-b and IL-10 in CD8+ T cells, limiting

their differentiation into Tregs (121). Overexpression of miR-155 in

peripheral blood and tissues of cervical cancer patients (CC)

inhibited the expression of the target SOSC1 gene and induced an

imbalanced Th17/Treg ratio (122). MiR-141 targeted CXCL1/

CXCR2, which reduced Tregs recruitment in MPEs of NSCLC

(123). MiR-568 mimiced its target NFAT5, thus suppressing Tregs

cell activation and reducing Treg-derived IL-2 production (124).

On the other hand, the differentiated Tregs regulated, via positive
FIGURE 1

The abnormally expressed ncRNAs in Tregs affect the function of Tregs in multiple dimensions, such as affecting the differentiation of Tregs, the
expression of ICIs, and the release of cytokines. Thereby establishing an immunosuppressive microenvironment and promoting the occurrence and
development of cancer.
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feedbacks, tumor development and immune evasion. Lnc-EGFR

was overexpressed in Tregs and promoted HCC growth in an

EGFR-dependent manner (125).

Many questions on circulating ncRNAs remain unanswered.

Are they delivered in the form of exosomes or microvesicles, or are

they purely independent RNAmolecules? If they are free circulating

molecules, how do they overcome blood flow shear stresses and

avoid enzymatic degradation? Whatever the case, this long-distance

signaling is the basis for the formation of pre-metastatic niches and

molecular targets in liquid biopsies.
4.4 The role of immune-related ncRNA in
prognostic prediction models for cancer

Given the broad regulatory roles of ncRNAs in the

immunosuppressive microenvironment, their aberrant expression

is possibly related to tumor prognosis. Indeed, the predictive models

based on immune-related ncRNA expression contributed to

evaluating the prognosis of head and neck squamous cell

carcinoma (HNSCC) (126), GC (127), pancreatic cancer (128) and

hepatocellular carcinoma (HCC) (129). MiR-146a expression in

PBMCs was not only negatively correlated with Tregs but was also

a marker of NSCLC liquid biopsy (130). The expression of miR-21

was associated with the inhibition of CD8+ T and was a potential

diagnostic and prognostic marker for ESCC (131). The combined

expression of miR-101, miR-548b, miR-554, and miR-1202 was a

prognostic marker and potential therapeutic target for PCNSL (132).

FGD5-AS1 promotes apoptosis of CD8+ T by influencing the

expression of PD-L1 in NSCLC cells and was associated with poor

prognosis of patients (133). The exosome circUHRF1 secreted by
Frontiers in Immunology 06
HCC cells contributes to immunosuppressive by inducing NK cell

dysfunction and leading to adverse clinical outcomes (134).
5 Tregs-related tumor
immunotherapy strategies

The TME has an elevated ratio of Tregs to effector T cells, which

effectively suppresses autologous antitumor immune responses

(Figure 3). Thus, reducing the infiltration of Tregs into the TME

reverses this immunosuppression (135). This can be attained

through either depletion of Tregs or reducing recruitment into

the TME. Other ways include taking advantage of the plasticity of

Tregs to transform them into an anti-tumor phenotype and, finally,

applying ICIs therapy to change the biological behavior of Tregs.
5.1 Depletion and reduced recruitment
of Tregs

Blockades of Tregs by CD25 restored IFN-g production in

CD8+ T cells and improved the efficacy of anti-VEGF therapy,

which extended relapse-free survival durations in glioblastoma

patients (136). Blocking IL-2 signaling —the use of anti-IL-2/anti-

IL-2R to do so improved immune responses— impaired Tregs

activity. Indeed, treatments with IL-2 mutant proteins reduced the

number of Tregs and inhibited tumor growth (137). In addition,

miR-142-3p in Tregs mediated cyclophosphamide (CY) depletion

of Tregs by both targeting CD39 and altering intracellular ATP

levels (138). Exogenous supplementation of miR-200c combined
FIGURE 2

Exosomal ncRNAs mediate cell-to-cell interactions which centered on Tregs in the TME, participate in tumorigenesis and form an
immunosuppressive microenvironment.
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with the B16F10/GPI-IL-21 vaccine reduced Tregs recruitment,

activated antitumor immunity and reduced melanoma metastasis

(139). While depletion of Tregs appears to be a plausible therapeutic

direction, Tregs that infiltrated TMEs lacked unique identifiers, thus

creating a risk of clearing non-target Tregs, which may cause

unexpected physiological damage. More insights are thus needed

to make such treatments clinically feasible. Another promising

therapeutic strategy is blocking the migration of Tregs into the

TME by restricting intercellular communication that is based on

CCR4 (140), CCL20 (141), CCL3-CCR1/CCR5 and CXCL12-

CXCR4 (142). Relatedly, radiotherapy inhibited the specific

recruitment of Tregs in Lewis lung cancer by upregulating miR-

545 (143). A worthwhile research focus is the application of ncRNA

for similar therapeutics.
5.2 Predisposing Tregs to an
antitumor immunophenotype

This can be attained through first, curbing the transformation of

CD4+T to Tregs —miR-17-92 (59, 144) is involved in the

differentiation of CD4+ into Tregs— and second, inducing the

transformation of Tregs to Th1 type —Th1-like differentiation

was mediated by miR-27a (107). In addition, ncRNAs function as

transit points in the drug-mediated transformation of Tregs.

Shenmai injection inhibited the differentiation of CD4+ T cells

into Tregs through the miR-103/GPER1 axis, thereby improving

postoperative immune function in patients with papillary thyroid
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carcinoma (PTC) after 131 I radiotherapy (145). Ganoderma

lucidum polysaccharides (GLPS) increased miR-125b expression,

which then repressed Notch1 and Foxp3, restoring T cell function

and limiting HCC growth (146). It is worth emphasizing that the

oncogenic and tumor suppressor function of the Th17 subtype of

Tregs in the TME is currently not fully understood. This together

with the concomitant complex molecular regulation is a worthwhile

research topic.
5.3 The role of ICIs in Tregs in cancer

Altered expression of ICIs underlies cancer evasion from

immune surveillance (147), and immunotherapies that targeted

CTLA-4 and PD-1 were effective against a variety of cancers

(148). Indeed, targeting CTLA-4, TIGIT, PD-1, GITR and other

co-inhibitory receptors to limit the function of Tregs possibly is an

effective cancer treatment (149). Although tumor-infiltrating Tregs

are functionally conserved, and tumor-infiltrating effector T cells

are dysfunctional, co-suppressor receptors do not have opposing

effects on Tregs and effector T cells. Much remains to be clarified on

the effects of either checkpoint inhibition or stimulation not only on

Tregs stability and function but also on Tregs and effector T cell

activity and ratio (Figure 4).

5.3.1 CTLA-4
CTLA-4 was the first identified immune checkpoint of Tregs

that inhibited functions of CD4+ and CD8+ cells (150), and part of
FIGURE 3

Major immunosuppressive functions of Tregs.
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this inhibition was achieved through high-affinity binding to CD80

and CD86 (151). Abnormally expressed ncRNAs in Tregs were also

an important factor in regulating CTLA-4 expression (108), as miR-

145 negatively regulated the expression of CTLA-4 by binding to its

3’-UTR in Tregs (59). Thus, anti-CTLA-4 therapy could enhance

the functions of effector T cells, only after surmounting these two

challenges. First, anti-CTLA-4 therapies are yet to achieve the same

effects as the current benchmark, anti-PD-1 therapies. Indeed,

although anti-CTLA-4 mAbs were effective in depleting Foxp3+

Tregs in mouse tumors, similar success has not been attained in

human tumors (151) because anti-CTLA-4 mAbs depleted Tregs in

an Fc-dependent mechanism. Thus, antibodies with improved FcgR
binding profiles were able to induce better intratumoral Tregs

depletion and increased CD8+/Tregs ratio (152). This is possibly

due to high antibody-dependent cell-mediated cytotoxicity (ADCC)

and cellular phagocytosis (ADCP) (153, 154). On the other hand,

treatment with anti-CTLA-4 mAb combined with IL15/IL15Ra
complex depleted Tregs, which might have been related to the

activation of NK cells (155). Yet even low-doses of anti-CTLA-4

combined with anti-PD-1 therapy led to immunotherapy-related

adverse effects (irAEs) (156). Fortunately, recent results showed that

the introduction of a tyrosine-to-histidine mutation in the

polypeptide chain improved the pH sensitivity of anti-CTLA-4

mAb, thereby avoiding CTLA-4 downregulation and effectively

depleting intratumoral Tregs, which then reduced occurrences of

irAEs (157). Thus, either TLA-4 and OX40 bispecific antibodies or

EZH2-based anti-CTLA-4 therapy are putative next-generation

immunotherapies (158). Lastly, it was suggested that the
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expression of CTLA-4 maintains the balance between effector T

cells and Tregs and adjusting its expression through RNA-related

technologies was a therapy likely to destroy the immunosuppressive

TME (159). The RP11-424C20.2/UHRF1 axis in HCC and

thymoma affects CLTA-4 expression in an IFN-g-dependent
manner (160).

5.3.2 PD-1/PD-L1
Through binding with its ligand (PD-L1 or PD-L2) on the surface

of Tregs, PD-1 restricted activation of the PI3K/AKT/mTOR

pathway by dephosphorylating CD28 (161, 162). Further,

exogenous TGF-b and PD-L1 induced T cells to differentiate into

Tregs (163). No wonder anti-PD-1/PD-L1 therapy is patently the

most effective current anti-tumor immunotherapy in clinical practice

(164). In terms of ncRNA regulation, miR-378a-3p affected Tregs

differentiation by directly regulating PD-L1 in HCC (165). Similarly,

aberrantly activated Hsa_circ_0136666/miR-497/PD-L1 axis in CRC

regulated Treg-mediated immune escape in a similar manner (166).

5.3.3 TIGIT
TIGIT competes with CD155 on the cell surface, and this

influences the phenotypic variation of Tregs (167). TIGIT is

transcriptionally regulated by FOXP3 and is therefore regarded as an

identifier of pure and stable Tregs (168, 169). TIGIT+ Tregs were more

effective at suppressing TH1 and TH17 cell responses than TIGIT-

Tregs. Functionally, TIGIT works by inhibiting the PI3K–AKT

pathway (170). Notably, the enrichment of TIGIT+ Tregs has been

detected in various cancer groups (171, 172). In terms of ncRNA
FIGURE 4

The ncRNAs in cancer cells and Tregs affect the expression of ICIs and ligands which induce immunotherapy resistance.
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regulation, ENST00000630242 (lncRNA) was involved in the

expression of TIGIT in NSCLC through a ceRNA mechanism (73).

5.3.4 LAG3
LAG3 is a co-inhibitory receptor that acts both intracellularly

and extracellularly in Tregs cells. It is required for Tregs cell-

mediated suppression of effector T cell proliferation (173, 174).

On the other hand, LAG3 is highly expressed on IFNg+FOXP3+
TH1-like Tregs and may be a potential marker of TH1-like Tregs.

Similarly, the prevalence of LAG3+Treg in peripheral blood was

higher in cancer patients than in healthy volunteers, but altogether

lower than in the TME (175, 176). However, like CTLA-4, LAG3

enabled Tregs proliferation and limited Treg accumulation at sites

of inflammation (104, 177). Moreover, the expression of LAG3 was

proportional to that of CD25, which counteracted both activation of

Treg cells and specific upregulation of LAG3-LAG3 functions in

Treg are complex (177).

5.3.5 TIM3
TIM3 is not only highly expressed in tissue-Tregs but also often co-

expressed with other inhibitory receptors (178). Infiltration of

TIM3+Tregs into the TME of various cancers preceded that of the

peripheral blood (179). Furthermore, TIM3+Tregs were a resident

Tregs subset in colon cancer (180). In relation to ncRNA regulation,

overexpressed miR-28 in melanoma-bearing mice inhibited the

expression of PD-1 and TIM3 on Tregs and induced the depletion of

TIM3+ Foxp3+ Tregs (80).

5.3.6 NRP1
NRP1 expressed by Tregs was an important molecule in the

discrimination between thymus- and peripherally-derived Tregs

(181). It was specifically expressed in immunosuppressive

environments such as cancers and was a potential VEGF receptor

(182). The expression of NRP1 promoted not only interactions

between Tregs and DCs but also peripheral immune tolerance (183,

184). In relation to ncRNA regulation, deficiency of miR-155

impeded NRP1-mediated immune tolerance (185).
6 Conclusions and perspectives

Tregs are a key mediator of immune self-tolerance, which in turn

facilitates autoimmunity and tumor immunosuppression. Moreover,

Tregs are a highly plastic and heterogeneous cell population. Their

immunosuppressive effects are a major obstacle to effective antitumor

immunity. Thus, augmenting traditional cancer treatment methods

with therapies that target these immunosuppressive effects can create

effective anti-tumor effects that are especially relevant in the field of

immunotherapy. The complex functions of intratumoral Tregs are

affected by both exogenous and endogenous factors. Important

endogenous factors are abnormal transcription and reprogrammed

metabolism, whereas important exogenous factors are cytokines,

chemokines, exosome contents, and metabolites in TME. Various

ncRNAs patently play powerful roles in inducing the differentiation

of Tregs and regulating the expression of ICIs. Thus, a possible strategy

for improving cancer treatments is using immunotherapies that target
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ncRNA. Indeed, clinical trials of ncRNA-focused tumor therapies are

ongoing (NCT03830619, NCT04269746, NCT04767750,

NCT03057171), yet not one study has validated ncRNAs as targets

for regulating Tregs in cancer immunotherapy. Exacerbating this

dearth of research on ncRNAs-targeting therapies is the few studies

on ncRNAs in Tregs—even among these few studies, the majority are

on autoimmune diseases when the most impactful focal areas for

cancer research would be to not only understand the role of ncRNAs in

tumor-infiltrating Tregs and but also construct corresponding

regulatory networks.

Tumor immunotherapy that targets Tregs remains both promising

and challenging. For example, Tregs-related therapy has shifted from

“elimination” to “inducing the functional differentiation of Tregs

towards Th1-like Tregs”. Thus, exploring targets in this new

direction, especially those related to the regulatory roles of ncRNAs,

is a worthwhile research focus. A role of ICIs is Tregs markers and

triggers for Treg-mediated inhibitory effects. Thus, it is alsoworthwhile

to explicate how ncRNAs regulate these effector molecules.

In conclusion, the elaborate molecular mechanisms of how

ncRNAs affect the differentiation and regulation of Tregs in

various cancers remain enigmatic. Further functional studies on

Tregs will not only aid our understanding of the role of ncRNAs in

cancer immune responses and tumor immunotherapy but also

develop Tregs as cancer immunotherapy targets.
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