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Cellular metabolism plays a central role in the regulation of both innate and

adaptive immunity. Immune cells utilize metabolic pathways to modulate the

cellular differentiation or death. The intricate interplay between metabolism and

immune response is critical for maintaining homeostasis and effective antiviral

activities. In recent years, immunometabolism induced by viral infections has

been extensively investigated, and accumulating evidence has indicated that

cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-

induced changes in cellular metabolism lead to the reprogramming of

metabolites and metabolic enzymes in different pathways (glucose, lipid, and

amino acid metabolism). Metabolic reprogramming affects the function of

immune cells, regulates the expression of immune molecules and determines

cell fate. Therefore, it is important to explore the effector molecules with

immunomodulatory properties, including metabolites, metabolic enzymes, and

other immunometabolism-related molecules as the antivirals. This review

summarizes the relevant advances in the field of metabolic reprogramming

induced by viral infections, providing novel insights for the development

of antivirals.

KEYWORDS

immunometabolism, innate immunity, adaptive immunity, immunoevasion,
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1 Introduction

Immunometabolism is involved in various disorders, including viral infections,

cancers, and autoimmune diseases (1–4). Changes in the cellular microenvironment

(e.g., hypoxia or pathogen invasion) result in the differences of energy requirements for

cell proliferation and survival (5). Notably, viral infections usually induce the changes of

cellular metabolism, which provide essential materials for the virus life cycle, including

viral replication and progeny virus production (6–8). Additionally, cellular metabolic

changes can alter the cellular immune responses to modulate viral replication (6).
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Cellular metabolism is also indispensable for the functions of

immune cells, including lymphocytes, macrophages and

neutrophils. For example, glutamine is an essential nutrient for

the proliferation of lymphocytes, and is also required for the

immunoregulatory activities of cells (9). Interestingly, immune

cells exhibit different patterns of energy metabolism in the

activated and resting states (Table 1). Metabolic pathways are

usually associated with signal transduction and the differentiation

of immune cells, and different immune cell subpopulations utilize

different metabolic programs depending on their state and

environment. It is generally accepted that metabolic signaling

determines the cell fate (21). Reportedly, inhibition of

phosphoglyceraldehyde dehydrogenase (PHGDH)-mediated

serine metabolism can enhance the antiviral activities of

macrophages, which is due to the activation of the TBK1-IRF3

signaling pathway by the downregulation of the PHGDH-mediated

ATP6V0d2 (22), indicating that PHGDH could act as a potential

antiviral target in macrophages. Altogether, the interplay between

viral infections and immune cell metabolism is a complex and

rapidly evolving field of research.

Viruses depend entirely on cellular metabolism for the energy

and nutrients for replication. In contrast, cellular metabolites,

metabolic regulators, and metabolic enzymes involved in cellular

metabolism including glucose, lipids, amino acids and nucleotide

metabolism, exert antiviral activities by regulating the host immune

responses (6, 23). However, these metabolic processes can be

hijacked by viruses to maintain the energetic and synthetic

requirements of viral progeny. Some viruses mainly activate core

catabolic processes (e.g., glycolysis and the tricarboxylic acid cycle)

to maintain the energy, while others mainly modulate anabolic and

biosynthetic processes (e.g., nucleotide, fatty acid and amino acid

synthesis) to maintain the synthetic requirements (24). More

specifically, different viruses lead to multiple alterations in cellular

metabolites, metabolic regulators, and metabolic enzymes in

different ways, which directly or indirectly affect cellular immune

responses and regulate viral infections. Previous studies have shown

that infection with coronavirus (25), herpes virus (26), or African
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swine fever virus (27) can induce alternations in immune cell

metabolism. Therefore, elucidation of the effects of viruses on

cellular metabolites, metabolism-related molecules and metabolic

enzymes will facilitate the development of novel antiviral

strategies (28).
2 Interactions between glucose
metabolism signaling and
viral immunoevasion

Glucose is the most important energy source and the main

nutrient involved in cellular metabolism (29). Cellular respiration is

divided into three steps: the Embden-Meyerhof pathway (EMP), the

tricarboxylic acid (TCA) cycle, and oxidative phosphorylation

(OXPHOS). The intermediate product of EMP, 6-phospho-

fructose, is involved in the hexosamine biosynthetic pathway

(HBP), providing uridine 5’-diphosphate N-acetylglucosamine

(UDP-GlcNAc) for target protein modifications, and is also

involved in the epidermal growth factor receptor (EGFR)-

mediated glucose and glutamate metabolism (30).

Several viruses can modulate the signaling processes involved in

glucose metabolism in immune cells by hijacking cellular metabolites,

metabolic regulators, and metabolic enzymes, such as glucose

transporter protein (GLUT1), hexokinase 2 (HK2), and lactate

(Figure 1). This modulation leads to a shift in energy metabolism

from OXPHOS to glycolysis, which provides a substrate for the

production of several biomolecules, including TCA cycle

intermediates required for fatty acid anabolism and ribose phosphate

pyrophosphate (PRPP) or NADPH for a base material of nucleotide

anabolism to facilitate viral replication (31). Reportedly, human

cytomegalovirus (HCMV) infection can promote the biosynthesis of

glycolysis, metabolic enzymes, and pyrimidine nucleotides, which

facilitates viral replication (32). The changes in metabolic signaling

induced by viral infections require further investigation, which may

guide the development of antiviral strategies.
TABLE 1 The regulation of different cellular metabolism pathways.

Cell types Major energy metabolic pathways Mediators References

M1
macrophages

Glycolysis HIF-1a, IRF3, and
IRF5

(10)

Neutrophils Glycolysis and glutaminolysis HIF-1a (11)

M2
macrophages

Oxidative phosphorylation and fatty acid oxidation PPARg (12)

Näive T cells Oxidative phosphorylation HIF-1a (13)

Memory T
cells

Oxidative phosphorylation and fatty acid oxidation AMPK (14–16)

Effector T
cells

Oxidative phosphorylation, glycolysis, and amino acid metabolism (arginine, tryptophan, serine, leucine,
glutamine, and cysteine)

c-Myc and PI3K/Akt/
mTORC

(17)

Effector B
cells

Oxidative phosphorylation and glycolysis HIF-1a (18)

NK cells Glycolysis SREBP and c-Myc (19, 20)
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2.1 The involvement of the metabolic
reprogramming of enzymes in the
glucose metabolism pathway and
viral immunoevasion

Upregulation of glycolysis-associated GLUT and enzyme

expression drives the proliferation and activation of T cells and

the secretion of cytokines such as IL-2. GLUT and HK2 are vital

enzymes in the glycolytic process (33). Glycolytic reprogramming

involves increased expression of glucose transporter proteins,

particularly GLUT1, which increases glucose uptake and allows

immune cells to compete for glucose in a nutrient-restricted

environment, and increased glucose uptake usually promotes viral

replication (34, 35). The CD4+ T cells infected with human

immunodeficiency virus type 1 (HIV-1) show increased glucose

and glutamine metabolism due to the high-level GLUT1, which

enhances HIV-1 infection (36, 37). Importantly, blockade of

GLUT1 signaling or siRNA-mediated GLUT1 downregulation

significantly impairs the HIV-1 infection in human T cells (38).
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Dengue virus (DENV) also induces the expression of GLUT1 and

HK2 to promote glucose uptake and the downstream glycolytic

processes to favor viral replication (39). In the rhinovirus (RV)-

infected cells, viral replication is dependent on the availability of

glucose and glutamine, which is affected by increasing

glycogenolysis and upregulating GLUT1 expression (17). The

envelope protein of white spot syndrome virus (WSSV) hijacks

GLUT1 to promote viral infection (40). Furthermore, the Epstein-

Barr virus (EBV) LMP1 protein can enhance transcription of

GLUT1, which promotes aerobic glycolysis and the tumorigenic

growth of NPC cells through the mTORC1/NF-kB signaling (41).

The elucidation of interplay between GLUT1 and viruses

will provide a direction for the development of effective

antiviral strategies.

HK2 is an important enzyme in the glycolytic pathway and a

kinase that modifies the phosphorylation of proteins to regulate

immune signaling pathways. HK2 can activate the NF-kB signaling

pathway by phosphorylating and degrading IkB. It has been

demonstrated that aberrantly activated aerobic glycolysis in tumor
FIGURE 1

The crosstalk between glucose metabolism and innate immunity pathways. Glucose enters the cell and produces pyruvate, which is converted to
lactate under hypoxic conditions. When high concentrations of fructose 6-phosphate are produced, the remaining fructose 6-phosphate enters the
HBP pathway to produce UDP-GlcNAC. Acetyl-CoA enters the tricarboxylic acid cycle in the presence of sufficient oxygen, and is oxidized to
produce citrate, eventually generating carbon dioxide and water, and releasing a large amount of energy. Glucose metabolism-related GLUT1, HK,
LADH, OGT, HIF-1a, lactate, citrate, and succinate play important roles in inflammation, viral infection, and immunity (red lines indicate activation,
blue lines indicate inhibition). 3-PG, 3-phosphoglycerate; 1,3-BPG, 1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate;
PYR, pyruvate; G3P, glyceraldehyde 3-phosphate; HK, hexokinase; LDH, lactate dehydrogenase; HBP, hexosamine pathway; PPP, pentose phosphate
pathway. The red circle represents increased glucose intake. The figure was created by the BioRender software.
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cells promotes the segregation and binding of HK2 from

mitochondria to cytoplasmic IkB, where HK2 acts as a protein

kinase to phosphorylate IkB, leading to IkB degradation and NF-kB
activation-dependent PD-L1 expression to escape tumor immunity

(42) (Figure 1). Notably, the NF-kB p65 plays a key role in the HBx-

induced spontaneous hepatocellular carcinoma. The hepatitis B

virus (HBV) x protein can activate the NF-kB signaling via the

p65 phosphorylation by HK2 to promote immunoevasion of the

virus and enhance glycolysis, further activating PI3K/Akt signaling

to increase hepatocyte proliferation (43). HK2 and lactate can

suppress the activation of the retinoic acid-inducible gene I (RIG-

I)-mitochondrial antiviral signaling protein (MAVS) pathway by

inhibiting MAVS. HK2 and glycolysis-derived lactate also play

important roles in the immunoevasion of HBV and the regulation

of energy metabolism in innate immunity during HBV infection. A

previous study showed that HBV isolates MAVS from RIG-I by

forming a ternary complex including hexokinase (HK), which

inhibits the RLR signaling pathway through LDHA-dependent

lactate production (44). Influenza A virus (H1N1) utilizes HK2

and the pyruvate kinase M2 (PKM2) to enhance glycolysis and

further promote viral replication (45). These studies highlight the

importance of the HK enzyme in regulating viral infection through

the regulation of innate immune signals, revealing the possibility of

a potential antiviral target.

Lactate dehydrogenase (LDH) is a crucial enzyme in glycolysis

in inflammatory macrophages (M1 phenotype). Lactate

dehydrogenase B (LDHB) can regulate the NF-kB signaling

pathway through the mitochondrial autophagy pathway to

facilitate viral replication. LDHB negatively regulates classical

swine fever virus (CSFV) growth, whereas CSFV infection inhibits

LDHB production and reconstructs the glycolytic metabolic

pathway in immune cells by the NS3 protein (46, 47).

Interestingly, LDHA expression restricts viral protein synthesis in

the ARV-infected cells, whereas the avian reovirus (ARV) sA
protein inhibits LDHA expression and upregulates HIF-1a and

glycolytic enzymes to promote glycolysis level, thereby favoring

viral replication (48). Furthermore, LDH can increase interferon

gamma (IFN-g) expression by promoting histone acetylation (49).

Reportedly, glucose consumption is restricted by the inhibition of

LDH in CD4+ T cells, thus reducing the production of acetyl-CoA,

which leads to insufficient histone acetylation modification and

reduced IFN-g production (49). However, the effect of LDH on

histone acetylation during virus replication remains largely

unknown, and requires further investigation.

Hexosamine, a key metabolite linking glucose metabolism and

immunity, activates inflammasomes, innate immune signaling

pathways and autophagy. N-acetylglucosamine transferase (OGT)

is a critical enzyme in the hexosamine pathway that mediates the

glycosylation of target proteins with UDP-GlcNAc to regulate host

antiviral immunity and influence viral infections. Hexosamine can

induce activation of the inflammatory response and inflammatory

cytokine expression through crosstalk between the hexosamine

biosynthetic pathway and O-GlcNAc protein modification (50).

OGT overexpression promotes O-GlcNAc modification of

thioredoxin interacting protein (TxNIP) to facilitate the

interaction between TxNIP and NLRP3, which promotes IL-1b
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production in HEK293T or INS1 832/13 cells (51). OGT is

important for NLRP3 activation; however, its activation during

viral infections remain largely unknown and requires further

investigation. Alternatively, innate immunity can be activated by

O-GlcNAc protein modification to regulate viral infection, such as

influenza A virus (IAV) and Vesicular stomatitis virus (VSV) (52).

A previous study showed that supplementation with D-glucosamine

increases O-GlcNAc modification of MAVS to inhibit viral

replication, which protects mice against IAV or vesicular

stomatitis virus (VSV) challenge (52). During IAV infection,

OGT mediates the O-GlcNAcylation of IFN regulatory factor 5

(IRF5) on serine-430, and IAV utilizes the hexosamine pathway to

increase the expression of proinflammatory cytokines by

stimulating IRF5 leading to in tissue injury (50). VSV infection

can enhance HBP activity and O-GlcNAcylation of the downstream

protein MAVS at S366, which leads to ubiquitination of the K63

link of MAVS to activate downstream antiviral signals in

macrophages (53). Hexosamine can also activate the autophagy

pathway to regulate viral infections, a catabolic process that is

essential for maintaining cellular homeostasis. It has been shown

that low-levels glucose cause decreases in UDP-GlcNAc levels and

induce autophagy via the AMPK-Akt/mTOR signaling in the HBV-

infected cells (54). Low-level hexosamine can promote HBV

replication by inducing autophagosome formation and inhibiting

autophagic degradation in vitro and in vivo (54, 55). In addition,

low-dose glucosamine treatment promotes the replication of IAV,

enterovirus 71 (EV 71), and VSV in vitro (55). O-GlcNAc

modification can regulate iron death through iron autophagy and

mitochondrial autophagy (56). SNAP-29 is one of the components

of the soluble N-ethylmaleimide-sensitive factor attachment protein

receptor (SNARE) complex that promotes autophagic vesicle

maturation. A recent study revealed that OGT-mediated SNAP-

29 O-GlcNAc modification in nematode-infected mammalian cells

facilities the activation of autophagy, suggesting that OGT could

indirectly promote the maturation of autophagic vesicles in cells

(57) (Table 2).
2.2 The interplay of activation of
metabolism-related molecules in the
glucose metabolic pathway and
viral immunoevasion

HIF-1a regulates the gene transcription of key enzymes

(GLUT1, PKM2, LDHA etc.) (Figure 1) in the glycolytic pathway,

which is involved in the modulation of immune responses. Due to

its major role in the regulation of glycolysis, HIF-1a can be targeted

and hijacked by viruses for viral infections. A recent study has

shown that Newcastle disease virus (NDV) infection results in the

inhibition of TCA cycle flux and an increase in EMP flux through

stable expression of HIF-1a, indicating a shift in energy metabolism

from OXPHOS to EMP, which promotes the viral replication,

indicating that NDV infection induces mitochondrial damage and

hijacks cellular metabolism to promote a shift toward glycolysis to

favor viral replication (58). Additionally, under hypoxic conditions,

the Kaposi’s sarcoma-associated herpesvirus (KSHV) vGPCR
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protein induces stable expression of the HIF-1a protein, which

leads to metabolic Warburg phenotypic changes associated with

KSHV and promotes viral replication in the KSHV-infected PBMCs

(18). SARS-CoV-2 infection triggers mitochondrial reactive oxygen

species (ROS) production, which stabilizes HIF-1a and promotes

glycolysis, thereby contributing to SARS-CoV-2 infection and

cytokine production in SARS-CoV-2-infected monocytes and

macrophages (59, 60). Therefore, this broad-spectrum effect of

HIF-1a on viruses reveals its importance. Moreover, HIF-1a
regulates Th9 cell differentiation and exerts antitumor functions.

TGF-b1 and IL-4 promote naive CD4+ T cells to differentiate into

immunoregulatory IL-9-producing helper T (Th9) cells and induce

EGFR expression in the EGFR-HIF-1a pathway. EGFR is activated

upon binding to the ligand double-regulated protein (AREG),

which triggers downstream signaling via HIF-1a and activates the

IL-9 and NOS2 promoters, facilitating IL-9 production (61).

Notably, HIF-1a is a transcriptional repressor of IRF5 and IRF3

(62), which inhibits the production of type I IFNs. For example,

SARS-CoV-2 infection triggers an inflammatory cascade, leading to

elevated HMGB1 levels that inhibit IRF5-mediated type I IFN

production under hypoxic conditions, only through the NF-kB
signaling pathway to trigger monocytes to produce inflammatory

cytokines. High mobility group box 1 (HMGB1) can activate NF-

kB, IRF3 and IRF5 to release proinflammatory cytokines and I-IFN

under normoxia, but SARS-CoV-2 infection can enhance HIF-1a
expression, which inhibits IRF3 and IRF5 activity, leading to severe

disease in COVID-19 patients (62). HIF-1a is a key activator of

inflammatory responses in the SARS-CoV-2-infected PBMCs. HIF-

1a expression is correlated with immune-inflammatory cytokine

production. SARS-CoV-2-encoded ORF3a induces mitochondrial

damage and mitochondrial-ROS production, thus promoting the

stable expression of HIF-1a and resulting in cytokine production to

enhance the inflammatory response, which is also observed in the

VSV or SV-1 infection (58). In particular, HIF-1a is regulated by

glycolytic metabolites and further stabilized by succinate and nitric
Frontiers in Immunology 05
oxide (NO) (61). a-Ketoglutarate (a-KG), a TCA cycle metabolite,

is regulated by HIF-1a in Th9 cells. a-KG negatively regulates the

stability of HIF-1a. Succinate increases the stability of HIF-1a by

impairing prolyl hydroxylase 2 (PHD2) activity, thereby enhancing

the antitumor activities of Th9 cells and macrophages (61, 63). HIF-

1a can also promote programmed death ligand 1 (PD-L1)

expression (64) to inhibit T-cell activation and promote

immunoevasion in tumor cells. The high-risk human papilloma

virus (HR-HPV) E1/E6 increases HIF-1a levels in cervical cell lines,

thereby enhancing the Warburg effect (65–67).
2.3 The crosstalk of the metabolic
reprogramming of metabolites in the
glucose metabolic pathway and
viral immunoevasion

Lactate is an end product of the glycolytic pathway. Lactate can

promote the conversion of macrophages to M2 macrophages by

modifying histones and regulating polarization-related genes (68),

lactate promotes the formation of immunosuppressive M2

macrophages via the induction of arginase differentiation after

lactate uptake by macrophages. In addition to modifying histones,

lactate regulates viral immunoevasion through innate immune

signaling pathways. MAVS is the protein downstream of RIG-I

and is involved in crosstalk between the antiviral immune signaling

pathways and glycolytic metabolic pathways. Basically, MAVS links

energy metabolism and innate immunity through the recognition of

lactate (69). Inactivation of glycolysis is essential for the promotion

of RLR-mediated type I IFN production. Upon activation of RLR

signaling, activated RIG-I “traps” MAVS through the CARD

domain to activate downstream molecules and produce IFNs.

Then, the oligomerized MAVS dissociates from HK2, which

results in a reduction of HK activity, which in turn leads to the

inhibition of glycolysis (33). Remarkably, viral infections promote
TABLE 2 The relationship between OGT and immunometabolism.

Pathways involving OGT Regulated
proteins

Mechanisms Responses to
O-GlcNAcylation

Pathogens References

Innate immune signaling pathways IRF5 OGT mediates the O-GlcNAcylation of IRF5 on
serine 430 to promote IRF5 activation

Promoting anti-viral
response

IAV (50, 52)

MAVS OGT-mediated O-GlcNAcylation of MAVS on
S366 promotes its K63-linked ubiquitination to
activate antiviral signals

Promoting anti-viral
response

VSV (52, 53)

Inflammatory response NLRP3,
TxNIP

TxNIP O-GlcNAcylation in INS1832/13 cells is
modulated by OGT or OGA activity to activate
NLRP3

Promoting IL-1b
production

Unknown (51)

Autophagy SNAP-29 OGT-mediated O-GlcNAcylation of SNAP-29 is
on Ser 2, Ser 61, Thr 130, and Ser 153

Autophagy inhibition C. elegans (57)

Akt and mTOR Akt and mTOR undergo O-GlcNAcylation antagonizing
autophagosome-
lysosome fusion and
inhibiting viral
replication

HBV (55)
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glycolysis, and excess lactate inhibits MAVS and type I IFN

production by binding to the transmembrane (TM) domain of

MAVS directly and preventing its aggregation. The increased lactate

levels in the ASFV-infected porcine alveolar macrophages (PAMs)

can inhibit IFN-b production via the RIG-I-MAVS signaling

pathway, which can contribute to viral immunoevasion (70).

HBV inhibits RLR signaling via the LDHA-dependent lactate

production (44). Similarly, LDHA-dependent lactate promotes

IAV replication by inhibiting the MAVS-dependent type I IFN

response (71). However, LDHA-dependent lactate inhibits SARS-

CoV-2 replication (71). There exists interplay between lactate and

innate immune responses, indicating that lactate could act as an

antiviral target.

Itaconate, a derivative of the TCA cycle citrate, exhibits anti-

inflammatory effects and is closely associated with the cGAS-

STING signaling pathway (9). A recent study showed that the

cell-permeable derivative of itaconate (4-octyl-itaconate, 4-OI)

inhibits IL-1b transcription by activating the transcription factor

Nrf2, which acts as a transcriptional repressor of IL-1b (72).

Inhibition of STING expression is observed during metabolic

reprogramming of TLR signaling, and it can also be induced by

the TCA cycle via the activation of Nrf2. 4-OI, a cell-permeable

derivative of the metabolite oxalic acid, can activate Nrf2 to induce

an IFN-independent antiviral program, thereby inhibiting viral

replication and suppressing inflammatory responses induced by

SARS-CoV-2 infection (72). Furthermore, it has been reported that

treatment with Nrf2-inducing agents, such as 4-OI, can sufficiently

reduce the STING-dependent type I IFN release in the SAVI-

derived fibroblasts, reducing the STING-associated inflammatory

disease (9).

Succinate is a TCA cycle intermediate that contributes to the

inflammatory response or apoptosis through stabilization of HIF-

1a expression or succinylation of proteins (73). It has been shown

that succinate can stabilize HIF-1a expression and then induce the

expression of IL-1b (Figure 1). Succinate is an endogenous danger

signal that stabilizes HIF-1a, which specifically regulates the

expression of IL-1b and other HIF-1a-dependent genes, leading
to protein succinylation and playing an important role in cell

apoptosis or tumor proliferation (63, 74). Succinate promotes

HIF-1a stabilization by inhibiting PHD2 activity in macrophages.

Succinate can induce the expression of IL-9, HIF-1a and Th9-

related genes in Th9 cells, and the induction of Th9 cell

differentiation by succinate may occur via inhibiting PHD2 and

promoting HIF-1a activity; therefore, succinate treatment enhances

the antitumor activity of Th9 cells (61). Succinate is oxidized by

succinate dehydrogenase to produce fumarate. Fumarate and its

derivatives monomethyl fumarate (MMF) and dimethyl fumarate

(DMF) are potent immunomodulators and antioxidants that can

activate Nrf2 and modulate oxidative stress in cells, which can

suppress HIV replication (75). The Nrf2 agonist DMF significantly

inhibits SARS-CoV-2 replication and the expression of

inflammatory genes (72). This inhibitory effect has also been

observed in infection with viruses, such as herpes simplex virus 1

and 2 (HSV-1 and -2), vaccinia virus (VACV), or Zika virus
Frontiers in Immunology 06
(ZIKV), indicating that Nrf2 exhibits the extensive antiviral

activities (72).

3 Interactions between lipid
metabolism signaling and
viral immunoevasion

Lipid is the general term for fats and lipids, such as triacylglycerols

or triglycerides, but lipids also include phospholipids, glycolipids,

cholesterol and its esters.

Fatty acid biosynthesis provides sufficient substrates for viral

replication. There are two key metabolic enzymes involved in fatty

acid biosynthesis, acetyl-CoA carboxylase (ACC) and fatty acid

synthase (FASN). Notably, the expression of both FASN and ACC,

is regulated by the sterol regulatory element binding protein 1

(SREBP1) family members 1a and 1c, which can regulate fatty acid

synthesis (76, 77) (Figure 2).

Cholesterol is mainly localized in the cell membrane and also

involved in the immunoevasion of viruses. In metabolically

reprogrammed cells, cholesterol is thought to be a substance with

several different biological functions, such as immunosuppression,

viral replication (78), attachment (79), and entry (80).

The metabolism of cholesterol and fatty acids can be

reprogrammed during viral infections, which regulates the host

immune responses as well as viral replication. Therefore,

understanding the potential mechanisms underlying metabolic

reprogramming of cellular metabolites, metabolic regulators, and

metabolic enzymes in the cholesterol and fatty acid metabolic

pathways during viral infections can provide new insights into the

development of therapeutic strategies for combating viral

infections, such as ACC and SREBP.
3.1 The association of the fatty acid
metabolic pathway and
viral immunoevasion

The enzymes associated with the fatty acid biosynthesis

pathway not only meet the requirements of the viral life cycle but

also participate in the antiviral response. Reportedly, deletion of the

fatty acid synthesis-related genes SCD2 and ACC results in reduced

production of monounsaturated fatty acids (MUFAs), leading to the

activation of the cGAS-STING pathway-mediated interferon-

stimulated gene (ISG) expression due to the spontaneous

production of IFN-a by CD4+ T cells, thereby increasing the

antiviral activities of IAV (81). Furthermore, a negative feedback

regulatory pathway between STING and FADS2/SCD1 fine-tunes

the generation of polyunsaturated fatty acids (PUFAs) associated

with inflammatory response, which in turn suppresses the STING-

related inflammatory response (82).

The members of the SREBP family modulate the T-cell

metabolism and the gene transcription of immune-associated

molecules. CD8+ T cells with deficient SREBP activity are unable
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to undergo metabolic reprogramming and blastogenesis, which

results in the inability to generate a functional T-cell response

(83). Furthermore, the SREBP1c isoform is involved in Th17 cell

differentiation and binds directly to the IL-17 promoter to suppress

the AhR-induced IL-17 expression in CD4+ T cells (84). In addition,

the SREBP1a isoform is required for myeloid cells to exert

proinflammatory effects, including the secretion of IL-1b, which
promotes the expression of NLRP1, a key component of the

inflammasome (85). Notably, SREBP1a is required for

macrophages to exert proinflammatory effects, including secretion

of IL-1b and the expression of NLRP1 (a key component of the

inflammasome) (85) (Figure 2).

NF-kB inhibition induced by the peroxisome proliferator-

activated receptor gamma (PPAR-g) activation is the major

reason for virus hijacking of fatty acid metabolism to trigger

immunoevasion (86). PPAR-g activation inhibits HIV genomic

LTR promoter activity and suppresses the NF-kB response,

thereby reducing NF-kB occupancy of the LTR promoter in the

infected cells and ultimately impairing HIV replication in

macrophages (87). Although both the HIV and HCMV genomes

contain elements responsive to NF-kB, the major immediate early

promoter (MIEP) contains two PPAR response elements (PPRE) in
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the HCMV-infected cells. In fact, PPAR-g promotes viral

replication through transactivation of the HCMV promoter MIEP

by two PPREs in the HCMV-infected cells (88). The increased

activity of PPAR-gmay promote both viral replication and host cell

survival. Overexpression of PPAR-g promotes IAV replication by

inhibiting IFN signaling in alveolar macrophages (89).
3.2 The correlation of the cholesterol
metabolic pathway and
viral immunoevasion

Apolipoprotein E (ApoE) is linked to a variety of immune

responses, including the suppression of T-cell proliferation, the

modulation of macrophage function, lipid antigen transport to

natural killer T cells, and the regulation of inflammation or

oxidation. Proinflammatory cytokines induce the downregulation

of ApoE in monocytes. However, TGF-b promotes the expression

of ApoE. In addition, ApoE is required for lipoprotein transport.

ApoE is known to promote the entry, assembly, and transmission of

hepatitis C virus (HCV) (90–92). ApoE has been shown to

modulate IAV infection in vitro and in vivo, and ApoE knockout
FIGURE 2

The engagement of fatty acid and cholesterol metabolism in innate immunity. The TCA cycle provides the precursor (citrate) for fatty acid synthesis
(FAS). Acetyl-CoA synthesizes a variety of acetyl-CoA-based fatty acids de novo through the further activity of ACC and FASN using fatty acids. Lipid
metabolism-related SREBP, 25HC, FANS, SCD2/ACC, and PPAR-g play important roles in antiviral immunity (red lines indicate activation, blue lines
indicate inhibition). ACC, (acetyl-CoA carboxylase); FANS, (fatty acid synthase); SREBP, sterol regulatory element binding protein; CH25H, cholesterol
25-hydroxylase. The figure was created by the BioRender software.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1228811
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1228811
markedly increases the susceptibility of mice to IAV. Notably, when

cells are unable to synthesize ApoE, cell cholesterol homeostasis is

disrupted to promote IAV attachment (93).

Cholesterol 25-hydroxylase (CH25H) is the key enzyme that

regulates cholesterol metabolism and catalyzes the conversion of

cholesterol to a soluble, broad-spectrum antiviral effector (25-

hydroxycholesterol (25HC)) by adding a second hydroxyl group

at position 25 (94). Interestingly, CH25H as an antiviral ISG, forms

a part of the sterol metabolic network through interferon signaling

(95, 96). It has been shown that CH25H activity is induced by the

STAT1-dependent proinflammatory factor IL-1b/TNF-a/IL-6 in

the ZIKV-infected cells (96). In addition, 25HC can inhibit virus-

induced intercellular membrane fusion and viral infections. ZIKV

infection can markedly increase the expression levels of CH25H in

cells, thus augmenting the production of 25HC to prevent the virus

entry by blocking virus-mediated membrane fusion between cells

(97). Interestingly, 25HC can activate an acyl coenzyme A-

cholesterol acyltransferase (ACAT) in the endoplasmic reticulum

(ER) of cells, which subsequently eliminates accessible cholesterol

from the cell membrane, thereby inhibiting viral entry. SARS-CoV-

2 initially binds to human lung cells via the ACE2 receptor, and

cholesterol in the cellular membrane is required for the membrane

fusion of the virus (94). CSFV infection same as well (98) Therefore,

25HC can inhibit the virus entry. Notably, 25HC and 27HC not

only inhibit viral entry but also induce the production of

proinflammatory cytokines and suppress viral immune evasion. It

has been demonstrated that the stimulation of oxysterols enhances

HSV-1-induced IL-6 production, indicating that IL-6 exerts

antiviral effects during HSV-1 infection, which is an additional

antiviral mechanism of action for 25HC and 27HC (99).

Cholesterol is involved in the immunoevasion of viruses. High-

levels cholesterol can weaken the host’s antiviral immunity. The

PRRSV Nsp4 protein upregulates protein phosphatase 2 (PP2)

activity, which activates the rate-limiting enzyme 3-hydroxy-3-

methylglutaryl coenzyme A reductase HMGCR in the cholesterol

synthesis pathway and increases cellular cholesterol levels, thereby

inhibiting virus-induced IFN-b production and promoting PRRSV

replication (100). CSFV infection modulates the cholesterol

biosynthesis pathway to favor the virus entry and disrupt the type

I IFN response (101, 102). On the contrary, low-levels cholesterol

may enhance antiviral immunity in host cells. However, a reduction

in cholesterol biosynthesis also enhances host antiviral immunity.

When cholesterol synthesis is decreased, STING, a critical antiviral

signaling protein, is stimulated to generate antiviral responses.

STING appears to require a cholesterol-deficient ER membrane to

promote type I IFN production (103) (Figure 2). In summary,

CH25H is a molecule with broad spectrum antiviral activity.

SREBP2 is involved in cholesterol metabolism. The maturation

of SREBP2, a master transcription factor for cholesterol

metabolism, regulates NLRP3 inflammasome activation through

the translocation of the SCAP-SREBP2 complex from the ER into

the Golgi, thus promoting the activation of the NLRP3

inflammasome. NLRP3 has been reported to form ternary

complexes with the SREBP cleavage-activating proteins SCAP and

SREBP2, which in turn translocate proximally to the Golgi
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apparatus to form mitochondrial clusters for efficient assembly of

the inflammasome (104).
4 Interactions between amino acid
metabolism signaling and
viral immunoevasion

Amino acid metabolism also known as one carbon metabolism,

plays important roles in viral replication and immune

regulation (105).

Generally, viral infections can affect the host’s immune response by

inducing changes in host cell glutamine metabolism and tryptophan

metabolism. Therefore, metabolic reprogramming of glutamine and

tryptophan plays a crucial role in viral immunoevasion, and exploring

the mechanisms will help provide an in-depth understanding of viral

infections and immunoevasion (Figure 3).
4.1 Metabolic reprogramming of glutamine
regulates the viral immunoevasion

Glutamine is critical for viral replication, and viral infection

regulates the metabolism of glutamine depending on glucose levels.

Several viruses transfer carbon to biosynthetic reactions via aerobic

glycolysis, using glutamine to replenish intermediates of the TCA

cycle, and then reprogramming cellular metabolism to provide the

energy required for viral replication and the molecular material for

the production of progeny virus. For example, in the VACV-

infected HeLa or 2FTGH cells, HIF-1a mediates the shift from

glucose to glutamine metabolism via the viral C16 protein, and

stimulation of the viral protein contributes to glutamine

metabolism to produce a-ketoglutarate and some of the

macromolecular precursors of TCA cycle metabolism, which is

dependent on glutamine, and asparagine, in the absence of

glutamine to promote the production of VACV proteins (39,

106). In the HIV-infected CD4+ T cells, the carbon generated

from glutamine catabolism enters the TCA cycle to facilitate HIV

infection, which is also necessary for maintaining the balance

between the TCA cycle and oxidative phosphorylation (107). It

has also been shown that glutaminase: kidney-type glutaminase

(KGA), glutaminase C (GAC), phosphoribosyl pyrophosphate

aminotransferase (PPAT) (key enzymes for de novo purine

nucleotide synthesis) and glutamine-fructose-6-phosphate

transaminase 1 (a key enzyme in the hexosamine pathway) are

significantly differentially expressed after glucose deprivation in the

HIV-infected CD4+ T cells (35), indicating that the utilization of the

glutamine metabolic pathway significantly promotes HIV

replication. Glutamine is essential for RGNNV replication as it is

converted to a-KG by the enzyme glutaminase (GLS), which is

involved in the TCA cycle, and the process promotes RGNNV

replication through the TCA cycle (108). HCMV infection increases

the glutamine catabolism, which produces a-KG to replenish the

TCA cycle and promote HCMV replication (109). In addition,
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ASFV infection dramatically induces the activation of intracellular

glutamine metabolism and facilitates the viral replication in alveolar

mononuclear macrophages (27). Furthermore, EV 71 infection can

be promoted by increasing glutamine catabolism, while

pharmacological inhibition of pyrimidine metabolizing enzymes

can inhibit viral replication in Vero cells (110).

Glutamine produces glutamate and glutathione, an antioxidant

compound that plays an important role in the prevention of

oxidative stress. Similarly, HCV infection increases the utilization

and dependence on glutamine, whereas inhibition of glutamine

metabolism attenuates the viral infection and the cellular oxidative

stress (111). The expression of Myc, two transporter proteins

(SLC1A5 and SLC7A5) and two GLSs (KGA and GAC) was

increased in the HCV-infected Huh7.5 cells (Figure 3). Myc is a

transcription factor that induces the transcription of transporter

proteins, thereby driving increased cellular glutamine utilization

and thus metabolic reprogramming of cells. Inhibition of glutamine

metabolism reduces viral replication and oxidative stress induced by

HCV infection, suggesting that the inhibition of glutamine

utilization is a novel strategy for the treatment or prevention of

viral infection (111).

Glutamine metabolism plays a crucial role in regulating antiviral

immunity, as evidenced by the inhibition of the viral infections

through glutamine degradation. For example, the proliferation of

HSV-infected T cells requires the metabolic breakdown of

glutamine. Interestingly, glutamine supplementation has been

shown to inhibit the reactivation of latent HSV through a
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mechanism involving enhancement of the IFN-g-related immune

response, which in turn inhibits the activation of the latent

virus (112).

SLC1A3 (aspartic acid transporter, GLAST) is a member of the

solute family and is significantly upregulated through the P53 and

NF-kB pathways in the NDV-infected DF-1 or A549 cells, and

SLC1A3 hijacked by NDV promotes glutamate catabolism and viral

replication in host cells (113).

Glutamine has been shown to produce glucosamine, which in

turn allows the modification of key proteins through acetylation.

This modification helps to regulate cytokine production

downstream, which can affect the antiviral immune response in

host cells. The process of producing glucosamine involves the

catalysis of glutamine and fructose-6-phosphate by glutamine

fructose-6-phosphate amidotransferase (GFAT), generating

glucosamine-6-phosphate. Finally, UDP-GlcNAc induces

modification of the O-GlcNAc protein.
4.2 Tryptophan metabolism and
viral immunoevasion

The kynurenine pathway is a complex network of enzymatic

reactions that metabolizes tryptophan into various downstream

metabolites, including kynurenine, quinolinic acid, and picolinic

acid. These metabolites are involved in the modulation of immune

responses, oxidative stress, and neurotransmitter synthesis.
FIGURE 3

The involvement of amino acid metabolism in innate immunity. Glutamine is transformed into glutamate after entering the cell to facilitate the TCA
cycle repair. Glutamate is transformed to a-KG, which is integrated into the TCA cycle and oxidized to generate ATP for energy. Glutamine can
produce a variety of amino acids. Serine is linked to several glycolytic enzymes. Serine aids aerobic glycolysis and lactate production by activating
PKM2. Amino acid metabolism-related ASCT2, citrate, NH3, glutamine, and a-KG play important roles in viral replication. After viral infection, some
transcription factors can induce a reprogramming of glutamine metabolism, leading to increased expression of the genes involved in glutamine
uptake and metabolism, which promotes viral replication (red lines indicate activation, blue lines indicate inhibition). KGA, kidney-type glutaminase;
GAC, glutaminase C. The figure was created by the BioRender software.
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Tryptophan degradation is primarily mediated by the conversion of

tryptophan to kynurenine by two different dioxygenases:

indoleamine-2,3-dioxygenase (IDO1) and tryptophan-2,3-

dioxygenase (TDO2); the rate-limiting step in the tryptophan-

kynurenine pathway is performed by IDO1. IDO1 is a

multifunctional enzyme that typically acts as a negative regulator

of inflammatory and immune responses (114, 115). IDO is a critical

regulator of acute pulmonary inflammation. IDO deficiency

severely exacerbates lung inflammation in mice. Therefore, IFN

signaling in the lung parenchyma inhibits idiopathic pneumonia

syndrome by promoting IDO expression (116). It has been

demonstrated that changes in tryptophan metabolism are

associated with IL-6 levels. In the context of viral infection, IFNs

can enhance tryptophan metabolism by inducing IDO1 production

subsequently leading to alterations in metabolism and

inflammation, which ultimately affect viral replication (117, 118).

SARS-CoV-2 infection induces metabolic reprogramming of

tryptophan toward the kynurenine pathway, which regulates host

inflammation and immunity (119). Furthermore, IFN-g-induced
antiviral activity against measles virus can be counteracted by the

addition of excess tryptophan (120). In the context of SARS-CoV-2

infection, dysregulation of the kynurenine pathway has been

associated with severe disease outcomes, including cytokine storm

and respiratory failure.
5 Other potential targets
of immunometabolism

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2)

reductase is an important enzyme in folate metabolism. Folate

plays an indirect or direct role in cell proliferation and

differentiation. Reportedly, EBV infection remodels B-cell

metabolism and hijacks serine metabolism by upregulating

MTHFD2 to promote rapid B-cell growth, which leads to B-cell

lymphoma (121). MTHFD2 is a metabolic checkpoint controlling

effector and regulatory T-cell fate and function. The MTHFD2

regulates purine synthesis and signal transduction in activated T-

cells to promote the cell proliferation and inflammatory cytokine

production (122). NDV hijacks MTHFD2 of the nucleotide

pathway to maintain nucleotide availability required for viral

replication, revealing the dependence of NDV on the cellular

oxidative pentose phosphate pathway (PPP) and folate-mediated

one-carbon metabolism (123). Thus, MTHFD2 is a metabolic

checkpoint, which is combined purine metabolism with the

pathogenic effector cell signaling pathway, indicating that

MTHFD2 is a potential therapeutic target in the one-carbon

metabolic pathway.

Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in

the TCA cycle and plays an important role in energy metabolism,

which is a noteworthy potential therapeutic target. On one hand,

IDHmutation can generate high levels of 2-hydroxyglutaric acid (2-

HG), which inhibits glioma stem cell differentiation (124). On the

other hand, IDH mutation can also induce high levels of HIF-1a to

promote glioma invasion (125). Reportedly, the ARV sA protein
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can promote viral replication by upregulating IDH3B and

glutamate dehydrogenase (GDH) to promote glutaminolysis (48).

Importantly, IDH has been clinically useful as a therapeutic target

for acute myeloid leukemia (126).
6 The metabolic enzymes as potential
antiviral targets

Metabolic reprogramming is an important characteristic of viral

infections. To date, abnormal glucose metabolism has been

extensively studied. In the presence of sufficient oxygen, glycolysis

is the principal glucose metabolic pathway in several virus-infected

cells. In addition, metabolic enzymes are attractive potential

therapeutic targets. To date, few drugs targeting metabolism are

available. We summarize recent progress in the virus-induced

metabolic changes and the drugs (Table 3) to provide novel

strategies for targeting metabolism to inhibit viral replication in

vivo or in vitro. Generally, the identified antiviral targets are

associated with the enzymes in cellular metabolism, it is not clear

whether targeted metabolic enzymes will induce cytotoxicity, thus

the future c l in ica l use of metabol ic drugs requires

multifaceted evaluation.

Ongoing antiviral research will focus on the metabolic enzymes

involved in abnormal processes, such as glycolysis (34, 37, 63).

Although virus infections induce aerobic glycolysis, several viruses

utilize cellular mitochondrial function for replication. Therefore,

targeting the glycolytic pathway is not the only therapeutic

approach, and alternative antimetabolic approaches, such as

targeting mitochondrial metabolism, including the pentose

phosphate pathway, fatty acid synthesis, and amino acid

metabolism, may be potential antiviral targets in the future. In

summary, a more in-depth understanding of the regulatory

mechanisms of metabolic alterations and viral replication will

facilitate the development of antiviral drugs.

Currently, the precise mechanisms of metabolic reprogramming

induced by viral infections remain largely unknown. In-depth

exploration of these questions will enhance our understanding of

virus-cell interactions, increase the possibility of future drug

development targeting metabolism, and expand the library of

drugs available for the treatment of viral infections.
7 Conclusions and perspectives

In this review, we have outlined the impact of cellular

metabolism on viral infection and immunoevasion. The

relationship between cell metabolism and viruses is very intricate.

Viral infections can induce the changes in cellular metabolic

pathways (Table 4), thereby providing the essential nutrients and

energy for viral replication. When discussing the mechanisms of

viral immunoevasion, we focus on key intermediate metabolic

substances involved in several metabolic pathways hijacked by

viruses, including glycolysis, the hexosamine pathway, the TCA

cycle, the fatty acid synthesis pathway, the cholesterol metabolic
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TABLE 3 Intervention strategies targeting metabolic enzymes.

Targets of metabolism Compounds Pathways References

Phosphoglucose-isomerase 2-DG Glycolysis (127)

PKM2 TT-232
Shikonin/alkannin

Glycolysis (128, 129)

LDH Oxamic acid
Galloflavin

Glycolysis (130, 131)

LDHA FX11
Quinoline 3-sulfonamides

Glycolysis (132, 133)

HK II 3-Bromopyruvate (3BP)
Combination of 3-BrOP and rapamycin
Combination of MGCD265 and erlotinib

Glycolysis (134–137)

GLUT1 Phloretin
Quercetin
STF31
WZB117
Oxime-based GLUT1 inhibitors

Glycolysis (138–142)

ACC TOFA Fatty acid metabolism (143, 144)

Succinate dehydrogenase Sodium malonate TCA cycle (145)

Fumarase Fumaric acid esters TCA cycle (146)

Aconitase Fluoroacetate TCA cycle (147)

FASN C75 Fatty acid metabolism (148)

SREBP AM580 Fatty acid metabolism (149)

HMG-CoA Statins Cholesterol metabolism (150)

Glutaminase BPTES Amino acid metabolism (108)
F
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TABLE 4 Cellular metabolism changes in viral infections.

Viruses Up-regulated Down-regulated References

HIV-1 GLUT1, glutamine and PPAR-g (36, 37, 87, 107)

DENV GLUT1 and HK2 (39)

RV GLUT1 and glutamine (17)

HBV Lactate and HK2 (43, 44)

WSSV GLUT1 (40)

EBV GLUT1 (41)

HPV HIF-1a (65–67)

ARV Glutamine and IDH3 LDHA (48, 125)

IAV Lactate, OGT, HK2, ACC and PPAR-g ApoE (45, 50, 71, 81, 89, 93)

VSV OGT and HIF-1A (52, 53, 58)

KSHV HIF-1a (18)

SARA-CoV-2 Succinate, HIF-1a and IDO1 (59, 60, 62, 72, 119)

CSFV LDHB (46, 47)

ASFV Lactate and glutamine (27)

HCMV PPAR-g and glutamine (88, 109)

(Continued)
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pathway, the glutamine metabolic pathway, and the tryptophan

metabolic pathway. These pathways not only provide nutrients and

metabolites for the viral replication, but also participate in the

regulation of immune responses.

Viruses cause reprogramming of glucose metabolism, which

affects their immune evasion ability (151). More specifically, SARS-

CoV-2 reprograms glucose metabolism and glycolysis can be

hijacked by various viruses for favoring the viral infections (36,

37, 44, 45, 56, 152). The reprogramming promotes metabolic

pathways and stabilizes genes involved in glucose transport and

glycolysis, such as GLUT, LDH-A, and LDHB. HIF-1a activates the

expression of a variety of glycolytic enzymes, including GLUT1,

GLUT3, HK1, HK2, GAPDH, PGK1, PKM2, LDHA, and PDK1

(153–156). Importantly, HIF-1a not only increases glucose uptake

and lactate production, but also blocks the TCA cycle and oxidative

phosphorylation in mitochondria (156). Moreover, glycolytic flux

and TCA cycle activity increase significantly with glucose uptake

and lactate release (58). LDHA can enhance IFN-g expression by

upregulating histone acetylation (49, 157). Aerobic glycolysis can

also promote IFN-g production by binding GAPDH to the 3’UTR of

IFN-g mRNA (158). In addition, many intermediate metabolites,

such as succinate, fumarate, itaconate, and a-ketoglutarate, are
involved in immune activation or regulation. UDP-GlcNAc, the

end product of the HBP, plays an important role in the process of

viral inflammation through OGT (159). OGT mediates the transfer

of UDP-GlcNAc to serine or threonine residues of target proteins to

modify immune-related proteins (160) and coordinates glucose and

glutamine metabolism induced by growth factors (32).

Viruses can utilize lipid-related factors for immunoevasion. For

example, the deletion of ACC and SCD2 can indirectly activate the

cGAS-STING signaling pathway and enhance the host’s antiviral

activities (81). Moreover, some viruses can antagonize the NF-kB or

IFN-b signaling through regulating the lipid metabolism (87, 100).

Amino acids are the key nutrients that can be converted into a-
ketoglutaric acid to participate in the TCA cycle (108). Amino acid

metabolism also plays an important role in the immunoevasion of

viruses. Previous studies have shown that viruses can hijack

glutamine and SLC1A3 (the amino acid transporter) to facilitate

the viral latency and infection (112, 113).
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In summary, there is a potential role for metabolism-related

molecules in the development of antiviral drugs and diagnostic

reagents by inducing host metabolic reprogramming to regulate

viral replication (161). However, the application of immunotherapy

in the treatment of viruses has not yet been extensively developed.

Therefore, targeting immune cell function through metabolic

modulation is a promising avenue for immunotherapy in the

future (9, 72, 162).
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TABLE 4 Continued

Viruses Up-regulated Down-regulated References

HCV ApoE (90–92)

HSV-1 Succinate and glutamine (72, 112)

ZIKV Succinate (72)

VACV Succinate and glutamine (39, 72, 106)

NDV HIF-1a, SLC1A3 and MTHFD2 (58, 113, 123)

RGNNV Glutamine (108)

EV-71 Glutamine (110)
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145. Consegal M, Núñez N, Barba I, Benito B, Ruiz-Meana M, Inserte J, et al. Citric
Acid cycle metabolites predict infarct size in pigs submitted to transient coronary artery
occlusion and treated with succinate dehydrogenase inhibitors or remote ischemic
perconditioning. Int J Mol Sci (2021) 22(8):4151. doi: 10.3390/ijms22084151

146. Moharregh-Khiabani D, Linker RA, Gold R, Stangel M. Fumaric acid and its
esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol (2009) 7
(1):60–4. doi: 10.2174/157015909787602788

147. Ackermann WW. The relation of the Krebs cycle to viral synthesis. II. The
effect of sodium fluoroacetate on the propagation of influenza virus in mice. J Exp Med
(1951) 93(6):635–42. doi: 10.1084/jem.93.6.635

148. Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, et al. Fatty acid
synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C
virus entry and production. Hepatology (2008) 48(5):1396–403. doi: 10.1002/hep.22508

149. Yuan S, Chu H, Chan JF, Ye ZW, Wen L, Yan B, et al. SREBP-dependent
lipidomic reprogramming as a broad-spectrum antiviral target.Nat Commun (2019) 10
(1):120. doi: 10.1038/s41467-018-08015-x

150. Cohen JI. HMG CoA reductase inhibitors (statins) to treat Epstein-Barr virus-
driven lymphoma. Br J Cancer (2005) 92(9):1593–8. doi: 10.1038/sj.bjc.6602561

151. Ganesh GV, Mohanram RK. Metabolic reprogramming and immune
regulation in viral diseases. Rev Med Virol (2022) 32(2):e2268. doi: 10.1002/rmv.2268

152. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics
of SARS-CoV-2-infected host cells reveals therapy targets. Nature (2020) 583
(7816):469–72. doi: 10.1038/s41586-020-2332-7

153. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk
factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet (2020) 395(10229):1054–62. doi: 10.1016/S0140-
6736(20)30566-3
Frontiers in Immunology 16
154. Graven KK, Yu Q, Pan D, Roncarati JS, Farber HW. Identification of an oxygen
responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene.
Biochim Biophys Acta (1999) 1447(2–3):208–18. doi: 10.1016/s0167-4781(99)00118-9

155. Kress S, Stein A, Maurer P, Weber B, Reichert J, Buchmann A. Expression of
hypoxia-inducible genes in tumor cells. J Cancer Res Clin Oncol (1998) 124(6):315–20.
doi: 10.1007/s004320050175

156. Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer cell
metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int J Mol
Sci (2021) 22(11):5703. doi: 10.3390/ijms22115703

157. Cham CM, Gajewski TF. Glucose availability regulates IFN-gamma production
and p70S6 kinase activation in CD8+ effector T cells. J Immunol (2005) 174(8):4670–7.
doi: 10.4049/jimmunol.174.8.4670

158. Chang CH, Curtis JD, Maggi LBJr, Faubert B, Villarino AV, O'Sullivan D, et al.
Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell (2013)
153(6):1239–51. doi: 10.1016/j.cell.2013.05.016
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